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Abstract 
In This project we have 
discussed the concept of 
orthognality in normed space, 
which is an extension of the 
concept orthognality in Hilbert 
spaces. This concept has been 
used by Giles [2] to obtain 
some interesting result in semi –
inner product spaces .We have 
presented some results on 

Hilbert algebras due to Ambrose 
[1], Keown [3], and Ingelstam[4] 
and [5]many of these results 
have been extend to semi -
1nner product  algebras by 
Hussein and Malviya 
[6]and[7].we have carried out a 
study of generalized inner 
product and semi-inner product 
spaces and algebras. 

Some New Class of 
Hilbert Algebra 
Ambrose introduced and studied 
what he called, H*- algebras. 
The consideration of these H* - 
algebras arose from a 
consideration of the L2 – 
algebras of a compact group. 
Known introduced a new class 
of commutative Hilbert algebras 
which is in a sense a 
generalization of the class of 
H*- algebras .this essential 

difference between the works of 
AMBROSE AND Keown is that 
the latter does not obtain the 
decomposition of the algebras in 
to orthogonal subspaces each of 
which is a minimal left ideal . 
This chapter presents the result 
of Ambrose ,Keown and 
ingelstam . many of these 
results will be extended to semi 
– inner product algebras. 

1. H*- ALGEBRA  
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Definition 1: A banach algebra A 
whose underlying banach space 
is a Hilbert space is called an 
H*- algebra if for each x in A, 
there is an element x * in A, 
called adjoint of x, such that 
(xy,z) = ( y, x*z) and (yx, z) = 
(y,zx*) for all y and Z in A. 

Remark 1: We will see later that 
x* need not be unique.  The 
proof of following result is 
simple and hence omotted.  

Proposition 1. Let A be an H*- 
algebra and x* adjoint of x in 
A. Then  

(a) x** = x. 

(b) (xy)* = y*x*, x,y in A. 

(c) (ax+by)*= ax*+by*, x,y in 
A and a,b in C 

(d) xx*( or x*x) is self – 
adjoint.  Here are some 
examples of H*-algebras 

EXAMPLE 1: Let J be an 
arbitrary set of elements, and 
define  

B = { a( i,j )  C, ∑i j | a ( i, j 
)| < ∞, ( i, j) in JxJ}. 

With (a+b) (i,j) = a (i,j) + b (i,j) 

(a,b) (i,j) = ∑a(i,k)b(k,j), 

(λa)(i,j), λ in C 

(a,b) = a ∑i j  a ( i, j ) b(i, j),  L 
≥ 0 and a* ( i,j) = a- (j,i) B 
becomes an H* - algebra. If n 
is the cardinal number of J then 
B is called a ful matrix H*- 
algebra of order in the 
subalgebra of all diagonal 
elements of a full matrix algebra 
is also another example of an 
H*- algebra. 

EXAMPLE 2: Let G be a 
compact topological group. 
Consider the space L2 (G) of 
complex – valued functions of 
Integral Square with respect to 
the Haar measure of G. Define 
in L2 (G),  

(f + g ) (x) = f(x) + f(x), 

(fg)(x) =∫  f (xy-1) g(y)dy 

(λf)(x) = λf(x) 

(f,g) =∫ f(x) g – (y) dy, and (f*) 
(x) = f– (x-1). Then L2 (G) 
becomes an H*-algebra. 

 
Generalized Inner Product 
Spaces 

In this chapter we discuss a 
straight forward algebraic 
generalization of inner product 
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spaces, called generalized inner 
product (in short, g.i.p.) spaces, 
and we study various topologies 
in these spaces in such a 
manner that locally convex 
spaces are obtained . 

All the results of this 
chapter are due to prugovecki . 

 1   G.I.P Spaces  

Definition 1.   A vector space E 
is called a generalized inner 
product (abbreviated to g.i.p.) 
space if  

(a) There is subspace M of 
E which is a inner product 
space and ,  

(b) There is a set ℒ of 
linear operators on E such 
that 

(i) ℒEM   and  

(ii) Tx=0 , for all T in 
ℒ implies x=0  

We denote such a g.i.p. space 
by the triple (E,ℒM,) 

Clearly an inner product 
space is a g.i.p . Space. The 
following example shows that 
g.i.p. spaces from a proper 

generalization of inner product 
spaces. 

 

 

Example 1. Let E=Co(R) be the 
family of all real continuous 
functions on R .let M consists of 
all squares  integrable in E. We 
define the inner product in M as 
follows  

(x,y)=∫ x(t) y(t)dt 

We take ℒ to be the family 
of all projections p(I) , defined by  

P(I) (x))(t)= 1 (t)x(t) 

Where I is the finite non 
degenerate interval and x1 (t) is 
the characteristic function of I . 
(E, ℒ, M )  is a g.i.p space 
which is not an inner product 
space  

Proposition 1 .let (E,ℒ’ M) be a 
g.i.p space and x in E . if (Tx,y) 
=0 for all y in M and T in ℒ, 
then  x=0  

Proof .clearlyTx is in M . hence 
if    (Tx,y) =0 for all y in M , 
then Tx =0  for all T in ℒ . but 
then x=0 by the definition 1 . 



    International Journal of Research 
Available at 

https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 04 Issue 06 
May 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 501  

Corollary 1. Let (E,ℒ ,M) be a 
g.i.p .space an x in E . (Tx,Tx) 
=0 for all T in ℒ the x=0  

Proof  .if (Tx,Tx)=0 then Tx=0 . 
now proposition 1 applies to the 
result  

2 . Strong Topologies. 

Definition 2 .let (E,ℒ,M) be a 
g.i.p space for each x in E , the 
sets of the form   

V(x;T1,.......Tn;)={yE;(Tk(y-x),Tb(y-
x))2 < , k=1,2,....n} for all <o , 
T1,...........Tn in ℒ , n=1,2,......, 
from a neighborhood basis for a 
topology in E called the strong 
topology  

Lemma 1. Each V(0;T1,.......Tn;) 
is circled and convex . 

Proof . Let xV(0;T1,.......Tn;) 

Then 

           (Tkx,Tkx)1/2<,  
k=1,......,n. 

Hence for all || , 

                    (Tk(x 
),Tk(x)1/2   =   ∥Tk(x )∥  
=||.∥Tk(x )∥ 

                               = 
||(Tkx,Tkx)1/2<,  k=1,......,n. 

This implies that  

x V(0;T1,.......Tn;) 

And  V(0;T1,.......Tn;) is circled.  
To show that it is convex,  let 

x1,x2 V(0;T1,.......Tn;) 

and   01. 

Then  

     (Tk(x 1+(1-)x2), Tk(x 1 )+ 
(1-)x2))1/2 

                                                 

=∥Tk(x 1+(1-)x2)∥ 

   =∥Tkx 1+(1-)Tk x2)∥ 

                               
=|(Tkx1,Tk x1)1/2  +(1-)(Tkx2,Tk 

x2)1/2< 

This implies that  

x1+(1-)x2 V(0;T1,.......Tn;) 

And so V(0;T1,.......Tn;) is 
convex.  

Lemma 2 . (E,ℒ,M ) be  g .i.p 
.space .If u is a topology on E 
for which the sets V (x; T ;) are 
neighbourhoods of x for all >o , 
T in ℒ , then u is Hausdorff.  

Proof .suppose u is not 
Haussdorff . then there exists  
atleast to distinct elements x1 
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and x2 in E for which any two 
neighbourhoods have common 
points. thus for anyV(x1 ;T;1/n) 
and V(x2 ;T;1/n) there is atleast 
one ynin E such that 

ynV(x1 ;T;1/n) V(x2 ;T;1/n). 

Hence 

      (T(x1-yn),T(x1-yn))1/2<1/n 

      (T(x2-yn),T(x2-yn))1/2<1/n 

Then 

      (T(x1-x2),T(x1- x2))1/2=∥ T(x1-
x2)∥ 

2/n 

From this it follows that  

        T(x1-x2)=0 

For all T in ℒ, and x1=x2  which 
is contradiction. 

Theorem 1 . Let (E,ℒ,M) be a 
g.i.p .space . E , equipped with 
the strong topology , is a 
Hausdorff  locally convex space  

Proof  .we first show that the 
strong topology is compatable 
with the vector operations . for 
any  V(x1+x2 ; T1,.......Tn;) we 
show that 

        V(x1; T1,.......Tn;/2)+ V(x2; 
T1,.......Tn;/2) 

 V(x1+x2 ; T1,.......Tn;). 

Let  

        Y1V(x1; T1,.......Tn;/2) 

And  

         Y2 V(x2 ; T1,.......Tn;/2) 

Then  

       (Tk(y1+y2- x1-x2 ), Tk(y1+y2- 
x1-x2 ))1/2 

∥Tk(y1+y2- x1-x2 )∥ 

∥Tk(y1- x1 ) ∥+∥Tk(y2- x2 ) 
∥</2+/2=, 

Where  k=1,....,n . thus the 
operations of the vector 
summation is continuous that 
similarly we can show that the 
operation of multiplication, by a 
scalar is continuous. The rest 
follows from lemma 1 and 2  

Definition 3 .let (E,ℒ,M) be a 
g.i.p. space . the family of sets  

 V(x;T1,....;)= V(x,Tk;) 

Where the   Tk are in ℒ 
,and>0 , constitute a 
neighbourhood basis for a 
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topology on E which we call the 
ultra-strong topology . 

Clearly the ultra-strong 
topology is finer than the strong 
topology . 

Proposition 2 . A g.i.p.space 
(E,ℒ,M) with strong (ultra-strong) 
topology  is  metrizable  if  
there is  a  countable subset ℬ 
of ℒ which has the property that 
for any T in ℒ there is an S in L 
, L being the linear manifold 
generated by ℬ such that  

                          
(Tx,Tx)1/2(Sx,Sx)1/2 

For all x in E  

Proof .it is sufficient to show that 
the family of sets  

V(0;S1,.......Sn;1/n); S1,.......Snℬ,   
k,n=1,2,..... 

Is a neighbourhood basis 
at o for the strong topology for 
every T in ℒ we can find an S 
in L for which  

V(0;S;) V(0;T;) 

Clearly    we have  

              S=1 S 1 +..........+k 
S k,  ); S1,.......Snℬ 

And so 

(Sx,Sx)1/2 =∥Sx∥||.∥ 
S1x∥+........+|k|.∥Skx∥ 

For all x in E.Thus ,If we choose 
an integer n such that 

1/n/k|1|,........,1/n/k|k| 

We have 

V(0;S;) 
V(0;S1;1/n)....... V(0;Sk;1/n) 

=  V(0;S1,.......Sn;1/n) 

The proof for ultra-strong 
topology can similarly be 
obtained. 

Corollary 2.   The g .i.p .space 
Co(Example 1)  is metrizable in 
the strong and ultra-strong 
topologies. 

Proof.    Choose  the countable 
family  

ℬ={P([n,n+1]);n=0,1,2,.....} 

Of projectors from ℒ. If 
P(I)  is in  ℒ , then I is a finite 
interval and consequently  we 
can defined integers m1  and  m2 

,     m1<m2    such that  

I   U [n,n+1). 
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Hence ,  we  have,   for  any  
x in Co    , 

    (P(I)x, 
P(I)x)1/2(Sx,Sx)1/2, 

whereS=P([n,n+1))  L.  

 

3 Dual Spaces and Weak 
Topologies.  

Let (E,ℒ,M ) be a g.i.p. 
space . we can assign to each T 
in ℒ and each M  , a linear 
functional  

    (x; 
T,)= (Tx,)  

 On E .  Denote by Fo the 
family of all  such functional . 
Fois not a vector space , in 
general . let F be the vector 
space (over the same field as 
that of E ) spanned by Fo.  

 Proposition 3 . F and E 
constitute a dual pair . 

Proof .if(x) =0 for all  in F 
.then  

(Tx,)=0 

For all in M and T in ℒ 
.but then , ,by proposition I,x=0 , 
conversely , if  for a given o in 

F. 0(x)=0 for all x in E then 
0=0  

Notation . We write  

<x,>=(x).  F,xE.  

Clearly <x,> is a bilinear 
functional on F and E . 

Proposition 4 : each  in F is 
continuous in the strong (ultra-
strong ) topology . 

Proof .let>0. Now  |(x;T,) -(x0 
;T,)|= |T(x-x0),)| 

∥T(x-x0)∥.∥∥<. 

Whenever   (T(x-x0), T(x-
x0)1/2=∥T(x-x0)∥</∥∥). 

i.e., for all  

xV(x0;T, /∥∥).  

Thus each  in F0 is 
continuous functional on E in the 
strong (ultra – strong) topology. 

Hence the continuity of 
each  in E follows . 

Remark 1. F is contained in the 
vector space conjugate to E with 
the strong topology . 

Theorem 2. Let (E,ℒ,M) be a 
g.i.p. space . If M is 
finitedimensional ,then F is 



    International Journal of Research 
Available at 

https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 04 Issue 06 
May 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 505  

isomorphic to the vector space 
conjugate to E with the strong 
topology . 

Proof . All that we need to show 
is that if f(x) is a continuous 
linear functional on E with the 
strong topology , then f is  in F 
. For a given ,0<<1. We can 
find a neighbourhood 

V(0;T1,.......Tk;) at 0 for the 
strong topology such that  

                                            
|f(x)|< 
For all x.  On the other hand , 
since M is finite – dimensional, 
there is a  basis 1 ,...... n  in 
m which spans Mo  consider the 
finite set of continuous linear 
functional 

(*)   1(x) =(T1x,1) , i=1,....,n ,  
j=1,....,k. 

 If f(x)  were independent of the 
functionals  (*).  Then there 
shoud be an x1  in E for which 
f(x1) =1 ,   1(x1)=.....= n k(x1)=0 

but then T1x1=.......= Tkx1 =0 

Because   1....n  is a basis in 
M, and so X1 V(0;T1,.......Tk;). 

This implies that |f(x1)|< 1 

Which is contradiction .this 
completes the proof .  

The following example  
demonstrates the existence of a 
g.i.p space (E,ℒ,M ) with M finitr 
–dimensional.  

Example 2. Let  Me be the 
family of all  one –row infinite 
matrices with real elements 
(a1,a2,.........) ,and M the one 
dimensional space of all one –
row real matrices (a1,0,0,......) in 
which only the first element 
isnon –vanishing . we adopt the 
customary inner product  in M . 
we choose  

ℒ=(P1,P2,....) 

Where Pn is the operator  

Pn(a1,a2,......,an)=(an,o,...,0..). 

Then (e,ℒ,M) is a g.i.p.space 
with M one dimensional space . 

As usual, the weak 
topology on E is the coarsest 
topology in which  all the linear 
functional from F are continuous 
.As is well-known. The family of 
all subsets W(x0;1,.....n) of E 
where .W(x0;1,.....n)={xE;|k(x-
x0)|<1,k=1,.......n} 
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Corresponding to all 
1,.....n  in F ,n=1,2,....... is  a 
neighbourhood   basis  at x0. 
Since F0 generates F , the family 
of all neighbourhoods 

W(o;1 
T1.....n,Tn)={xE;|(Tkx,k)|<1,k=1,...
.n} 

     = {xE;| 
(Tkx,k)|<1,k=1,....n} 

Corresponding to all 1....n  
in M, T1.....,Tn in ℒ ,n=1,2,....., is 
also a neighbourhood basis at 0. 
Since E and F constitute a dual 
pair ,Eis a Hausdorff topological 
space in the weak topology .  

In view of the general 
properties of weak topologies we 
have the following  

Proposition 5. The space E 
equipped with the weak topology 
is a Hausdorff locally convex 
space . 

Definition 4 .the family of all 
sets  

W(x0;1,.....n) 

={xE;|k(x-x0)|<1,k=1,.......} 

Corresponding to all 
sequence ,1,.....n, ....... in F 
from a neighbourhood basis x0 

for a topology on A which we 
call the infra –weak topology .  

Clearly the infra- weak 
topology is finier than the weak 
topology and hence Hausdorff 

Proposition 6. The space E 
equipped with the infra- weak 
topology is a Hausdorff locally 
convex space . 

Proof . It is easy to check that 
the infra-weak topology is 
compatable with the vector 
operations on E .furthermore it 
can easily be shown that the 
sets W(x0;1,.....n) are convex .  

Hence the result follows. 
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