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Abstract— MRI is a extensively used diagnostic tool, that gives 

unmatched propensity to image soft tissue. Denoising in resonance 

imaging (MRI) may well be a important issue and very important for 

clinical identification and computerized analysis. Parallel imaging is 

a robust method for accelerating the acquisition of magnetic 

resonance imaging (MRI) data, and has made possible many new 

applications of MR imaging.Increasing the robustness of magnetic 

fields can improve the signal-noise-ratio (SNR)[10][11], but will 

introduce radio frequency-inhomogeneity artifacts and demand high 

costs as a results of the noise attenuation wants high power supply 

devices to rise the super conduction effect t[1]. employing a multi-

channel coil array to simultaneously receive MR k-space (i.e., the 

spatial Fourier work on domain of imaging object) signals shows 

vital SNR gain. Moreover, further k-space info from these coils is 

employed to fill uniformly under sampled k-space by utilizing 

parallel tomography (pMRI) techniques which can shorten MR 

scanning time. Even so, noise amplification and aliasing artifacts are 

serious in pMRI reconstructed image at high under sampling 

parameters [2]. Parallel resonance imaging (pMRI) techniques can 

intensify MRI scan through a multi-channel coil array receiving 

signal at an equivalent time .Reduction of noise and  enhancing the 

images were in spatial domain increases the scope of information in 

the image. Then, noise and aliasing artifacts are removed from the 

structured matrix by applying sparse and low rank matrix 

decomposition technique. These also helps in reducing the non-linear 

artifacts. That is sparsity of the image. Nevertheless, noise 

amplification and aliasing artifacts  are serious in pMRI 

reconstructed images at high accelerations. Here a low rank matrix 

decomposition helps in denoising the medical images using ADMM 

Algorithm, but was not very much efficient in reducing the error rate. 

So, redundant multi-resolution decomposition helps in increasing the 

information levels of the image. And those values were shown using 

performance parameters peak signal noise rate (PSNR) and structural 

similarity index matrix (SSIM) entropy i.e, information of an 

image.Using the concept of compressed sensing theory we have 

applied low matrix decomposition for noise removal from PMRI 

Images. The concept of low matrix decomposition is depends on self 

similarity concept. In this method we have successfully applied low 

matrix decomposition method along with the concept of gra 
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I. INTRODUCTION 

Denoising in magnetic resonance imaging (MRI) is a critical 

issue and important for clinical diagnosis and computerized 

analysis. Increasing the strength of magnetic fields can 

improve the signal-noise-ratio (SNR), but will in-troduce 

radiofrequency-inhomogeneity artifacts and demand high 

costs because the noise attenuation requires high power 

supply devices to increase the superconduction effect [1]. Us-

ing a multi-channel coil array to simultaneously receive MR 

k-space (i.e., the spatial Fourier transform domain of imaging 

object) signals shows significant SNR gain [2], [3]. More-

over, additional k-space data from these coils can be used to 

fill uniformly undersampled k-space by utilizing parallel MRI 

(pMRI) techniques [4], [5] that can shorten MR scanning 

time. Nevertheless, noise amplification and aliasing artifacts 

are serious in pMRI reconstructed image at high 

undersampling factors [6]. Therefore, it is necessary to 

introduce a denoising procedure to improve the quality of 

pMRI image. 

 
Numerous denoising methods have been proposed to re-

move the noise in single MR image [7]–[11]. For example, 

Aja-Fernández et al. introduced the Linear Minimum Mean 

Square Error (LMMSE) estimator to deal with the Rician 

distributed noise in MR magnitude image [7]. Manjón et al. 

proposed an Adaptive Non-Local Mean filter (ANLM) [9] to 

handle the spatially varying noise. However, all of these exist-

ing denoising methods ignore the fact that image 

reconstructed by pMRI is concurrently degraded with both 

noise amplifica-tion and aliasing artifacts [6], [12]. Although 

aliasing artifacts and amplified noise appear different physical 

manifestation, both of them can arise from the same 

underlying mechanism and one rarely appears without the 

other [6]. Because most current denoising methods are quite 

sensitive to the noise model and are heavily tuned for one 

specific type of noise, the interference of aliasing artifacts will 

confound the estimating of statistical model parameters and 

degrade the performance of denoising methods [6], [13]. 
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Recently, low-rank matrix completion derived from com-

pressed sensing theory [14] has been successfully applied to 
various matrix completion problems, e.g., image compression 

[15], video denoising [13] and dynamic MRI [16]–[18]. Com-

pared with classical denoising methods, denoising methods based 

on low rank completion enforce fewer external assump-tions on 

noise distribution [13]. These methods rely on the self-similarity 

of three dimensions (3-D) images across different slices or frames 

to construct a low rank matrix. Nonetheless, significantly varying 

contents between different slices or frames may lead an exception 

to the assumption of low-rank 3-D images, and discount the 

effectiveness of these methods. 

 
In this paper, we propose to remove both noise and alias-

ing artifacts in pMRI image by using a sparse and low rank 

decomposition method. By exploiting the self-similarity be-

tween multi-channel coil images and inside themselves, we 

formulated the denoising of pMRI image as a non-smooth 

convex optimization problem that minimizes a combination of 

nuclear norm and l1-norm. The proposed problem is 

efficiently solved by using the alternating direction method of 

multipliers (ADMM) [19]. Experimental results of phantom 

and in vivo brain imaging are provided to demonstrate the 

performance of the proposed method, with comparisons to the 

related denoising methods. 

 
II. Image Gradient 

 

A. Self-Similarity in Multi-Channel Coil Images 

 
When an L-channel coil array is used to receive MR k-

space signals with Nyquist sampling rate, L coil images with

 

An image gradient is a directional change in the intensity or 

color in an image. Image gradients may be used to extract 

information from images. 

In graphics software for digital image editing, the 

term gradient or color gradient is used for a gradual blend 

of color which can be considered as an even gradation from 

low to high values, as used from white to black in the images 

to the right. Another name for this is color progression. 

Mathematically, the gradient of a two-variable function (here 

the image intensity function) at each image point is a 

2D vectorwith the components given by the derivatives in the 

horizontal and vertical directions. At each image point, the 

gradient vector points in the direction of largest possible 

intensity increase, and the length of the gradient vector 

corresponds to the rate of change in that direction. 

Since the intensity function of a digital image is only known 

at discrete points, derivatives of this function cannot be 

defined unless we assume that there is an 

underlying continuous intensity function which has been 

sampled at the image points. With some additional 

assumptions, the derivative of the continuous intensity 

function can be computed as a function on the sampled 

intensity function, i.e., the digital image. Approximations of 

these derivative functions can be defined at varying degrees of 

accuracy. The most common way to approximate the image 

gradient is to convolve an image with a kernel, such as 

the Sobel operator or Prewitt operator. 

The gradient of the image is one of the fundamental building 

blocks in image processing. For example the Canny edge 

detector uses image gradient for edge detection. 

Image gradients are often utilized in maps and other visual 

representations of data in order to convey additional 

information. GIS tools use color progressions to 

indicate elevationand population density, among others. 

Image gradients can be used to extract information from 

images. Gradient images are created from the original image 

(generally by convolving with a filter, one of the simplest 

being the Sobel filter) for this purpose. Each pixel of a 

gradient image measures the change in intensity of that same 

point in the original image, in a given direction. To get the full 

range of direction, gradient images in the x and y directions 

are computed. 

One of the most common uses is in edge detection. After 

gradient images have been computed, pixels with large 

gradient values become possible edge pixels. The pixels with 

the largest gradient values in the direction of the gradient 

become edge pixels, and edges may be traced in the direction 

perpendicular to the gradient direction. One example of an 

edge detection algorithm that uses gradients is the Canny edge 

detector. 

Image gradients can also be used for robust feature and 

texture matching. Different lighting or camera properties can 

cause two images of the same scene to have drastically 

different pixel values. This can cause matching algorithms to 

fail to match very similar or identical features. One way to 

solve this is to compute texture or feature signatures based on 

gradient images computed from the original images. These 

gradients are less susceptible to lighting and camera changes, 

so matching errors are reduced. 

 

The gradient of an image is given by the formula: 

 

, 

where: 
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The gradient direction can be calculated by 

the formula:
[1]:706

 

.  

For example, to calculate  we apply a 

1-dimensional filter to the image  by 

convolution: 

 

where  denotes the 1-

dimensional convolution operation. 

This 2×1 filter will shift the image by 

half a pixel. To avoid this, the 

following 3×1 filter 

 

can be used. 

B. Denoising in pMRI by Low Rank Matrix Decomposition 

 
To remove noise and aliasing artifacts simultaneously, we ap-

proximately model the noisy image of pMRI as a superposition 

 
Fig. 1. (a) Phantom reference image reconstructed with 32-channels full k-

space data. (b) Image reconstructed by a representative k-space based pMRI 

reconstruction algorithm. (c) Difference image between (a) and (b). (d) Sorted 
singular values of a patch stack in the resulting image of (b) are more and 

larger than those of (a). 

 

of clear image, aliasing artifacts and noise. Thus, each 

matched patch matrix P from pMRI reconstructed coil images 

can be decomposed as 

 

P = C + D + N (4) 

 

where matrix C represents the original noise-free image, 

which is low rank due to the self-similarity of multi-channel 

coil images. Matrix D represents residual aliasing artifacts and 

has a sparse structure, matrix N indicates random image noise 

that is generally introduced in the acquisition phase and 

amplified in the pMRI reconstruction process [4], [5]. 

Because the self-similarity and sparseness can be, respectively 

characterized by means of rank and l0 norm, denoising of coil 

images can be described as a matrix decomposition problem 

that extracts the clear image C from the observed image P by 

solving the following minimization problem: 

 

min rank(C) + λ D 

0 

 
C,D    

s.t. P − C − D F ≤ δ (5) 

where 0 denotes l0 norm that accounts the number of non-zero 

entries in matrix or vector, F denotes Frobenious norm for 

matrix, λ > 0 is a tuning parameter providing a tradeoff between 

sparse and low-rank components, and δ reflects the level of noise 

in observation P . Generalizations of (5) are often intractable 

because rank and l0 norm are nonconvex functions, we instead 

consider a convex relaxation of (5), which has also been proven 

to promote low-rank solutions [21] 

 

min 
C ∗ + λ D 1 

 
C,D  

s.t. P − C − D F ≤ δ (6) 

where C ∗ represents the nuclear norm of matrix C (i.e., the sum 

of its singular values), and 1 is the summation of l1 norms over all 

matrix columns. Eq. (6) can be solved with an efficient ADMM 

method by taking full advantage of its separate structure, which is 

detailed in the following subsection. 

 

It should be noted that (6) only recoveries the pixels within 

one patch of individual coil image. The denoising of entire 

coil image can be accomplished by sliding the patch across 

entire image in a raster fashion. Thus, each pixel is calculated 

repeatedly between overlapping patches and obtains multiple 

estimations. The final output of each pixel is calculated by 

simply averaging all estimates of this pixel from overlapping 

patches. 

 

C. Optimization Algorithm 

 

In this paper, we introduce the augmented Lagrange alter-

nating direction method (ADMM) [19] for solving non-

smooth convex optimization problem (6). The augmented 

Lagrange function of (6) is defined as 

 

LA(C, D, Z) = λ D 1 +  C ∗ − Z, C + D − P 

+ 

β 

C + D − P F
2
   (7) 2 

 

where β > 0 is the penalty parameter for the violation of the 

linear constraint and Z is the Lagrange multiplier of the linear 

constraint, and  ·  denotes the standard trace inner product 

operator. The minimization task (7) can be split into three 

easier subproblems as follows: 

 

 
D

k+1
 ∈ arg min 

 
LA(D, C

k
, Z

k
) 

) 
 

(8) C
k+1

    arg min  A(D
k+1

, C, Z  

 Zk+1 = Zkγβ(Dk+1 + Ck+1 
 

k 
P ) 

 

 

∈ 

         

 − 

L  

− 

   

       
Algorithm 1 ADMM for Solving Sparse and Low Rank 

Matrix Decomposition Problem 

https://en.wikipedia.org/wiki/Image_gradient#cite_note-dip3-1
https://en.wikipedia.org/wiki/Convolution
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do 

1. Compute D
k+1 

Dk+1 = β Z
k
 − C

k
 + P − TΩ∞λ/β β Z

k 
− Ck + P 

   1         1     
        

where TΩ∞λ/β  denotes the Euclidean projection onto  

Ωλ/β : 

{ 

X 
∈ 

n×n 

| − 

λ/β 

≤ 

x 
i,j 

≤ λ/β 

} 

 

∞           

2. Compute C
k+1 

          
                

Ck+1 = U 
k+1

diag max σi
k+1

 − 

1 

, 0 (V 
k+1

) 

T 
 

 

  

 β  

 

where U 
k+1

, V 
k+1

, and {σ
k+1

} generated by the singular 

values decomposition of P − D
k+1

 + (1/β)Z
k 

3. Updata the Z
k+1 

√ 

 

Z
k+1

 = Z
k
 − γβ(D

k+1
 + C

k+1
 − P ), γ ∈ 0, 

5 + 1
 2 

 

until converged 

 

 
TABLE I 

SUMMARY OF EXPERIMENTAL DATA SETS 

 

 

 

 

 

 

 

 

 

√ 
 

where γ ∈ (0, ( 5 + 1)/2) is a relaxation factor to guarantee 

convergence of iterations. The variables C, D, and Z are 

minimized separately, and each of them has a closed-form 

solution. The detail procedure for solving the problem (8) is 

described in Algorithm 1. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

A. Source Data 

 

The performance of the proposed method was validated 

using three scanned data sets acquired on a 3T whole-body 

scanner. Both phantom and in vivo data sets were fully 

sampled on the scanner and later undersampled on the 

computer to mimic the clinical pMRI acquisition. A brief 

description of all data sets is summarized in Table I. 

 

Noisy images were generated from the undersampled k-

space data with generalized auto-calibrating partially parallel 

acquisitions (GRAPPA) [5] that is the most widely used pMRI 

reconstruction method in commercial MR scanners. Images 

reconstructed with full k-space data were used as the pseudo 

ground truths. 

 

C. Algorithm Implementation 

 

The proposed algorithm was compared against some 

recently developed methods used for MRI denoising: LMMSE 

[7], block method of 4-dimension denoising (BM4-D) [10], 

and ANLM [9]. All denoising results of these benchmarks 

methods were generated from the source code or executable 

released by their authors. For a fair comparison, an 8 × 8 

patch was adopted in the implementations of all methods, and 

the spatial search radius was 20 pixels. LMMSE was applied 

on the single noisy image, while other filters were directly 

applied on noisy coil images where the coil direction was 

approximately in place of volumetric direction for BM4-D 

and AONLM, then the denoised coil images were combined 

into final ones in a sum-of-squares fashion [22]. 

 

For the proposed method, the parameter λ was set following 

 

[23]: λ = 1/ max(M 
2
, K). The parameter β was empiri-cally 

set to 0.25M 
2
K/σ P 1 for convenience, where σ = mode(σP ) 

is the unbiased local standard deviation for each group of 

matching image patches. The relaxation factor γ was set to 1.6 

for the updating of Lagrange multiplier. To guarantee the 

convergence of the proposed algorithm, the relative change at 

each iteration was calculated 

ξ =  (Dk, Ck)
−

F + 1 . 

  (Dk+1, Ck+1) (D
k
, C

k
)   

        

 

The stopping criterion was either the tolerance ξ < 5e − 6 or 

the maximal number of iterations 20 being reached. Both 

image reconstruction and denoising were performed in Matlab 

(MathWorks, Natick MA) on a windows 7 computer equipped 

with an Intel Celeron G540, 2.50 GHz CPU and 4 GB RAM. 

 

B. Quality Measures 

 

Two quality measures were used for quantitatively 

evaluating the accuracy of denoised results. The first is the 

Peak signal noise rate (PSNR) metric, which is formed by 

calculating the ratio between the maximum possible power of 

a signal and the power of corrupting noise that affects the 

fidelity of its representation 

max(I
ref

 ) 

PSNR
 

= 20 log
10 Irecon − Iref  2 
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where I
recon

 and I
ref

 represent denoised image and noiseless 

reference image, respectively. 

 

Another quality measure was the structural similarity index 

matrix (SSIM) [24] which better relates to the human visual 

system than conventional metrics based on the mean squared 

error. The SSIM between two images I and J is given by 
1 

 

 (2μiμˆj + c1)(2σi,j + c2) 

SSIM(I, J ) =     
N 

 

μi2 + μ ĵ2 + c 1  σi2 + σj2 + c 2  

    

i I,j J 

 

where μi and μˆj are the respective local mean values, σi and σj 

the respective standard deviations, σi,j covariance value, c1 

and c2 two predefined constants. The higher PSNR and SSIM 

indicate more preferable image quality. 

 

D. Results 

 

Fig. 2 shows the visual comparison of four denoising 

methods for the phantom image. The noise and artifacts are 

still prominent in the resulting images denoised by LMMSE 

[Fig. 2(c)] and ANLM [Fig. 2(e)]. The zoomed-in patches 

 
 

Fig. 3. Example denoising results for a sagittal brain data set. (a) Reference 
image and noisy image generated by pMRI with an undersampling factor of 6. 

The noisy image is filtered by (b) LMMSE, (c) BM4-D, (d) ANLM, and (e) 

the proposed method. The difference images between the reference image 
with filtered images are shown at the right of each denoised image. 

 
TABLE II 

PSNR AND SSIM VALUES OF DENOISED IMAGES 
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shows the residual artifacts are retained in the filtered images of 

LMMSE, BM4-D, and ANLM. In contrast, both noise and 

residual artifacts are removed in the denoised image by the 

proposed method at a little sacrifice of image contrast. Note that 

the noise in the background region of LMMSE denoised image is 

amplified, the similar phenomenon was observed in previous 

literature [7]. This is because the standard deviation of noise is 

automatically estimated in LMMSE according to the background 

noise, which ignores the spatially varying noise. 

 

Fig. 3 shows the filtered images of sagittal brain data set by 

the four denoising methods and corresponding difference 

images. All methods show good behaviors on noise suppres-

sion. The noise level in the image of LMMSE is slightly 

higher than those in other results, which can be observed from 

the difference image and the numeric comparisons listed in 

Table II. Nevertheless, the anatomical details are sacrificed in 

the images denoised by all the patch based methods especially 

for the result of BM4-D [Fig. 3(c)]. The proposed method 

produces a satisfactory balance between noise cleaning and 

edge preservation among the three patches based methods. 

 
Fig. 4 illustrates the resulting images of axial brain data set by 

the four denoising methods. The local images are zoomed in and 

listed in the left-bottom of the denoised images, respec-tively. 

The intractable noise is visible in the center of the image denoised 

by LMMSE, and as is observed in Fig. 2, noise is 

 

 

 

Fig. 4. Example denoising results for an axial brain data set. 

(a) Reference image. (b) Noisy image generated by pMRI 

with an undersampling factor of 6. (c) LMMSE denoising. (d) 

BM4-D denoising. (e) ANLM denoising. 

 
(f) Denoised by the proposed method. A region of interest was 

zoomed in (enclosed by a white rectangle in the reference 

image) and shown at the bottom-left corner of each resulting 

image. 

 
                                        TABLE III 

TIME EXHAUSTS OF DENOISING METHODS IN EXPERIMENTS (SEC.) 

 

 

 

 

 

 
amplified at the corners of image caused by the over-estimation 

of noise standard deviation. The zoomed in patch shows ANLM 

has a more conservative behavior on noise suppression than 

BM4-D and the proposed method. Although the image filtered by 

the proposed method appears to be slightly oversmoothed, the 

zoomed-in patch image shows the proposed method pre-serves 

most of the important features in the filtered image. The aliasing 

artifacts are weaker in the image denoised by the proposed 

method than those of LMMSE and BM4-D. 

 

Results of quantitative evaluation are reported in Table II. 

The highest PSNR and SSIM values are highlighted in each 

cell to facilitate the comparison. As shown, the proposed 

method outperforms other approaches in all cases. 

 

Table III lists the computational times of all denoising 

methods in experiments. LMMSE which was directly applied 

on single noisy image has the shortest denoising time. The 

proposed method has the longest time among all denoising 

methods; however, it can still meet the real-time requirements 

in clinical applications by implementing the proposed 

algorithm in C programming language. 

 

IV. Experimental Results  

 

Using the concept of compressed sensing theory we have 

applied low matrix decomposition for noise removal from 

PMRI Images. The concept of low matrix decomposition is 

depends on self similarity concept. In this method we have 

successfully applied low matrix decomposition method along 

with the concept of gradient techniques to efficiently remove 

the noise from the PMRI images. 

Below is the experimental results implemented using 

MATLAB software. 

 

Above figure represents the MRI image of human brain and 

below figure represents atifact and noise effected image. 

Generally these artifacts and noise are generated 

inhomogeneity between radio frequency signals and high 

under sampling factors. 

 

In our proposed low matrix decomposition along with 

gradient smoothing technique artifacts and noise are removed 

without scarifying the image contrast. In this paper we are 

preserving the edges of the patches using gradient concept. 



    International Journal of Research 
Available at 

https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 04 Issue 06 
May 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 544  
 

Since we are decomposing the entire image using we can 

effectively reduce the noise level compared to any other 

previous techniques. Here based on the background noise 

adjustment we can effectively estimate the standard deviation 

value of noise for entire image. 

In our proposed method the aliasing artifacts are becomes 

weaker due to low matrix decomposition which leads to 

effectively and efficiently removes the noise and gradient 

technique is used to preserve the edges of the image. 

Below are the MATLAB simulation results . 

 

 

 
V.CONCLUSION 

 

We have described a novel denoising method for pMRI by 

exploiting the self-similarity between multi-channel coil 

images and inside themselves. The proposed method simul-

taneously removes noise and aliasing artifacts by leveraging 

sparse and low rank matrix factorization. Experimental re-

sults demonstrate that the proposed algorithm can benefit both 

visual diagnostic and quantitative methodologies. The 

proposed method could be extended to multiple dimensions 

imaging by exploiting the redundancy and similarity between 

multi-slice and multi-frame images to achieve a higher SNR 

gain that is warranted in a future study. 

 

REFERENCES 

 
[1] H. Wada et al., “Prospect of high-field MRI,” IEEE Trans. Appl. 

Supercond., vol. 20, no. 3, pp. 115–122, Jun. 2010. 

 
[2] S. M. Wright, R. L. Magin, and J. R. Kelton, “Arrays of mutually 

coupled receiver coils: Theory and application,” Magn. Resonance 

Med., vol. 17, no. 1, pp. 252–268, Jan. 1991. 
 

[3] J. Wosik et al., “Superconducting single and phased-array probes for clinical 

and research MRI,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, 

pp. 1050–1055, Jun. 2003. 
 

[4] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, 

“SENSE: Sensitivity encoding for fast MRI,” Magn. Resonance Med., 
vol. 42, no. 5, pp. 952–962, Nov. 1999. 

 

[5] M. A. Griswold et al., “Generalized autocalibrating partially parallel ac-

quisitions (GRAPPA),” Magn. Resonance Med., vol. 47, no. 6, pp. 

1202– 1210, Jun. 2002. 
 

[6] A. Deshmane, V. Gulani, M. A. Griswold, and N. Seiberlich, “Parallel MR 

imaging,” J. Magn. Resonance Imag., vol. 36, no. 1, pp. 55–72, Jul. 2012. 

[7] S. Aja-Fernández, C. Alberola-López, and C.-F. Westin, “Noise and 
signal estimation in magnitude MRI and Rician distributed images: A 

LMMSE approach,” IEEE Trans. Image Process., vol. 17, no. 8, pp. 

1383–1398, Aug. 2008. 
 

[8] H. Liu, C. Yang, N. Pan, E. Song, and R. Green, “Denoising 3-D MR 

images by the enhanced non-local means filter for Rician noise,” Magn. 
Resonance Imag., vol. 28, no. 10, pp. 1485–1496, Dec. 2010. 

 

[9] J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. 
Robles, “Adaptive non-local means denoising of MR images with 

spatially vary-ing noise levels,” J. Magn. Resonance Imag., vol. 31, no. 

1, pp. 192–203, Jan. 2010. 
 
[10] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “A nonlocal 

transform-domain filter for volumetric data denoising and reconstruction,” 

IEEE Trans. Image Process., vol. 22, no. 1, pp. 119–133, Jan. 2013. 

[11] S. Aja-Fernandez, V. Brion, and A. Tristan-Vega, “Effective noise es-

timation and filtering from correlated multiple-coil MR data,” Magn. 

Resonance Imag., vol. 31, no. 2, pp. 272–285, Feb. 2013. 
 

[12] D. J. Larkman and R. G. Nunes, “Parallel magnetic resonance imaging,” 

Phys. Med. Biol., vol. 52, no. 7, pp. R15–R55, Apr. 7, 2007. 
 
[13] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low rank 

matrix completion,” in Proc. IEEE Conf. CVPR, 2010, pp. 1791–1798. 

[14] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, 
no. 4, pp. 1289–1306, Apr. 2006. 

 

[15] G. Gilboa and S. Osher, “Nonlocal operators with applications to image 
processing,” Multiscale Model. Simul., vol. 7, no. 3, pp. 1005–1028, 

Apr. 2008. 

 

[16] S. G. Lingala, H. Yue, E. Dibella, and M. Jacob, “Accelerated dynamic 

MRI exploiting sparsity and low-rank structure: k-t SLR,” IEEE Trans. 

Med. Imag., vol. 30, no. 5, pp. 1042–1054, May 2011. 
 

[17] A. Majumdar, “Improved dynamic MRI reconstruction by exploiting 

spar-sity and rank-deficiency,” Magn. Resonance Imag., vol. 31, no. 5, 
pp. 789– 795, Jun. 2013. 

 

[18] X. X. Yin, B. W. Ng, K. Ramamohanarao, A. Baghai-Wadji, and D. 
Abbott, “Exploiting sparsity and low-rank structure for the recovery of 

multi-slice breast MRIs with reduced sampling error,” Med. Biol. Eng. 

Comput., vol. 50, no. 9, pp. 991–1000, Sep. 2012. 
 
[19] T. M and Y. X, “Recovering low-rank and sparse components of matrices 

from incomplete and noisy observations,” SIAM J. Optim., vol. 21, no. 1, 

pp. 57–81, Jan. 2011. 
[20] J. V. Manjón, P. Coupé, A. Buades, D. Louis Collins, and 

 
M. Robles, “New methods for MRI denoising based on sparseness and 

self-similarity,” Med. Image Anal., vol. 16, no. 1, pp. 18–27, Jan. 2012. 
 

[21] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solu-

tions of linear matrix equations via nuclear norm minimization,” SIAM 
Rev., vol. 52, no. 3, pp. 471–501, Aug. 2010. 

 

[22] P.  B.  Roemer,  W.  A.  Edelstein,  C.  E.  Hayes,  S.  P.  Souza,  and 
 

O. M. Mueller, “The NMR phased array,” Magn. Resonance Med., vol. 
16, no. 2, pp. 192–225, Nov. 1990. 

 

[23] E. J. Candes, X. Li, Y. Ma, and J. Wright, Robust Principal Component 
Analysis? Stanford, CA, USA: Stanford Univ. Press, 2009. 

 

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image 
quality assessment: From error visibility to structural similarity,” IEEE 

Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004. 


