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Abstract— The aim of this paper is to provide efficient solution to 

reduce the complexity of beamforming process and to reduce the 

energy consumption. In this letter an RZA-QLMS algorithm has 

been proposed for adaptive beamforming based on vector sensor 

arrays consisting of crossed dipoles. By using this technique in 

the process of beamforming the reduced system complexity and 

energy consumption can be achieved while an acceptable 

performance can still be maintained, which is especially useful 

for large array systems. Simulation results have shown that the 

proposed algorithm can work effectively for beamforming while 

enforcing a sparse solution for the weight vector where the 

corresponding crossed-dipole sensors with almost zero valued 

coefficients can be removed from the system. 
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I. INTRODUCTION 

 
Adaptive beamforming has a range of applications and has 

been studied extensively in the past for traditional array 

systems [1], [2], [3], [4]. With the introduction of vector 

sensor arrays, such as those consisting of crossed-dipoles and 

tripoles [5], [6], [7], adaptive beamforming for such an array 

system has attracted more and more attention recently [6], [8], 

[9], [10].  
In this work, we consider the crossed-dipole array and study 

the problem of how to reduce the number of sensors involved 

in the beamforming process so that reduced system 

complexity and energy consumption can be achieved while an 

acceptable performance can still be maintained, which is 

especially useful for large array systems. In particular, we will 

use the quaternion-valued steering vector model for crossed- 
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dipole arrays [8], [9], [10], [11], [12], [13], [14], [15], [16], 

and propose a novel quaternion-valued adaptive algorithm for 

reference signal based beamforming.  
In the past, several quaternion-valued adaptive filtering algo-

rithms have been derived in [9], [16], [17], [18]. Notwithstand-

ing the advantages of the quaternionic algorithms, extra cares 

have to be taken in their developments, in particular when the 

derivatives of quaternion-valued functions are involved, since 

 
quaternion algebra is non-commutative. Very recently, prop-

erties and applications of a restricted HR
1
 gradient operator 

for quaternion-valued signal processing were provided in [19]. 
Based on these recent advances in quaternion-valued signal 

processing, we here derive a reweighted zero attracting (RZA) 
quaternion-valued least mean square (QLMS) algorithm by 
introducing a RZA term to the cost function of the QLMS 
algorithm. Similar to the idea of the RZA least mean square 

(RZA-LMS) algorithm proposed in [20], the RZA term aims 

to have a closer approximation to the l0 norm so that the 

number of non-zero valued coefficients can be reduced more 
effec-tively in the adaptive beamforming process. This 
algorithm can be considered as an extension of our recently 

proposed zero-attracting QLMS (ZA-QLMS) algorithm [21], 

where the l1 norm penalty term was used in the update 

equation of the weight vector. We will show in our 
simulations that the RZA-LMS algorithm has a much better 

performance in terms of both steady state error and the 
number of sensors employed after convergence.  

A review of adaptive beamforming based on vector sensor 

arrays is provided in Sec. II, and the proposed RZA-QLMS 

algorithm is derived in Sec. III. Simulations are presented in 

Sec. IV, and conclusions drawn in Sec. V. 

II. ADAPTIVE BEAMFORMING BASED ON VECTOR  
SENSOR ARRAYS 

 
A. Quaternionic Array Signal Model 

 
 z  

 θ  
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φ 
d y 

  

x   
 
Fig. 1. A ULA with crossed-dipoles. 
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with a direction of arrival (DOA) defined by the angles θ and 
           

d[ n] 
                              

+ 
e[ n]    

    

   

ϕ, its spatial steering vector is given by                 
x1 [ n] 

                            −  y [ n]    
 

Sc(θ, ϕ) = 

 

[1, e−j2πd sin θ sin ϕ/λ, 

  

w1 [ n] 
   

      

  . .  

 

· · · 
, e−j2π(M−1)d sin θ sin ϕ/λ]T 

(1) 
. .  

  . .  

where λ is the wavelength of the incident signal and {·}
T  

xM [ n]  
    

                     wM [ n] 
                          

                                                

denotes the transpose operation. For a crossed dipole the 
   

 

spatial-polarization coherent vector is given by [22], [23]  Fig. 2. Reference signal based adaptive beamforming.    

Sp 

(θ, ϕ, γ, η) = [− cos γ, cos θ sin γe
jη

] for ϕ = 
π

2 
(2) 

 
{
[cos γ, 

− 
cos θ sin γe

jη
] for ϕ = 

−π 
 

                             2  B. Reference Signal Based Adaptive Beamforming  

where γ is the auxiliary polarization angle with γ ∈ [0, π/2], 
 

The aim of beamforming is to receive the desired signal 

and η ∈ [−π, π] is the polarization phase difference.  while suppressing  interferences at  the  beamformer output. 
The array structure can be divided into two sub-arrays: one 

When a reference 
 

signal 
  

d[n] 
  

is 
 

available, adaptive beam- parallel to the  x-axis   and one to the y-axis. The complex-       
   

forming can be implemented by the standard adaptive filtering valued steering vector of the x-axis sub-array is given by 
structure, as shown in Fig. 2, where xm[n], m = 1, · · · , M                    

− cos γSc(θ, ϕ) 

   π  

    (θ, ϕ, γ, η) =     for ϕ = 2 (3) are the received quaternion-valued input signals through the M 
  Sx              

{
cos γSc(θ, ϕ)  for ϕ = 

−
2
π 

 pairs of crossed-dipoles, and wm[n] = am +bmi+cmj +dmk, 

and for the y-axis it is expressed as       m  = 1, · · · , M  are   the corresponding quaternion-valued 
             

cos θ sin γe
jη

Sc(θ, ϕ) 
  

ϕ = 
π

2 

 weight coefficients with a, b, c and d being real-valued. y[n] 
                is the beamformer output and e[n] is the error signal  

Sy(θ, ϕ, γ, η) = 
{ 

  cos θ sin γe
jη

Sc(θ, ϕ)  ϕ = 
−π 

(4)  y[n] = w T [n]x[n],     e[n] = d[n] 
       w T [n]x[n] , (11) 

             −               2         

− 
   

Before  we present  the quaternion-valued  steering vector 
where 

  
    

model, we first very briefly review some basics about quater-  
 

nion. A quaternion q can be described as            
w[n] 

  
= 

   
[w1[n], w2[n], · · · , wM [n]] 

T  
                  

                                               

            q = q1 + (q2i + q3j + q4k),    (5)      x[n]   =    [x1[n], x2[n], · · ·  , xM [n]]
T
 . (12) 

where q1, q2, q3, and q4  are real-valued [24], [25]. In this The conjugate form of the error signal is e∗[n], given by 

paper, we consider the conjugate operator of q as q∗ = q1 −            

e∗[n] = d∗[n] − x 

H 

[n]w∗[n], 

  

(13) q2i − q3j − q4k. The three imaginary units i, j, and k satisfy                
             ij = k, jk = i, ki = j,       where {·}

H
 is the combination of both {·}

T
 and {·}∗ opera- 

          
ijk = i 

2 

= j 
2 

= k 
2 

= −1; 
    

(6) 
tions for a quaternion. Then w can be updated by minimizing 

                   the instantaneous square error J0[n] = e[n]e∗[n].  

where the exchange of any two elements in their order gives For a general quaternion-valued function f (w), the differ- 

a different result. For example, we have ji = −ij rather than entiation with respect to the vector w and w∗ is    

ji = ij. For a general quaternion-valued function f (q), the          

 

    ∂f        ∂f        ∂f            ∂f  

 

 
 df (q)        

derivative 
 

with respect to q can be expressed as [19], 
                    

− 
    

i − 
     

j − 
      

k 
  

          ∂f  1    

 ∂a1 
  

 ∂b1 ∂c1 ∂d1 
  

  dq              

[21], [26] 

  
 = 

  
 

 

..
.   
 

 (14)  

1  ∂f (q) 
 

∂f (q) 
 

∂f (q) 
 

∂f (q) 
∂w 4  

∂f 
 

∂f 
  

∂f 
 

∂f 
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   =   (    
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  i 
− 

  j 
− 

  k) , (7)   
     i   j    k  

  

dq 
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∂aM 
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−
 ∂dM  

 

             

∂q4               

−
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while the derivative of f (q) with respect to q∗ is given by 

 
          

 

   
∂f 

       
∂f 

       
∂f 

         
∂f 

   

 

 
 df (q)     1  ∂f (q)     ∂f (q)   ∂f (q)    ∂f (q)               +   i +  j +  k   
              

(8) 
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∂b1 

 

 
∂c1 

 

 
∂d1 

  

dq∗ 4 ∂q1 ∂q2 ∂q3 ∂q4 ∂f 1       

Combining the two complex-valued subarray steering vec- 
  

= 
   

 

 

..
.  

 

(15)  ∂w∗ 4  
∂f 

         
∂f 

     
∂f 

            
∂f 

 
     
tors together, an overall quaternion-valued steering vector with                   +         i +           j +        k  

one real part and three imaginary parts can be constructed as            ∂aM        ∂bM         ∂cM          ∂dM    
 

Sq(θ, ϕ, γ, η) 
 

=   {Sx(θ, ϕ, γ, η)} + i {Sy(θ, ϕ, γ, η)} + 
As discussed in [19], [27], the gradient of J0[n] with respect 

 to w∗ would give the steepest direction for the optimization 

            j {Sx(θ, ϕ, γ, η)} + k {Sy(θ, ϕ, γ, η)}, (9) surface. It can be obtained as follows                      
where  {·} and  {·} are the real and imaginary parts of a              

∇w 

J  [n] =  

− 

 
1

 e[n] 

x 

∗[n] ,   

(16) complex number/vector, respectively. Given a set of coeffi- 
  

0 

     

   2  

cients, the response of the array is given by     and the update equation for the weight vector with step size 
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        r(θ, ϕ, γ, η) = w
H

 Sq(θ, ϕ, γ, η)    (10) µ is given by  
w[n + 1] = w[n] 

           
w  J0[n], 

  
(17) where w is the quaternion-valued weight vector.                µ       

−  ∇ 
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leading to the following QLMS algorithm [16], [17], [26] 
 

w[n + 1] = w[n] + 
1 
µ(e[n]x∗[n]). (18) 2 

   

 
III. THE RZA-QLMS ALGORITHM 

 
Using the QLMS algorithm, we can find the optimal coef-

ficient vector in terms of minimum mean square error (MSE) 

and obtain a satisfactory beamforming result. However, to 

reduce the complexity and also power consumption of the 

system, in particular for a large array, we can reduce the 

number of sensors involved, at the cost of the final beam-

forming performance. To achieve this, we here derive a novel 

quaternion-valued adaptive algorithm by introducing an RZA 

term to the original cost function of the QLMS algorithm. In 

this way, we can simultaneously minimise the number of 

sensors involved while suppressing the interferences during 

the beamforming process.  
First, to minimise the number of sensors, we could add the 

l0 norm of the weight vector w to the cost function J0[n] to  
form a new cost function  

J
ˆ
0[n] = (1 − δ1)e[n]e∗[n] + δ1 ∥ w[n] ∥0, (19) 

where δ1 is a weighting term between the original cost function 

and the newly introduced term. In this way, the number of non-

zero valued coefficients in w will be minimised too, where the 
similar idea has been applied in [28].  

In practice, we could replace the l0 norm by the l1 norm. 

However, l1 norm would uniformly penalise all non-zero 

valued coefficients, while l0 norm penalises smaller non-zero 

values more heavily. To have a closer approximation to l0 
norm, we can introduce a larger weighting term to those 
coefficients with smaller values and a smaller weighting term 
to those with larger values. This weighting term will change 
according to the resultant coefficients at each update of the 
algorithm. This general idea has been implemented as a 

reweighted l1 minimization [29], [30] and employed in the 
sparse array design problem [31], [32], [33].  

The modified cost function for the proposed RZA-QLMS 

algorithm with the reweighting term is given by 

∑M 

J1[n] = (1 − δ1)e[n]e∗[n] + δ1 (εm|wm[n]|), (20) 
m=1  

where εm is the reweighting term for wm. Then using the chain 

rule in [19], we can obtain the gradient of J1[n] with respect to 

w∗[n]. In particular, the differentiation of the second part of 

J1[n] with regards to wm
∗[n] is given by 

∂(εm|wm[n]|) 

 
TABLE I  

COMPARISON OF COMPUTATIONAL COMPLEXITY. 
 
 QLMS ZA-QLMS RZA-QLMS 

Real-valued addition 28M+4 35M+4 38M+4 
Real-valued multiplication 32M+4 44M+4 52M+4 

(Including square root operation) (0) (M) (2M) 

 
 

where sign(·) is a component-wise sign function   

  sign(w   [n]) =  wm[n]/|wm[n]| wm[n]  = 0   

     m   {0    wm[n] = 0   
The overall gradient result is given by       

 
w J [n] =   1 (1 δ )e[n]x∗ [n] + 1 δ ε  (sign(w  [n])). 

    m m 

∇ 
1  

−2   − 
1 m 

4 
1    

m          (22) 
                  

We choose the reweighting term εm as       

        εm = 1/(ζ + |wm[n]|),     (23) 
with ζ being roughly the threshold value below which the 
corresponding sensor will not be included in the update. Then, 

with the step size µ1, we finally obtain the following update 
equation for the RZA-QLMS algorithm in vector form 
 

w[n + 1]  = w[n] + 

1 

(µ1 − 4ρ1)(e[n]x∗[n]) 
 

2 

−ρ1(sign(w[n]))./(ζ + |w[n]|) , (24)  

where ρ1 = 
1
4 µ1δ1, |w[n]| is a vector formed by taking the 

absolute value of the coefficients in w[n], „./‟ is a component-
wise division between two vectors, and sign(w[n]) is defined 
as { 

w[n]./|w[n]| w[n] =  0 
sign(w[n]) = 

0 w[n] = 0 
 
When ζ + |w[n]| is removed from the above equation, it will 

be reduced to the ZA-QLMS algorithm in [21], with its cost 

function given by 
 

J2[n] = (1 − δ2)e[n]e∗[n] + δ2∥w[n]∥1 , (25) 

where δ2 is a trade-off factor. The update equation for the ZA-
QLMS algorithm is  

w[n + 1] = w[n] + 
1

2 (µ2 − 4ρ2)(e[n]x∗[n]) − ρ2 · sign(w[n]) , 

(26) 

where ρ2 = 
1

4 µ2δ2, and µ2 is the step size. 

We now discuss the computational complexity of the al-

gorithms. The results are shown in Tab. I, where M is the 

number of vector sensors of the array. Obviously, the RZA-

QLMS algorithm has the highest complexity. However, as we 

will see in simulations, this additional cost is paid back by a 

∂wm
∗ 

= 
1

 εm( 

∂(|w
m

[n]|)
 + 

∂(|w
m

[n]|)
 i  

4∂am∂bm 
 

+ ∂(|wm[n]|) j + ∂(|wm[n]|) k) 

 

  
    ∂cm  ∂dm    
 1   am  bm  cm  

= 

  

εm( 

 

 
+ 

 

i + 

  

j + 4 |wm[n]| |wm[n]|  |wm[n]| 

= 
1

 

εm 
w

m[

n]
 

= 

1
 εm(sign(wm[n])) , 4 |wm[n]| 4 
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dm |wm[n]|
k) 

 
(21) 

resultant 

much 

smaller 

number of 

sensors, and 

especially 

at a later 

stage of the 
adaptation, 

when the 

number of 

sensors 

involved 

becomes 

smaller, the 

overall 

complexity 
of the RZA-

QLMS 

algorithm 

could be 

lower than 

the other 

two 

algorithms.  
After 

removing 

the sensors 

with a 

smaller 

magnitude 

for their 

coefficients 

compared 

to ζ, the 

beam 

response 

difference 

∆r between 

the original 

array and 

the new 

one is 

given by 

∆r = |w
H

 Sq − (w − ∆w)
H

 Sq| 
√ 

= |∆w
H

 Sq| ≤ |∆w
H

 | · |Sq| ≤ ζ · ∆M · M (27) 
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where ∆M is the number of removed sensors, and ∆w is the 

change of w after some of its sensors are removed (the 

corresponding coefficients on the positions of removed sensors 

have a magnitude smaller than ζ and are then set to zero). As 
a result, the maximum possible change in array response, due 

√ 
to removal of some sensors, is given by ζ · ∆M · M . 

 

IV. SIMULATION RESULTS 
 
Using the QLMS algorithm, we can find the optimal 

coefficient vector and obtain a satisfactory beamforming 

result as shown in below figure. However, to reduce the 

complexity and also power consumption of the system, in 

particular for a large array, at the cost of the final 

beamforming performance. To achieve this, we here derive a 

novel quaternion-valued adaptive algorithm by introducing an 

RZA term to the original cost function of the QLMS 

algorithm. In this way, we can simultaneously minimise the 

number of sensors involved while suppressing the 

interferences during the beamforming process. 
 

 
 

 
 

Comparision of MSE 

 
we see that although these three algorithms have a similar 

convergence speed, the original QLMS algorithm has the 

smallest steady state error, which is not surprising since it has  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the most degrees of freedom among them. On the other hand, 

the proposed RZA-QLMS algorithm has achieved a lower 

steady state error than the ZA-QLMS algorithm. 

 

 
Spectral Density 

 

Beampattern of all three algorithms are drawn in above 

results. From the above simulation results we have observed 

RZA QLMS have satisfactory beamforming results. 

 

 
Beam pattern of two Arrays 



    International Journal of Research 
Available at 

https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 04 Issue 06 
May 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/          P a g e  | 551  
 

 

Beam pattern of proposed RZA-QLMS algorithm has been 

shown in above figure. It can  reduce system complexity and 

energy consumption can be achieved while an acceptable 

performance can still be maintained, which is especially 

useful for large array systems. Simulation results have shown 

that the proposed algorithm can work effectively for 

beamforming while enforcing a sparse solution for the weight 

vector where the corresponding crossed-dipole sensors with 

almost zero valued coefficients can be removed from the 

system. 

 

 

 

 

 

V. CONCLUSION 
 

An RZA-QLMS algorithm has been proposed for adaptive 

beamforming based on vector sensor arrays consisting of crossed 

dipoles. It can reduce the number of sensors involved in the 

beamforming process so that reduced system complexity and 

energy consumption can be achieved while an acceptable 

performance can still be maintained, which is especially useful 

for large array systems. Simulation results have shown that the 

proposed algorithm can work effectively for beamforming while 

enforcing a sparse solution for the weight vector where the 

corresponding crossed-dipole sensors with almost zero-valued 

coefficients can be removed from the system. 
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