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ABSTRACT: 

To study and analyse the analytic functions in complex analysis system. A complex 

function is said to be analytic on a region R if it is complex differentiable at every point in R. The 

terms holomorphic function, differentiable function, and complex differentiable function are 

sometimes used interchangeably with "analytic function". Many mathematicians prefer the term 

"holomorphic function" (or "holomorphic map") to "analytic function", while "analytic" appears 

to be in widespread use among physicists, engineers, and in some older texts. If a complex 

function is analytic on a region R, it is infinitely differentiable in R. A complex function may fail 

to be analytic at one or more points through the presence of singularities, or along lines or line 

segments through the presence of branch cuts. A complex function that is analytic at all finite 

points of the complex plane is said to be entire. A single-valued function that is analytic in all but 

possibly a discrete subset of its domain, and at those singularities goes to infinity like a 

polynomial (i.e., these exceptional points must be poles and not essential singularities), is called 

a homomorphic function. The study also analysis different approaches to the concept of 

analyticity. One definition, which was originally proposed by Cauchy, and was considerably 

advanced by Riemann, is based on a structural property of the function the existence of a 

derivative with respect to the complex variable, i.e. its complex differentiability. To study the fact 

of the theory of analytic functions is the identity of the corresponding classes of functions in an 

arbitrary domain of the complex plane. 
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INTRODUCTION: 

Complex analysis, traditionally known as the theory of functions of a complex variable, 

is the branch of mathematical analysis that investigates functions of complex numbers. It is 

useful in many branches of mathematics, including algebraic geometry, number theory, analytic 

combinatorics, applied mathematics; as well as in physics, including hydrodynamics and 

thermodynamics and also in engineering fields such as nuclear, aerospace, mechanical and 

electrical engineering.Complex analysis is particularly concerned with analytic functions of 

complex variables (or, more generally, meromorphic functions). Because the separate real and 

imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is 

widely applicable to two-dimensional problems in physics. 

COMPLEX VARIABLES: 

The complex number system is merely a logical extension of the real number system.  

The set of complex numbers includes the real numbers and still more.  All complex numbers are 

of the form 

Z= x + iy 

where i = .1   In other words i2 = -1.  If y = 0, then the complex number x + iy 

becomes the real number x. This is why we say that the complex numbers are still "more" than 

the reals. The real numbers form a proper subset of the reals. We do not mean that the complex 

numbers are more numerous. We simply mean that they subsume the reals. Because there are 

two real numbers ( x and y ) associated with each complex number, we are able to depict 

complex numbers using a plane, as opposed to the reals which are depicted on a line. Unlike the 

real number system, complex numbers are not ordered. This means that it is not meaningful to 

say z1< z2 in the complex number system, even though such a thing is posssible in the reals.  

It is possible to define addition and multiplication of complex numbers in the following 

intuitive ways: 

Addition:      (x1+iy1) + (x2 + iy2)  =  (x1+x2) + i(y1+y2) 
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Multiplication:  (x1+iy1)(x2+iy2)     =  (x1x2 – y1y2) + i(x1y2+x2y1) 

The complex number 0 + i0 is the complex counterpart of zero in the reals.  It is the 

complex additive identity.  We will at times simply denote it as 0.  The multiplicative identity is 

equal to 1 + i0, which we will at times denote as 1. A complex number can be written as z, so 

long as we understand that z = x + iy.  It is possible to discuss subtracting and dividing complex 

numbers.  For example,  

z1 – z2   =  (x1+iy1) + (-x2 + i(-y2))      =   (x1 - x2) + i(y1 - y2) 
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In addition to the basic operations of addition, subtraction, multiplication, and division, 

we can also perform more complicated operations – such as taking the square root.  

1z = a + ib  where (a+ib)(a+ib) = z1 = x1 + iy1 . 

THE CAUCHY-RIEMANN EQUATIONS AND COMPLEX DIFFERENTIATION 

Suppose that we consider f(z) = z2 and substitute into this z = x+iy.  We can therefore 

write this function again in the following way: 

f(z) = z2 = F(x,y) = (x+iy)2 = (x2 – y2) + i2xy = u(x,y) + iv(x,y) 

where u(x,y) = (x2 – y2) and where v(x,y) = 2xy.  Now since z = x+iy, we know that 
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complex derivative f ’(z). 
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This of course reduces to zzf 2)('   and the result agrees with the derivative computed 

in the previous section using limits. Now suppose that F(x,y) = u(x,y) + iv(x,y) is any 
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differentiable complex function.  What must be true about the functions u and v ?  This is the 

subject of the Cauchy - Riemann equations. First, suppose that z changes by x changing alone.  

Then, assume that z changes by y changing alone.  This would give us two expressions for the 

derivative of  

f(z) = F(x,y). 

The first (holding y constant) can be written as 
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while the second (holding x constant) can be written as 
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Now, the derivative of f(z) cannot depend on which way that z is changing (either by x 

changing alone or alternatively by y changing alone ) and so the two expressions for )(' zf  must 

be equal if the derivative exists.  This implies that  
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These two equalities are known as the Cauchy-Riemann Equations.  

ANALYTIC FUNCTIONS  

We are now ready to introduce the concept of an analytic function. A function 𝑓 of the 

complex variable 𝑧 is analytic at a point 𝑧0 if it has a derivative at each point in some 

neighborhood of 𝑧0. It follows that if 𝑓 is analytic at a point 𝑧0, it must be analytic at each point 

in some neighborhood of 𝑧0. A function f is analytic in an open set if it has a derivative 

everywhere in that set. If we should speak of a function 𝑓 that is analytic in a set 𝑆 which is not 

open, it is to be understood that f is analytic in an open set containing 𝑆. Note that the function 

𝑓(𝑧) =
1

𝑧
 is analytic at each nonzero point in the finite plane.  
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But the function 𝑓(𝑧) = |𝑧|2 is not analytic at any point since its derivativeexists only at 

𝑧 =  0 and not throughout any neighborhood. An entire function is a function that is analytic at 

each point in the entire finite plane. Since the derivative of a polynomial exists everywhere, it 

follows that every polynomial is an entire function. If a function 𝑓 fails to be analytic at a point 

𝑧0 but is analytic at some point in every neighborhood of 𝑧0, then𝑧0 is called a singular point, or 

singularity, of 𝑓. The point 𝑧 =  0 is evidently a singular point of the function 𝑓(𝑧) =
1

𝑧
. The 

function 𝑓(𝑧) = |𝑧|2, on the other hand, has no singular points since it is nowhereanalytic. 

Series (Taylor’s Series) 

We turn now to Taylor’s theorem, which is one of the most important results of this section. 

Taylor Series Generated by f at x = a 

Let f be a function with derivatives o all orders throughout some open interval containing a. 

Then the Taylor series generated by f at x = a is  
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Is the Taylor polynomial of order n for f at x = a. 

 Taylor’s Theorem with Remainder 

If f has derivatives of all orders in an open interval I containing a, then for each positive integer n 

and for each x in I, 
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for some c between a and x. 

Remainder Estimation Theorem 

If there are positive constants M and r such that 11   nn Mrtf  for all t between a and x, then the 

remainder Rn(x) in Taylor’s Theorem satisfies the inequality 

  .
)!1(

)(

11








n

axr
MxR

nn

n  

If these conditions hold for every n and all other conditions of aylor’s Theorem are satisfied by f, 

then the series converges to f(x). 

𝑓(𝑧) = 𝑓(𝑧0) +
𝑓′(𝑧0)

1!
(𝑧 − 𝑧0) +

𝑓 ′′(𝑧0)

2!
(𝑧 − 𝑧0)2 +· (|𝑧 − 𝑧0) < 𝑅0). (1.2.7.3) 

Any function which is analytic at a point 𝑧0 must have a Taylor series about 𝑧0. For, if 𝑓 is 

analytic at 𝑧0, it is analytic throughout some neighborhood |𝑧 − 𝑧0|  < 𝜀 of that point ; and 𝜀 

may serve as the value of 𝑅0in the statement of Taylor’s theorem. Also, if𝑓 is entire,𝑅0 can be 

chosen arbitrarily large; and the condition of validity becomes |𝑧 − 𝑧0|  < ∞. The series then 

converges to 𝑓(𝑧) at each point𝑧in the finite plane. When it is known that f is analytic 

everywhere inside a circle centered at𝑧0, convergence of its Taylor series about 𝑧0 to 𝑓(𝑧) for 

each point 𝑧 within that circle is ensured; no test for the convergence of the series is even 

required. In fact, according to Taylor’s theorem, the series converges to 𝑓(𝑧) within the circle 

about 𝑧0 whose radius is the distance from 𝑧0 to the nearest point 𝑧1at which f fails to be 

analytic. we shall find that this is actually the largest circle centered at 𝑧0 such that the series 

converges to 𝑓(𝑧) for allz interior to it. In the following section, we shall first prove Taylor’s 

theorem when 𝑧0  =  0, in which case f is assumed to be analytic throughout a disk |𝑧|  < 𝑅0 and 

series (1.7.2.1) becomes a Maclaurin series: 

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 04 Issue 06 
May 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 750  

 

𝑓(𝑧) =  ∑

∞

𝑛=0

(
𝑓(𝑛)(0)

𝑛!
) 𝑧𝑛 (|𝑧|  < 𝑅0). (1.7.2.4) 

HOLOMORPHIC FUNCTIONS: 

Holomorphic functions is a topic that involves differential equations and the complex plane.  Its 

applications are diverse and the properties of these functions are interesting.  There are three 

interesting cases for singular points arising from these functions.  The complex plane C, is the 

basis in which holomorphic functions are defined.  One axis in the complex plane is the real axis 

on which all real numbers lie.  The other axis is the imaginary axis on which the imaginary 

numbers lie.  Imaginary numbers are characterized by a number multiplied by the square root of 

negative one, i.   

 A holomorphic function is defined to be a differentiable complex function with a 

continuous derivative.  Some books define a holomorphic function without the continuous 

derivative condition..  Holomorphic functions can be represented as power series inside the circle 

of convergence.  Kodaira 84 contains many prrofs to show that basic properties such as the chain 

rule for integration, addition, and so forth for holomorphic functions are valid on C.  Cauchy’s 

Integral Formula yields: since the above exists, and the following results after some 

manipulation: 

which is the Mean Value Theorem for these functions where i = sqrt(-1), z is in C, w = c where c 

is a point, and The nth derivatives of a holomorphic function are holomorphic.  If fn(z) is a 

sequence comprised of holomorphic functions in the region D and they converge on the compact 

subsets of D, then the limit is holomorphic on D.  It is also useful to realize that if the continuous 

partial derivatives fx(z) and fy(z) exist in D and if they also satisfy the Cauchy-Riemann 

equations in D, then f(z) is holomorphic on D.   

Singularities often arise when f(z) is represented as a power series as follows: 

This power series converges absolutely on an interval U.  The above is known as a Laurent series 

expansion of f(z) about the point c.  The portion of the Laurent expansion from n = -infinity to n 
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= -1 is known as the principal part of the expansion.  Three possibilities exist with regard to 

singularities in holomorphic functions.  

If there is no principal part, then we set f(c) = a0 in order to remove the singularity.  So, c 

is a removable singularity of f(z).  If the principal part contains a number of finite terms, then c is 

a pole of f(z) of order m depending on the quantity (z – c)m..  In this situation poles and zeros 

exist, which can be dealt with using standard methods.  The third possibility is that the principal 

part is an infinite series.  This is known as an essential singularity.  Weierstrass’ Theorem 

applies:  If c is a point at an essential singularity and w is in C for f(z), then one can find a 

sequence of zn points that converge to c so that the limit: 

The analysis connection to differential equations shows up everywhere. Harmonic motion 

in the real world is the most classic example which can be represented in C.  The wave equation, 

the spherical Bessel differential equation, the Helmholtz differential equation, and many other 

highly-useful named equations operate regularly in the realm of holomorphic functions.  The 

field of electrostatics is another interesting application of these functions..  The three possibilities 

above and their associated theorems simply provide a way to understand and better approximate 

singularities in holomorphic functions.  For an engineer, these functions show up regularly when 

studying frequency response where the neper frequency forms the real axis and the angular 

frequency forms the imaginary axis.  Understanding these functions is thus of extreme 

importance to engineers who don’t like things to either blow up or not work at all.  

DERIVATION: 

A function f: D  C defined on an open set D in the complex plane is said to be holomorphic on 

D if the limit 

𝑓 ′(𝑧) = lim
ℎ→𝑜

𝑓(𝑧 +  ℎ)  − 𝑓(𝑧)

ℎ
 

is defined for all z 2 D. The value of this limit is denoted by f’(z), or by df(z)/dz, and is referred 

to as the derivative of the function f at z. 
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Note that if f: D  C is a holomorphic function defined on an open set C in the complex plane 

then f is continuous on D. For let z ϵ D. Then 

lim
ℎ→0

𝑓 ′ (𝑧 +  ℎ) =  lim
ℎ→0

(𝑓(𝑧) + ℎ𝑥 (
𝑓(𝑧 +  ℎ) − 𝑓(𝑧)

ℎ
)) 

= 𝑓(𝑧) +  (lim
ℎ→0

ℎ)(lim
ℎ→0

(𝑓(𝑧 +  ℎ) − 𝑓(𝑧))

ℎ

′

 

= f(z) 

and thus the function f is continuous at z, as required. 

Lemma 3.1 A function f: D  C, defined on an open set D in the complex plane, is holomorphic 

on D if and only if, given any complex number w belonging to D, and given any positive real 

number ϵ, there exists some real positive number δ such that |𝑓(𝑧) − 𝑓(𝑤) − (𝑧 − 𝑤)𝑓 ′(𝑤)|  ≤

𝜖|𝑧 − 𝑤||. 

 

Proof: The function f has a well-defined derivative f0(w) at a point w of D if and only if  

𝑓 ′(𝑤) =   lim
ℎ→0

𝑓(𝑤 + ℎ) − 𝑓(𝑤)

ℎ
= lim

𝑧→𝑤

𝑓(𝑧) − 𝑓(𝑤)

𝑧 − 𝑤
 

This limit exists if and only if, given any positive real number ", there exists some positive real 

number δ such that 

|
𝑓 (𝑧 − 𝑓(𝑤) − 𝑓(𝑧 − 𝑤)𝑓 ′(𝑤))

𝑧 − 𝑤
| ≤ 𝜀 

Whenever 0 < |z−w| < δ. The required result follows directly on rearranging the above inequality. 

Proposition 3.1: Let f:D ! C and g:D ! C be holomorphic functions defined over an open set D in 

the complex plane. Then the sum f + g, difference f − g and product f · g of the functions f and g 

are holomorphic, where (f + g)(z) = f(z) + g(z), (f − g)(z) = f(z) − g(z) and (f · g)(z) = f(z)g(z) for 

all z ϵ D. Moreover (f + g)(z) = f’(z) + g(z), (f − g)(z) =f(z) – g(z) and (f · g)(z) = f(z)g(z) + 

f(z)g(z) for all z ϵ D.  
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Proof: The results for f + g and f − g follow easily from the fact that the limit of a sum or 

difference of two complex-valued functions is the sum or difference of the limits of those 

functions. The limit of a product of complex-valued functions is the product of the limits of those 

functions, and therefore 

 

Lemma 3.2: Let be continuous and . Then if and only if 

all exist and satisfy the Cauchy-Riemann equations: 

 

Proof: First assume is holomorphic. Then certainly all of the partials exist. We can see, for 

instance, that . Let . If we take the limit as by taking 

for going to zero, then 

But we could also take take to by approaching from another direction. I could approach 

along the imaginary axis, taking , and letting go to zero. From this direction, 

we get that 

These give two different expressions for , and so we can equate them. Taking the real parts of 

each tells us that . Taking the imaginary parts of each tells us that . 

In the other direction, let . From the existence of the partials, we know 
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as . Similarly, for , we have that 

 

as . Now what we want is to find some for which . Let’s 

try , because we used it in the first half of the proof. If anything should 

work, that should. We wish to show that 

 

as . So consider just the real part of the numerator. From the Cauchy-Riemann equations, 

. Then, from the existence of the partials, we have 

 

As one might expect, something nearly identical happens when we take the just the imaginary 

part of the numerator. 

 

Putting these together gives the desired result. 

HARMONIC FUNCTION: 

The study a certain functions defined on subsets of the complex plane which are real valued. The 

main motivation for studying them is that the partial differential equation they satisfy is very 

common in the physical sciences. 
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Definition:  Let G ⊆ C be a region. A function u : G ! R is harmonic in G if it has continuous 

second partials in G and satisfies the Laplace1 equation  in G. 

Uxx + Uyy = 0 

There are (at least) two reasons why harmonic functions are part of the study of complex 

analysis, and they can be found in the next two theorems. 

Proposition 3.1: Suppose f = u+iv is holomorphic in the region G. Then u and v are harmonic in 

G. 

Proof. First, by Corollary 5.2, f is infinitely differentiable, and hence so are u and v. In particular, 

u and v have continuous second partials. By Theorem 2.13, u and v satisfy the Cauchy Riemann 

equations  

ux = vy and uy = -vx 

in G. Hence 

uxx + uyy = (ux)x + (uy)y = (vy)x + (-vx)y = vyx - vxy = 0 

in G. Note that in the last step we used the fact that v has continuous second partials. The proof 

that v satisfies the Laplace equation is completely analogous. 

Theorem 3.2: Suppose u is harmonic on the simply connected region G. Then there exists a 

harmonic function v such that f = u + iv is holomorphic in G. Remark. The function v is called a 

harmonic conjugate of u. 

Proof. We will explicitly construct the holomorphic function f (and thus v = Im f). First, let  

g = ux - iuy : 

The plan is to prove that g is holomorphic, and then to construct an antiderivative of g, which 

will be almost the function f that we're after. To prove that g is holomorphic, we use Theorem 

3.2: first because u is harmonic, Re g = ux and Im g = -uy have continuous partials. Moreover, 

again because u is harmonic, they satisfy the Cauchy{Riemann equations: 
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And  

 

Now that we know that g is holomorphic in G, we can use Theorem 5.14 to obtain a primitive h 

of g on G. (Note that for the application of this theorem we need the fact that G is simply 

connected.) Suppose we decompose h into its real and imaginary parts as  

h = a + ib. Then, again using Theorem 3.2, 

 

(The second equation follows with the Cauchy{Riemann equations.) But the real part of g is ux, 

so that we obtain ux = ax or u(x; y) = a(x; y) + c(y) for some function c which only depends on y. 

On the other hand, comparing the imaginary parts of g and h0 yields  

- uy = - ay or u(x; y) = a(x; y) + c(x),  

and c depends only on x. Hence c has to be constant, and u = a + c. But then 

f = h + c 

is a function holomorphic in G whose real part is u, as promised. 

Remark. In hindsight, it should not be surprising that the function g which we first constructed is 

the derivative of the sought-after function f. Namely, by Theorem 3.2 such a function f = u+iv 

must satisfy 

f'’ = ux + ivx = ux - iuy : 

(The second equation follows with the Cauchy{Riemann equations.) It is also worth 

mentioning that the proof shows that if u is harmonic in G then ux is the real part of a function 

holomorphic in G regardless whether G is simply connected or not.  

As one might imagine, the two theorems we've just proved allow for a powerful interplay 

between harmonic and holomorphic functions. In that spirit, the following theorem might appear 
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not too surprising. It is, however, a very strong result, which one might appreciate better when 

looking back at the simple definition of harmonic functions. 

A harmonic function is infinitely differentiable. 

Proof. Suppose u is harmonic in G. Fix z0 2 G and r > 0 such that the disk 

 

is contained in G. D is simply connected, so by the last theorem, there exists a function f 

holomorphic in D such that u = Re f on D. f is infinitely differentiable on D, and hence so is its 

real part u. Because z0 2 D, we showed that u is infinitely differentiable at z0, and because z0 was 

chosen arbitrarily, we proved the statement. 

Remark. This is the first in a series of proofs which uses the fact that the property of being 

harmonic is a local property| it is a property at each point of a certain region. Note that we did 

not construct a function f which is holomorphic in G but we only constructed such a function on 

the disk D. 

APPLICATIONS 

We need to define the concepts of limit, continuity and differentiability for functions of a 

complex variable. A function f(z) has the limit  as 0zz  , if for any real 0 ,   real 0  

such that for all 0zz   such that  0zz ,  )(zf , we write 


)(lim
0

zf
zz

 or )(zf  

as 0zz 
. 

Geometrically, this means that f(z) must lie within an open disc with centre  and 

arbitrary small radius   whenever z lies within an open disc of radius   and with centre 0z  

 

z-plane 

z 

Oz  
  

x 

v 

u 

)(zf  

    

w-plane 

y 
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Note that z may approach 0z  from any direction and is hence more restrictive than the equivalent 

definition for a function )(xf  of a real variable. Indeed it is closely related to the definition for a 

function of two real variables. 

CAUCHY'S INTEGRAL THEOREM 

Cauchy's integral theorem must also be slightly modified in the spatial case, and is then known 

as the Cauchy–Poincaré theorem: Let a function f be holomorphic in a domain D; then, for any 

compact n+1-dimensional (real!) submanifold G in D with piecewise-smooth boundary ∂G,  

∫∂Gf(z)dz = 0. 

Here the integral is the integral of the differential form ω=f(z) dz1∧ …∧ dzn, which in the real 

variables x1,y1,…,xn,yn can be simply written as ωr+iωi, where ωrand ωi are real differential 

forms.  

As in the planar case, this integral can be defined by a parametric representation of the given set: 

if z:Rn⊃Ω→∂G is a parametrization of a portion A of ∂G, then  

 

where  

∂(z1,…,zn)∂(t1,…,tn) 

denotes the determinant of the n×n complex matrix  

∂zi∂tj. 

The integral can then be defined using charts.  

Observe that, in contrast with the case n=1, when n>1 the dimension of the surface G (which is 

n+1) is strictly smaller than the (topological) dimension of the ambient domain D (which is 2n). 

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 04 Issue 06 
May 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 759  

 

Observe also that can be concluded from Stokes theorem: the holomorphy of f implies in fact that 

d(fdz1,…dzn)=0. 

CAUCHY’S THEOREM: 

Cauchy’s theorem, also called the Cauchy-Goursat theorem. If f(z) is analytic (that is, point-wise 

differentiable) on a simply connected open region D⊂C and if C is any rectifiable closed 

contouror cycle in D , then  

 

Our proof of Cauchy’s theorem will proceed in several steps. 

We begin by establishing Cauchy’s theorem for triangles. Another possible starting point is 

rectangles with sides parallel to the axes. There are in fact several quite distinct ways to arrive at 

the generality in the statement of Cauchy’s theorem just given, and of the extensions to follow. 

Some of these alternative approaches will be examined briefly.Recall that, at this stage, analytic 

just means point wise differentiable on a region. The additional smoothness that complex 

analytic functions necessarily possess is the subject of theorems that follow on after Cauchy’s 

theorem.The curve C is not necessarily simple. It may self-intersect in any manner, provided it is 

closed and rectifiable. Rectifiable includes piecewise smooth, which is the class of contours of 

greatest interest in complex analysis. Rectifiable paths are more natural for real-variable line 

integrals, which makes them more natural to work with in some of the proofs in the complex 

domain. Nevertheless, most textbooks restrict attention to piecewise smooth paths, but their 

proofs are usually easy to adapt to the rectifiable case. Some also restrict attention to simple 

closed curves, which is a more significant loss of generality.  Generalisations to domains that are 

not simply connected and to functions that may not be analytic will be considered after the proof 

of Theorem. 

Cauchy’s original proof employed Green’s theorem in the plane. He needed to impose stricter 

hypotheses on f(z) and C than are needed in Goursat’s later proof. Suppose, for the purposes of 
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this paragraph only, that f′(z) is continuous in D and that C is piecewise smooth and simple. Let 

E denote the inside of C plus C itself. Use the same symbols C, 

D and E for the corresponding sets in the real xy-plane. Put 

 z=x+iy and f(z) =u(x,y) +iv(x,y). Under these hypotheses,u and v satisfy the Cauchy-Riemann 

equations, ux=vyand uy=−vx, the partial derivatives being continuous in D 

in the present context. Then, two applications of Green’s theorem give 

 

This quick proof appears in many textbooks, and is frequently done in lectures when the purpose 

is to get through Cauchy’s theorem quickly on the way to applications.The quick proof is 

unsatisfactory for a couple of reasons. The obvious reason is that we have imposed unnecessary 

restrictions on C and f(z). A more potent objection is that Green’s theorem is at least at the same 

mathematical depth as Cauchy’s theorem, and so one should not claim a proof of one on the 

basis of the other unless the other has been proved rigorously under decent hypotheses. The 

proof of Green’s theorem for rectifiable Jordan curves, for example, is not easy and was first 

done by D. H. Potts (1951). The latter proof is included in the first edition of TomM. 

Apostol:Mathematical Analysis. Also Green’s theorem is poorly suitedto self-intersecting 

contours. 

Edouard Goursat (1900) proved Cauchy’s theorem for piecewise smooth Jordan curves by 

partitioning the interior into small squares, with residual fragments next to the boundary. He did 

not require f′(z) to be continuous. Ahlfors’ textbook Complex Analysis 

contains a proof of a general form of Cauchy’s theorem (Theorem 3.18 below) that includes a 

stage where are region is partitioned in this fashion. Alfred Pringsheim (1901) simplified and 
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strengthened Goursat’s proof by starting with the special case where Cis a triangle. This 

approach allows for upgrades in stages to self-intersecting rectifiable contours.  

Some textbooks begin by proving Cauchy’s theorem for a circular or rectangular contour. From 

there, they deduce Cauchy’s integral formula for circular or rectangular contours, which then 

implies the differentiability of f (z) to all orders, the Cauchy-Taylor theorem (circular contours 

preferred), and many of the incidental theorems and corollaries that we will meet in the coming 

pages, but with the contours restricted. Having obtained all this extra information about analytic 

functions in simple domains, they can then turn their attention to more general contours and 

more complicated domains of analyticity.Another approach is to prove that an analytic function 

in an open disc has a primitive function. This can be deduced from a proof of Cauchy’s theorem 

for rectangles with sides parallel to the axes. A primitive function implies Cauchy’s theorem for 

arbitrary rectifiable closed contours according to Theorem 2.12, but the domain D is restricted to 

a disc. The next step is to prove Cauchy’s integral formula for Jordan curves in a disc and use it 

to step up to more general formulations of Cauchy’s theorem. 

Pringsheim’s lemma (Cauchy’s theorem for triangles).  Suppose that f(z) is analytic in a region 

D. Let ∆ be any triangle in D whose interior is also contained in D. Then 

 

Proof 

Suppose, on the contrary, that 

 

Let A,B and C denote the vertices of ∆ in the order following its orientation and let L,M and N 

denote the midpoints of the sides AB, BC and CA, respectively. Form the four smaller oriented 

congruent triangles, δ01=ALN,δ02=LBM,δ03=NMC and δ04=MNL. Then the internal edges are 

followed in both directions and so 
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Let I1 denote the integral on the right-hand side with largest modulus and let ∆1denote the 

corresponding triangle (one of theδ0k). If two or more integrals share the same largest modulus, 

choose the one with lowest k. Then, according to the triangle inequality for complex numbers,  

 

Next, the triangle ∆1 can be subdivided in the same manner into four congruent triangles 

δ1k,k= 1,2,3,4, and one of those triangles ∆2, around which the integral of f(z) is I2, can be 

selected so that  

 

This process can be iterated indefinitely.  The sequence of integrals,I0,I1,I2,..., around the 

respective triangles, ∆0:= ∆, ∆1, ∆2,..., satisfies 

 

f the perimeter of ∆ is L0, the perimeter of ∆n is Ln= 2−nL0. Let En denote the closed set 

consisting of the triangle ∆n and its interior. The sequence of closed sets,E0,E1,E2,..., satisfies 

E0, E1, E2, …………….En... . 
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There is exactly one limit point z0 common to all of the En. Because z0∈ ∆, it is also  contained in 

D.We now make use of the differentiability of f(z) at z0 . Given ǫ > 0, there exists δ >0 such that, 

for all z in the open disc |z−z0|< δ 

 

With |η(z)|<ǫ. For sufficiently largen, the triangle ∆ n and all later triangles in the equence are 

contained within the open disc |z−z0|< δ. Since z0is inside or on ∆n, this triangle will always be 

inside the disc if Ln<2δ. Now 

 

Where we used Lemma 2.11 to set the integrals of 1 and z to zero. In the last integrand, we have 

the bounds,  Hence, according to the ML formula 

 

Because ǫis arbitrary, the right-hand side is arbitrarily small. This contradicts our initial 

assumption that I06 = 0. HenceI0= 0. In other words, 

 

under the stated hypotheses. 

CONCLUSION 
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The study concludes the complex function is said to be analytic on a region if it is 

complex differentiable at every point in . If a complex function is analytic on a region , it is 

infinitely differentiable in . A complex function may fail to be analytic at one or more points 

through the presence of singularities, or along lines or line segments through the presence of 

branch cuts. A complex function that is analytic at all finite points of the complex plane is said to 

be entire. The study of harmonic functions originally arose from physics but our interest in them 

stems from the fact that the real and imaginary parts of holomorphic functions are harmonic. The 

study reviewsthe basic properties of harmonic functions in this chapter. For a more extensive 

treatment, check any good textbook on potential theory.The requirement that f be holomorphic 

on U0 = U \ {ak} is equivalent to the statement that the exterior derivative d(fdz) = 0 on U0. Thus 

if two planar regions V and W of U enclose the same subset {aj} of {ak}, the regions V \ W and W 

\ V lie entirely in U0. 

The study of Analytic funciton can be used in widely applied like heat conduction, fluid 

flows. Electro statics is real-valued integrals are sometimes easily, solvable by complexification.   

The idea of an analytic function includes the whole wealth of functions, most important to 

science, whether they have their origin in number theory, in the theory of differential equations 

or of Algebric Functional Equatioins and arise in mathematical physics.Find also the study of 

harmonic functions originally arose from physics but our interest in them stein from the fact that 

the real imagery parts of harmorphicfunciton are harmonic.Analysis of Analytic functions and 

complex analytic funciton categories that are similar are some ways, but different in others.    

Functions of each type are infinitely differentiable, but complex analytic functions exhibit 

properties that do not hold generally for real analytic functions and we see the relationship of the 

residue theorems to stokes theorem is given by the Jordan Curve Theorem. 
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