

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1169

Compiler
Nonika Sharma & Priyanka Sahni

Information Technology, Dronacharya College of Engg, Gurgaon, Haryana, India

Nonikasharma1@gmail.com Priyanka.sahnni@yahoo.com

ABSTRACT:

A compiler is a set of programs that
transforms source code written in the source
language into target language that often have
a binary form called as object code.
Compiler is a program that translate source
code from high level programming language
to low level programming language.
Compiler are the kind of translators. The
reason behind the transformation of source
code is to create an executable program. In
our research paper we are going to study
about what is a compiler, its working,
construction, properties, phases and its
types.

KEYWORDS: Compiler, Executable
Program, Source Code, Object Code,
Translators, Interpreter, Transformation,
Compiler Technique

INTRODUCTION

Compilation is a process that translates a
program in source language into an
equivalent program in the object or target
language. Compiler is the detection and
reporting of errors. Compilation is a
fundamental concept in the production of
software and link between the world of
application development and the low-level
world of application that is to be executed

on machines. CPU or operating system in
which compiled program can run on a
computer is different from the one on which
the compiler runs, and this type of compiler
is known as a cross-compiler. A program
that translates between high-level languages
is called a source-to-source compiler . A
language rewriter is a program that
translates the form of expressions without a
change of language. Compiler-compiler is
the term used to refer to a parser, is a tool
used to help to create the lexer and parser.

A compiler perform many of the following

operations:

• Lexical

• preprocessing

• parsing

• semantic analysis (Syntax-directed

translation)

• code generation

• code optimization

Faults in the program caused by incorrect

compiler behavior which can be very

difficult to track down and work around and

the compiler implementers invest significant

effort to ensure compiler correctness .An

assembler is also a type of translator. It is

basically a language converter as we see in

the following diagram :

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1170

Assembly Program
Assembler Machine
Program

Types of Translator :

• Assembly Program
• Assembler
• Machine Program

INTERPRETER

An interpreter is same as that of a
compiler, but takes both source program and
input data.
Translation and execution phases of the
source program are one and the same.
An interpreter can itself be interpreted,
directly executed program that performs
instructions written in programming
language.

SOURCE

PROGRAM

INTERPRETER

INPUT

PROGRAM

 Many other types of languages including:

• Command-line interface languages

• Typesetting languages

• Natural languages

• Hardware description languages

• Page description languages

• Set-up or parameter files

COMPILER IN EDUCATION SYSTEM

Compiler construction and compiler
optimized are the courses usually
supplemented with the implementation of a

OUTPUT
DATA

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1171

compiler for an educational programming
language.

A well-known example is Niklaus

Wirth's PL/0 compiler, which Wirth used to

teach compiler construction in the 1970s

inspite of its simplicity, the compiler

introduced several influential concepts to the

field:

1. Program development by stepwise

refinement

2. Use of a recursive descent parser and

use of EBNF to specify

the syntax of a language

3. Code generator produces portable P-

code

4. Use of T-diagrams in the formal

description

Difference between Compiled Vs.
Interpreted languages

Higher-level programming languages is a

type of translation either designed

as compiled language or interpreted

language. However, in practice there is

rarely anything about a language which

requires it to be exclusively compiled or

exclusively interpreted. It is the most

popular or widespread implementation of a

language — for instance, BASIC is

sometimes called an interpreted language

and C a compiled one, despite the existence

of BASIC compilers and C interpreters.

Interpretation does not replace compilation

completely. It only hides it from the user.

Some language specifications spell out that

implementations must include a compilation

facility. However, there is nothing inherent

in the definition of Common Lisp.

HISTORY

(EARLY DEVELOPMENT OF
COMPILERS)

In Early Computers software was written in
programming language. On designing of the
first compiler limited memory capacity of
early computers that may led to substantial
technical challenges.
In 1940s. Early stored-program computers
were programmed in machine language.
Later, assembly languages were developed
where machine instructions and memory
locations were given symbolic forms.

Towards the end of the 1950s, machine-

independent programming languages were

first proposed and was written by Grace

Hopper, in 1952, for A-0 programming

language .It is more as a loader or linker

than the modern notion of a compiler.

In 1952, first auto code and its compiler

were developed by Alick and is considered

by some to be the first compiled

programming language. John Backus led

FORTRAN team at IBM is credited as

having introduced the first complete

compiler in 1957.

In 1960, COBOL was an early language to

be compiled on multiple architectures.

Because of the expanding functionality

supported by newer programming

languages and the increasing complexity of

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1172

computer architectures, compilers become

more complex.

 The first self-hosting compiler capable of

compiling its own source code in a high-

level language and it was created in 1962

for Lisp by Tim Hart and Mike Levin

at MIT.

 Since 1970s it has become common

practice to implement a compiler in the

language it compiles, although

both Pascal and C have been very popular

choices for implementation language.

To build a self-hosting compiler is

a bootstrapping problem—the first such

compiler for a language must be compiled

either by hand or a compiler written in a

different language, compiled by running the

compiler in an interpreter.

COMPILATION

Translation of source code into object code

in computer programming language by a

compiler. Compilers enabled the

development of programs that are machine-

independent. In the 1950s, Machine-

dependent assembly language was the first

higher-level language, widely used before

the development of FORTRAN .

With the arrival of high-level programming

languages that followed FORTRAN, such as

COBOL, C, and BASIC, programmers can

write machine-independent source

programs. Compiler translates the high-level

source programs into target programs in

machine languages for the specific

hardware. When target program is generated

the user can execute the program.

A native compiler is one which output is

planned to directly run on the same type of

computer and operating system that the

compiler itself runs on. The output of a cross

compiler is designed to run on a different

platform. Cross compilers are used when

developing software for embedded

systems that are not planned to support a

software development environment.

STRUCTURE OF COMPILER

Compilers link source programs in high-

level languages with the underlying

hardware. It verifies code syntax, generates

efficient object code, performs run-time

organization, and formats the output

according to assembler and linker

conventions.

 A compiler consists of:

• The front end: It verifies syntax and

semantics, and generates an intermediate

representation or IR of the source code

for processing by the middle-end. It

performs type checking by collecting

type information. It generates errors and

warning, if any, in a useful way. Many

aspects of the front end may include

lexical analysis, syntax analysis, and

semantic analysis.

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1173

• The middle end: It performs

optimizations, including removal of

useless or unreachable code, discovery

and propagation of constant values,

relocation of computation to a less

frequently executed place or

specialization of computation based on

the context. Atlast generates another IR

for the backend.

• The back end: It generates the assembly

code, performing register allocation in

process. Optimizes target code

utilization of the hardware by figuring

out how to keep parallel execution

units busy, filling delay slots. Although

most algorithms for optimization are

in NP, heuristic techniques are well-

developed.

COMPILER CONSTRUCTION

Compiler is a system program used to
translate source code into machine codes.
Compiler is also called as language
translator. Every programming language has
its own compilers or interpreters. The

designing of interpreter is not more difficult
like compiler. Every year many softwares
are launched in market, but compiler is
launched very hardly per year. It is a time
consuming process. There are many several
of compilers available in market such as
Pascal, FORTRAN, COBOL, C, C++, C#,
Java and many other high level
programming and their compilers are
popular among software professionals. The
source program is fed into compiler.
Generally compiler converts the source code
into machine codes, but some compiler
converts source codes into assembly
language and assembler converts them into
machine language. In the early days,
approach taken to compiler design used to
be directly exaggerated by the complexity of
the processing, designing it, and the
resources available. A compiler is a
relatively simple language written by one
person might be a single massive piece of
software. When the source language is large
and complex, and high quality output is
required, the design may be split into a
number of relatively independent phases.
The division of compilation may include
front , middle and back end.

The point at which these two ends meet is

open to debate.

The front end is generally considered to be

where syntactic and semantic processing

takes place, along with translation to a lower

level of representation.

The middle end is designed to perform

optimizations on a form other than the

source code or machine code. This machine

code independence is intended to enable

common optimizations to be shared between

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1174

versions of the compiler supporting different

languages and target processors.

The back end takes the output from the

middle. It may perform more analysis,

transformations and optimizations that are

for a particular computer. Then, it generates

code for a particular processor and OS.

This front-end/middle/back-end approach

makes it possible to combine front ends for

different languages with back ends for

different CPUs. Some of the practical

examples of this approach are the GNU

Compiler Collection, LLVM, and

the Amsterdam Compiler Kit, which have

multiple front-ends, shared analysis and

multiple back-ends.

FRONT END

In some cases additional phases are used,

notably line

reconstruction and preprocessing, but these

are very rare. A detailed list of possible

phases includes:

1. Line reconstruction: Languages

which strop their keywords or allow

arbitrary spaces within identifiers

require a phase before parsing,

which converts the input character

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1175

sequence to a canonical form ready

for the parser.

2. Preprocessing: Some languages such

as C require a preprocessing phase

which supports macro substitution

and conditional compilation.

Typically preprocessing phase

occurs before syntactic or semantic

analysis.

BACK END

The back end is sometimes baffled

with code generator because of the

overlapped functionality of generating

assembly code. Some literature uses middle

end to distinguish the generic analysis and

optimization phases in the back end from the

machine-dependent code generators.

PHASES

Compilation is divide into six phases, each
of which interacts with a symbol table
manager and an error handler is called the
analysis model of compilation.
There are many variants but the essential
elements are the same.The compilers has
some special types of procedures and these
procedures are completed in pre-defined
phases. When one phase is completed next
phase is started. It goes on in the same
process.

These phases are:

• Lexical Analyzer
• Syntax Analyzer
• Semantic Analyzer
• Intermediate code generator
• Code Generator
• Symbol table manager

• Error Handler

1. Lexical Analysis

 The lexical analysis is a process to take
source program and procedure lexical tokens
or tokens. It is efficiently handled by lexer
or lexical analyzer. Lexical analysis breaks
the source code text into small pieces
called tokens. Each token is a single atomic
unit of the language. This phase is called
scanning and the software doing lexical
analysis is called a lexical analyzer or
scanner..

Example:

Amount:= salary + rent;

Tokens are:

(a) Amount: Identifier

(b):=: Assignment symbol

(c) Salary: Identifier

(d) +: Operator

(e) rent: Identifier

The token is a lowest level sequence of sub-
string which contains numerical constants,
literal strings, operator symbols, punctuation
symbols and control structures such as
assignment, conditions and looping.

2.Syntax Analysis

Grouping of tokens into grammatical
phrases is called syntax analysis.
It involves parsing the token sequence to
identify the syntactic structure of the
program. This phase builds a parse tree,

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1176

which replaces the linear sequence of tokens
with a tree structure built. The parse tree is
frequently analyzed, augmented, and
transformed by later phases in the compiler.
A syntax analyzer takes tokens as input and
output error message when program syntax
is wrong. There are many algorithms for
parsing. The most popular types of parsing
are top-down parsing and bottom-up
parsing.

3.Semantic Analysis

It is a process of semantic error detection in
source program. Grammatically correct
statements are not semantically correct
that’s why compiler is equipped with
semantic error checking facilities. It is the
stage in which the compiler adds semantic
information to the parse tree and builds the
symbol table and it performs semantic
checks such as type checking and object
binding .

4.Intermediate code generator

 The intermediate code generator transforms
parse tree into an intermediate language
which represents source code program.

Three-Address Code is a popular type of
intermediate languages.

Example:

Amount:= salary op rent

 amount, salary and rent are operand and op
is a binary operator.

5. Code Optimizer

It improves the output of intermediate code
generator. It optimizes intermediate codes
and produce fast running machines codes.

There are two common optimizations: Local
optimization and Loop optimization.

6. Code Generator

 It is a final phases in which re-locatable
machine codes or assembly codes are
produced. The statements “amount: =salary
+ rent;” can be converted into assembly
language.

The assembly language version of
statement:

 LOAD salary
ADD rent STORE amount

Assembler converts assembly codes into
machine codes for CPU because CPU
understands only machine codes, not any
high level programming languages.

7. Symbol-table Management

 The table of identifiers and their attributes
are called symbol table.

8. Error handling

 Each phase of compilation contains some
errors. These errors are collected and
noticed at the time of compilation.

COMPILER TECHNIQUES

Assembly language is a type of low-level

language and a program that compiles it is

more commonly known as an assembler,

and the inverse program known as

a disassemble. A program that translates

from a low level language to a higher level

know as a decompile. A program that

translates high-level languages is called a

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

COMPILER Nonika Sharma & Priyanka Sahni

P a g e | 1177

language translator, source to source

translator, language converter or rewriter.

Cross compiler is a program that translates

into an object code format that is not

supported on the compilation machine.

COMPILER ADVANTAGES

• Fast execution

• Optimize

COMPILER DISADVANTAGES

• Editing and developing of code is

slower than interpreters
• It always require a complier
• Once compiled it can run on specific

platform

REFERENCES

[1] Compiler textbook references A
collection of references to
mainstream Compiler Construction
Textbooks

[2] Aho, Alfred V.; Sethi, Ravi; Ullman
, Jeffrey D. (1986).Compilers:
Principles, Techniques, and
Tools (1st ed.).Addison-Wesley.

[3] Allen, Frances E. (September
1981). "A History of Language
Processor Technology in IBM". IBM
Journal of Research and
Development (IBM)

[4] Allen, Randy; Kennedy,
Ken (2001). Optimizing Compilers

for Modern Architectures. Morgan
Kaufmann Publishers ISBN .

[5] Appel, Andrew
Wilson (2002). Modern Compiler
Implementation in Java (2nd
ed.). Cambridge University
Press. ISBN.

[6] Appel, Andrew
Wilson (1998). Modern Compiler
Implementation in ML. Cambridge
University Press.ISBN 0-521-58274-
1.

[7] Bornat,
Richard (1979). Understanding and
Writing Compilers: A Do It Yourself
Guide. Macmillan
Publishing. ISBN 0-333-21732-2.

[8] Cooper, Keith D.; Torczon , Linda
(2004). Engineering a
Compiler. Morgan
Kaufmann. ISBN 1-55860-699-8.

[9] Leverett, Bruce W; Cattell, R. G. G.;
Newcomer, Joseph M.; Hobbs, S.O.;
Reiner, A.H.; Schatz, B.R.; Wulf,
W.A. (August 1980). "An Overview
of the Production – Quality Compiler
– Compiler Project.

[10] McKeeman , William
Marshall; Horning, James J.;
Wortman, David B. (1970). A
Compiler Generator.Englewood
Cliffs, NJ: Prentice-Hall.

