Position-Wise Analysis On Anthropometric Characteristics Of State Level Junior Elite Basketball Players

Dr. A. S. Nageswaran, Associate Professor, H.H. The Rajah's College, Pudukkottai, Tamilnadu &

K. Meenakshi Sundaram, Assistant Professor, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu

Abstract

The purpose of the study was to analysis the position-wise anthropometric characteristics of state level Basketball players. To achieve the purpose of the study, 96 basketball players were selected as subjects from the 64th Junior National Championship, selected 2013. the players were classified into three groups namely Gurad (G), Forward (F) and Centers (C); each classification consists of 32 basketball All the players. anthropometric assessment, were measured by standardized test protocols. To analysis the significant mean difference among their playing position's anthropometric characteristics, Analysis of Variance (ANOVA) was computed. The result revealed that the center players were possessing maximum value in all anthropometric characteristics followed by forward and then the guard players.

Key Words: Guard, Forward and Center Junior Basketball players,

Introduction

Basketball is a team based sport that has evolved greatly since its inception over couple of centuries ago. India has both men's and women's national teams in basketball. Affiliated into FIBA since 1936, India has one of Asia's longest basketball traditions. Now a day more and more young players are turning on to participate in international events. This is very good sign for India. To compete with world number one teams, India yet to be adopt more scientific methodology to enhance the performance in all spheres. The modern game of basketball is played at very faster speed that consists of activities of short duration but high intensity during the The game. changing nature of the game both on offensive and defensive system of play and advent of professionalism has led to greater morphological, physiological and psychological demands on players. Playing position in basketball is necessary to optimize the organization

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 06 May 2017

of offense and defense and thus increase their efficiency (Bishop and Wright, 2006).

Further, basketball is the game where size, shape and body composition play an important role in providing distinct advantage for specific playing positions. For optimal performance during play at an elite level, a variety of areas must be addressed (Viswanathan and Chandrasekaran, 2011). These include the high skill level, psychosomatic level and importantly the specific use of anthropometric measurements namely length measurements (arm span, leg length, arm length, palm length), breadth measurements (shoulder breadth, humerus & femur breadth), girth measurements (arm girth, thigh girth, hip - waist ratio, chest girth) and skinfold measurements (biceps, subscapula, supraspinale, triceps, abdominal, iliac crest, front thigh, medial calf) which play a vital role in the game basketball. There is profound positive relationship between in performance sports and the anthropometric aspects of an athlete's body (Abdelkrim, et al., 2007). It has been scientifically proved that different sports or different events in a same sport require the demand of different bodily characteristics. In some games, where players have to play at different positions, there too, it has been found that the requirement of anthropometric characteristics is different. The purpose of the study was to make an attempt to of profiling anthropometrical characteristics of state level junior elite basketball players and then assess the relative importance of these characteristics by comparing with their playing position.

Methodology

To achieve the purpose of the study, 96 basketball players those who were participated in the 64th Junior Basketball Championship, National 2013 held at Cuttack, Odisha, India, were selected as subjects for this study. The age of the subjects were ranged from 16 to 18 years. All the selected subjects were played the championship in Level – I classification matches. The independent variables namely, height, weight, skinfold measures (biceps, subscapula, triceps, supraspinale, abdominal, iliac crest, front thigh and medial calf); girth measures (arm girth relaxed, arm girth tensed, waist, gluteus and calf) and breadth measures (humerus & femur breadth) were selected. Further, the selected players

were classified into three groups namely Gurad (G), Forward (F) and Centers (C); each classification consists of 32 basketball players. All the anthropometric assessment, were measured by the investigator who was a certified ISAK level - I and level - II Anthropometrist, by International Society for the Advancement of **K**inanthropometry (ISAK). The Statistical techniques included descriptive statistics for all the anthropometric characteristics of selected subjects with special reference to their playing positions. To analysis the significant mean difference among

their playing position's anthropometric characteristics, Analysis of Variance (ANOVA) was computed. If any significant mean differences exist, to identify which pair of means have greater among the groups, Scheffe's Post hoc test was applied. The level of significance was set at 0.05 for all the cases.

Result and Discussions

The descriptive statistics of mean, standard deviation, minimum, maximum and range of the criterion anthropometric measures were computed and presented in the Table – I.

 Table – I

 Descriptive statistics of Anthropometric Characteristics of State level Junior Elite

 Basketball Players

Variable	Position	Range	Minimum	Maximum	Mean	SD (±)
	Guard	8.20	3.00	11.20	6.19	2.38
Biceps SK	Forward	14.60	3.50	18.10	6.11	3.23
	Center	8.80	3.50	12.30	6.24	2.36
	Guard	21.60	1.40	23.00	10.91	4.68
Triceps SK	Forward	20.00	5.00	25.00	11.84	4.84
	Center	79.00	6.00	85.00	14.20	13.53
Subcounulor	Guard	16.50	7.50	24.00	12.75	4.54
Subscupular SK	Forward	17.30	8.00	25.30	14.39	4.22
эк	Center	14.80	7.30	22.10	13.51	3.79
	Guard	32.50	1.50	34.00	15.23	6.74
Iliac crest SK	Forward	42.10	2.90	45.00	17.55	9.20
	Center	29.50	5.50	35.00	19.90	7.26
Connogninate	Guard	19.00	4.00	23.00	7.99	4.38
Sapraspinate SK	Forward	18.00	4.00	22.00	8.71	4.37
эк	Center	11.00	5.00	16.00	8.75	2.69
	Guard	39.80	6.20	46.00	16.59	10.04
Abdominal SK	Forward	35.89	2.11	38.00	16.51	8.55
	Center	27.50	6.00	33.50	18.32	7.28
	Guard	25.70	4.30	30.00	16.41	5.55
Front thigh SK	Forward	30.00	6.00	36.00	17.19	7.77
_	Center	19.50	7.00	26.50	18.13	5.20

Available online: <u>https://edupediapublications.org/journals/index.php/IJR/</u> P a g e | **1151**

International Journal of Research Available at

IJR

https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 06 May 2017

	Const	17 50	5.00	22.50	10.00	4.02
Medial calf SK	Guard	17.50	5.00	22.50	10.09	4.23
	Forward	26.10	4.20	30.30	12.42	6.20
	Center	22.50	5.00	27.50	12.18	5.98
Arm girth	Guard	9.70	22.30	32.00	25.78	2.02
relaxed	Forward	9.50	22.00	31.50	26.67	2.10
Тепахец	Center	11.00	23.00	34.00	27.57	2.16
Arm girth	Guard	11.60	25.40	37.00	28.83	2.28
Arm girth tensed	Forward	13.00	25.00	38.00	29.91	2.46
tenseu	Center	14.00	25.00	39.00	30.51	2.43
	Guard	45.70	28.80	74.50	68.83	7.75
Waist Girth	Forward	35.40	48.00	83.40	71.53	5.67
	Center	27.40	69.00	96.40	75.81	6.27
	Guard	23.00	77.00	100.00	86.73	4.39
Gluteus Girth	Forward	46.00	55.00	101.00	87.61	9.63
chattan chiai	Center	29.30	82.00	111.30	92.07	6.11
	Guard	8.00	29.00	37.00	33.27	2.16
Calf Girth	Forward	26.00	30.00	56.00	36.06	5.44
	Center	21.50	25.50	47.00	35.53	3.35
TT	Guard	1.50	6.00	7.50	6.57	0.42
Humerus	Forward	1.50	6.00	7.50	6.74	0.42
Breadth	Center	3.80	6.20	10.00	7.16	0.67
Б	Guard	79.50	8.50	88.00	11.82	13.91
Femur	Forward	1.50	9.00	10.50	9.63	0.42
Breadth	Center	4.00	9.00	13.00	9.98	0.81
	Guard	11.00	167.00	178.00	173.53	3.64
Height	Forward	7.00	178.00	185.00	180.59	1.49
ũ	Center	23.50	186.00	209.50	191.56	6.05
	Guard	29.00	51.00	80.00	62.91	6.74
Weight	Forward	32.00	52.00	84.00	70.03	7.25
0	Center	73.00	64.00	137.00	78.34	12.66

 Table – II

 Analysis of Variance on Skinfold Measures of State level Elite Basketball Players

Variables	Source of Variance	Sum of Squares	df	Mean Square	F	
Diagna SE	Between Groups	.271	2	0.136	0.019	
Biceps SF	Within Groups	670.961	93	7.215	0.019	
Tricopa SE	Between Groups	184.034	2	92.017	1.209	
Triceps SF	Within Groups	7076.946	93	76.096	1.209	
Subcoupular SE	Between Groups	42.986	2	21.493	1.222	
Subscupular SF	Within Groups	1636.174	93	17.593	1.222	
Iliac crest SF	Between Groups	349.227	2	174.613	2.866	
	Within Groups	5666.005	93	60.925		
Sapraspinate SF	Between Groups	11.877	2	5.938	0.391	
	Within Groups	1410.910	93	15.171	0.391	
Abdominal SF	Between Groups	67.054	2	33.527	0.443	
	Within Groups	7034.117	93	75.636	0.445	
Front thigh SF	Between Groups	47.262	2	23.631	0.599	

Available online: <u>https://edupediapublications.org/journals/index.php/IJR/</u> P a g e | **1152**

	Within Groups	3666.745	93	39.427	
Medial calf SF	Between Groups	104.914	2	52.457	1 709
	Within Groups	2856.591	93	30.716	1.708

* significance at 0.05 level (table value F(0.05,2,93) = 3.09)

From the table – II, the obtained F value for all the Skin fold measures of state level Elite Basketball Players were less than the table value of 3.09 at 0.05 level of significance with degree of freedom 2, 93. The result revealed that

there was no significant mean difference exists among the skin fold measures of state level junior elite basketball players with reference to their playing positions.

 Table – III

 Analysis of Variance on Girth Measures of State level Elite Basketball Players

Variables	Source of Variance	Sum of Squares	df	Mean Square	F
A	Between Groups	50.944	2	25.472	
Arm girth relaxed	Within Groups	407.446	93	4.381	5.814*
	Between Groups	46.309	2	23.154	4.043*
Arm girth tensed	Within Groups	532.631	93	5.727	
	Between Groups	791.101	2	395.550	9.023*
Waist Girth	Within Groups	4076.816	93	43.837	
Gluteus Girth	Between Groups	523.157	2	261.579	5.258*
	Within Groups	4626.192	93	49.744	
Calf Girth	Between Groups	139.856	2	69.928	4.609*
	Within Groups	1410.923	93	15.171	

* significance at 0.05 level (table value F(0.05,2,93) = 3.09)

From the table – III, the obtained F Value of girth measures are greater than the table value of 3.09 at 0.05 level of significance with 2, 93 degree of freedom. The result revealed that all the

girth parameters with reference to the playing positions, there was a significant mean difference exists. Since the differences were account significantly, scheffe's post hoc test was computed. The post hoc test emphasized that the all the girth parameters, the guard-center pair of mean difference was significantly differed.

From the table – IV, the obtained F Value (10.76) of Humerus breadth is greater than the table value of 3.09 at 0.05 level of significance with 2, 93 degree of freedom. But femur breadth, the obtained F value was less than the table value of 3.09 (p < 0.05). The result revealed that the Humerus breadth with reference to the playing positions, there was a significant mean difference exists. Since the differences were account significantly on humerus breadth, scheffe's post hoc test was computed. The post hoc test emphasized that the humerus breadth, the guard-center pair of mean differences was significantly differed.

 Table – IV

 Analysis of Variance on Breadth Measures of State level Elite Basketball Players

Variables	Source of Variance	Sum of Squares	df	Mean Square	F
Humerus Breadth	Between Groups	5.817	2	2.908	10.763*
	Within Groups	24.861	92	.270	
Femur Breadth	Between Groups	88.057	2	44.028	0.670
	Within Groups	6020.302	92	65.438	0.673

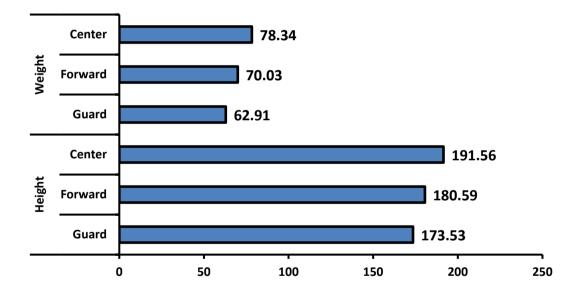
* significance at 0.05 level (table value F(0.05,2,93) = 3.09)

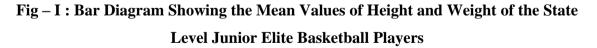
Table – V Analysis of Variance on Height and Weight of State level Elite Basketball Players

Variables	Source of Variance	Sum of Squares	df	Mean Square	F
Height	Between Groups	5286.742	2	2643.371	152.31*
	Within Groups	1614.014	93	17.355	
Weight	Between Groups	3820.583	2	1910.292	22.10*
	Within Groups	8006.906	93	86.096	22.19*

* significance at 0.05 level (table value F(0.05,2,93) = 3.09)

From the table - V, the obtained F Value of height and weight are greater than the table value of 3.09 at 0.05 level of significance with 2, 93 degree of freedom. The result revealed that the height and weight of junior


basketball players with reference to the playing positions. there was а significant mean difference exists. Since the differences were account significantly, scheffe's post hoc test was computed. The post hoc test emphasized that the both height and weight parameters, the guard-center of differences pair mean was significantly differed.


Conclusions

1) The anthropometric characteristics of the basketball

players were differed with respect to their playing positions, namely Guard, Forward and Center.

- Among all the three playing positions, center players possessing maximum anthropometric values, followed by Forwards and then Guards at junior classifications.
- Among the skin fold measures, there was no differences were accounted as far as their playing positions.

References

Abdelkrim, N. B., El Fazaa, S., & El	basketball players during
Ati, J. (2007). Time-motion	competition. British Journal of
analysis and physiological data	Sports Medicine, 41(2), 69-75.
of elite under-19-year-old	

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 06 May 2017

Bishop, D. C., & Wright, C. (2006). A

- time-motion analysis of professional basketball to determine the relationship between three activity profiles: high, medium and low intensity and the length of the time spent on court. *International Journal of Performance Analysis of Sport*, 6(1), 130-138.
- Viswanathan, J., and Chandrasekaran,
 K. (2011). Optimizing Positionwise Anthropometric Models
 for Prediction of Playing Ability
 among Elite Indian Basketball
 Players. *International Journal*of Sports Science and
 Engineering, Vol 5 (2), pp: 67
 76.