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 Abstract: Redundant basis (RB) multipliers over Galois Field (GF (2
m

)) have gained huge 

popularity in elliptic curve cryptography (ECC) mainly because of their negligible hardware cost 

for squaring and modular reduction. In this paper we discuss the growth has started the spread of 

architectures for implementing ECC from FPGA towards ASIC. Computing scalar multiplication 

and point inversion forms the core ECC architecture. ASIC based implementation of these ECC 

arithmetic primitives over finite fields GF (2m). we have proposed a Dual Logic Level (DLL) the 

arithmetic components are designed using Verilog and implemented on field programmable gate 

array (FPGA) and application specific integrated circuit (ASIC) realization of the proposed 

designs especially presented in high-throughput  up to 50% and 20% savings area-delay-power 

product (ADPP)  implementation over the best of the existing designs, respectively. 

Index Terms—ASIC, finite field multiplication, FPGA, high-throughput, redundant basis. Dual 

Logic Level, digital series RB multiplier. 

 

I. Introduction  

 

        Finite field GF (2m) is a field that 

contains finitely many fields. It is especially 

useful in translate computer data, which 

present in the binary form. Finite Field has 

wide applications in cryptography and error 

control coding [1], [2]. The key arithmetic 

unit for multiple systems based on 

computations of finite field is finite field 

multiplier because the complex operations 

like division and inversioncan be broken 

down into successive multiplication 

operation. The most common arithmetic is 

multiplication which is useful to obtain 

efficient multipliers [3]. 
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 A number of structures have been designed 

for efficient finite field multiplication over 

finite field based on RB. Semi-systolic 

Montgomery multiplier ispresented in [4]. 

Super-systolic multiplier has been reported 

by Pramod Kumar Mehar. Bit-Serial/Parallel 

multipliers [8], Comb style architectures are 

presented formerly and also several other 

RB multipliers are designed for hardware 

efficiency and throughput[5] [6]. In this 

contribute, an efficient high-throughput 

digit-serial/parallel multiplier designs over 

finite field based on RB is presented. A 

novel recursive decomposition scheme is 

presented, based on that parallel algorithms 

are obtained for high-throughput digit-serial 

multiplication [7]. By depicting the parallel 

algorithm to a regular two dimensional 

signal-flow-graph (SFG) array go after by 

projection of SFG to onedimensional 

processor-space flow graph (PSFG), the 

algorithm is mapped to three multiplier 

architectures. In this work, the 

implementation of 10-bit digit-serial RB 

multipliers is presented to obtain high-

throughput. The organization of this paper is 

as follows: Mathematical representation is 

presented in section II. High-throughput 

structures for digit-serial RB multipliers are 

derived from the proposed algorithm 

mentioned in section III. Implementation 

and Simulation results are presented in 

section IV.  

Introduction about the dual logic 

level (DLL) High-speed opto coupler is 

capable of transmitting binary values the full 

specified operating temperature range. The 

combination of low input current (1.6 mA) 

and Active logic-level output is a fit for 

nearly all logic applications. 

 

APPLICATIONS: Requirements for 

Standard, Fast, and High* Greater Design 

Flexibility Ultra-Low Power Consumption 

Saves Space 8-Bump, 0.4mm Pitch, 0.8mm 

x 1.6mm WLP Package       8-Pin, 2mm x 

2mm Speeds 

 

The Finite Field GF(2
8
). 

The case in which n is greater than one is 

much more difficult to describe. In 

cryptography, one almost always takes p to 

be 2 in this case. This section just treats the 

special case of p = 2 and n = 8, that is. 

GF(2
8
), because this is the field used by the 

new U.S. Advanced Encryption Standard 

(AES). 

Multiplication in GF(2
8
). 

        Multiplication is this field is much 

more difficult and harder to understand, but 

it can be implemented very efficiently in 
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hardware and software. The first step in 

mutiplying two field elements is to multiply 

their corresponding polynomials just as in 

beginning algebra (except that the 

coefficients are only 0 or 1, and 1 + 1 = 0 

makes the calculation easier, since many 

terms just drop out). The result would be up 

to a degree 14 polynomial -- too big to fit 

into one byte. A finite field now makes use 

of a fixed degree eight irreducible 

polynomial (a polynomial that cannot be 

factored into the product of two simpler 

polynomials). For the AES the polynomial 

used is the following (other polynomials 

could have been used): (x) = x
8
 + x

4
 + x

3
 + x 

+ 1 = 0x11b (hex). The intermediate product 

of the two polynomials must be divided by 

m(x). The remainder from this division is 

the desired product. This sounds hard, but is 

easier to do by hand than it might seem 

(though error-prone). To make it easier to 

write the polynomials down, adopt the 

convension that instead of x
8
 + x

4
 + x

3
 + x + 

1 just write the exponents of each non-zero 

term. (Remember that terms are either zero 

or have a 1 as coefficient.) So write the 

following for m(x): (8 4 3 1 0). 

Typical Elliptic Curve Crypto processor:  

 

      Elliptic curve crypto systems have a 

layered hierarchy as shown in Figure1. The 

bottom layer constituting the arithmetic on 

the underlying finite field most prominently 

influences the area and critical delay of the 

overall implementation[9]. The group 

operations on the elliptic curve and the 

scalar multiplication influences the number 

of clock cycles required for encryption. 

 

  

 

 

 

    

     

 

                      Figure 1: ECC layered hierarchy for arithmetic operations 
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To be usable in real world applications, 

implementations of the crypto system must 

be efficient, scalable, and reusable[10]. 

Applications such as smart cards and mobile 

phones require implementations where the 

amount of resources used and the power 

consumed is critical. Such implementations 

should be compact and designed for low 

power. Computation speed is a secondary 

criterion. Also, the degree of 

reconfigurability of the device can be kept 

minimum [11][12]. This is because such 

devices have a short lifetime and are 

generally configured only once. On the other 

side of the spectrum, high performance 

systems such as network servers, data base 

systems etc. require high speed 

implementations of Elliptic Curve 

Cryptoporcessor (ECCP)[13][14]. The 

crypto algorithm should not be the 

bottleneck on the application‟s performance. 

These implementations must also be highly 

flexible. Operating parameters such as 

algorithm constants, etc. should be 

reconfigurable 

 

 

 

 

 

 

 

 

 

 

Figure 2: A typical elliptic curve crypto processor 

The Arithmetic primitives from the ECCP 

hierarchy can be grouped to constitute a 

dedicated hardware. A typical ECCP is 

given in Figure2. This crypto processor 

should implement the double and add scalar 

multiplication algorithm. Point doubling is 

performed for every iteration loop of the 

algorithm. Point addition is performed only 

when the bit is set in the binary expansion of 

scalar input k. This constitutes the 
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Arithmetic unit (AU) of ECCP shown in 

Figure3. The output is the scalar 

multiplication product kP. Here P is the base 

point on the curve. Finite Field Arithmetic : 

Addition, Multiplicaion, Inversion Group 

Operations: Point Add, Point Double, Point 

Reflect Level 0 Level 1 Level 2 Level 3 

Point Multiplication ECC Input Interface 

Output Interface Control Unit Arithmetic 

Unit Register Interface Scalar k Base Points 

Scalar Product Done Start, Clk, Reset. 

  Digit-serial RB multiplier: 

 The proposed digit-serial RB multiplier is 

derived from the SFG of the proposed 

algorithm the representation of RB 

multiplication is by two dimensional SFG in 

Fig.1. The SFG consists of Q number of 

arrays which are in parallel; each array is 

with (P-1) bit-shifting nodes which is S 

node. The S nodes are two types they are S-I 

and S-II. The one position circular bit-

shifting is carryout by S-I and Q positions 

circular bit-shifting is carryout by S-II. And 

it also consists of P multiplication nodes and 

addition nodes, where M nodes and A 

nodes.             

 

                                                       

           Fig.3.The proposed Signal-flow graph (SFG) for parallel realization of RB multiplication 

 The role of M nodes and A nodes 

are described in Fig.4 (b) and 4(c). M node 

carryout AND operation of each serial-input 

bits of Awith the B input bits by bit-shifting 
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form, and XOR operation is carryout by the 

each Anode. The final output is obtained by 

performing the bit by bit XOR operation of 

the operands Fig.3.By addition of the Q 

parallel arrays output the required product 

word is obtained. To obtain the PSFG 

(Fig.6), the SFG is projected along the jth 

direction for digit-serial multiplication.In 

PSFG during each clock cycle the p number 

of input bits carried in parallel to 

multiplication node. The PSFG functionality 

is as same as the SFG inFig.1 It consists of 

an extra node which is add-accumulation 

node (AA) and the role of the add-

accumulation is to carryout accumulation 

operation to produce necessary result. 

                   

(a)                                                   (b)                                                  (c) 

                    Bit-shifting (Xin) →youtXin1. Xin2→yout Xin1+Xin2→yout 

 

Fig. 4. (a) Functional representation of S node. (b) Functional representation of M node. (c) 

Functional Representation of A node 

 

                          For 1≤T ≤ Q;    R← R+ xin; T← T+1 If T=Q 

then yout← R;  

T←0; R←; R← 0; Endif 

Fig.5. Processor- space flow graph (PSFG) of digit-serial realization of finite field RB 

multiplication over GF (2m). (a) The PSFG. (b) Functional representation of add-accumulation 

(AA) node. 
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The digit-serial RB multiplier shown in 

Fig.8, mentioned as structure-I. Structure-I 

consists of three blocks, which are bit-

permutation module (BPM), partial product 

generation module (PPGM) and finite 

fieldaccumulator module. The BPM carries 

out rewiring of inputsB and the output is fed 

to the partial product generation unit. The 

PPGM is with the AND, XOR and register 

cells which carry out the function of M node 

and the finite field accumulator block 

consistent with n-bit parallel accumulation 

units. The recent input which is received is 

added with the past accumulated result, and 

the sum is retain in the register cell and used 

in the next cycle. And successive output is 

obtained. Fig.11 shows the structure of 

partial product generation module which 

consists of XOR cell, AND cell and register 

cells with n parallel input bits and n parallel 

output bits. 

                             

                                    Fig.6. structure-I for digit-serial RB multiplier 

 

Modification of Structure –I for Digit-Serial RB Multiplier  

We can have (P=kd+l), for any p integer 

value, where 0≤�<d and d<P. For 

simpleness, we assume l=0, however can 

easily extended to the cases where l ≠0. 

Define 0≤ℎ ≤�−1, and 0≤�≤�−1, 

the PSFG is modified to obtain appropriate 

digit-serial multiplier structure Fig.6, a set of 
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shifting nodes, a set of multiplication nodes 

and a set of addition nodes of PSFG are 

combined to form overall node. And these 

nodes are executed by new PPGU to obtain 

PPGM of P/2 PPGUs. Suitably, in the 

structure of Fig.4 the two PPGU are 

appeared into a new PPGU, and it consists 

of two AND cells, two XOR cells and it 

needs only one XOR cell at the first PPGU 

of the structure-I when d=2. The 

functionality of the AND, XOR and register 

cells are same as the structure-I in Fig.4. 

Structure- II for digit-serial RB 

multiplier 

 The Structure-II for digit-serial RB 

multiplier is in Fig.9, the (P-1) A nodes of 

PSFG which are connected serially are 

combined into the pipeline form of (P-2) A 

nodes. And these pipeline forms of A nodes 

are constructed by using the pipeline XOR 

tree. To meet the time requirement there is 

no need of padding „0‟ at input due to the 

AND cell is organized in parallel. The 

function is as same as the structure-I. 

Structure-III for digit-serial RB 

multiplier  

In this, the bit-addition and bit-

multiplication are carried out concurrently 

and hence the throughput of the desired 

structure can be increased. The structure-III 

for digit-serial RB multiplier is shown in 

Fig.10, which contains (P+1) PPGUs and 

the each PPGU is with the single AND cell, 

single XOR cell and two register cells and 

the first output of this structure-III can be 

obtained at (P+Q+1) cycles. And at Q cycles 

the consecutive output is obtained. 

                      

                   

                                       Fig.7. structure of the bit-permutation module (BPM) 
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                         Fig.8. Structure-I for digit-serial RB multiplier when d=2. 

The fig.5 shows the structure of the bit-permutation module, and fig.11(a), 11(b) and 

fig.11(c) shows the structure of AND cell, XOR cell and register cell of PPGM. Which the inputs 

are given parallel to the AND cell and obtain the output parallel and also which is done similar to 

the XOR cell and register cell. This consists of n parallel inputs and n parallel outputs.Fig.8. 

Shows the structure of finite field accumulator, the finite field accumulator also consists of XOR 

cell and register cell with the parallel inputs and parallel outputs. 

                    

Fig.9 (a) Structure of AND cell in partial product generation module. (b) Structure of XOR cell 

in partial product generation module. (C) Structure of register cell in partial product generation 

module. 
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                                                  Fig.10. Structure of the finite field accumulator  

 

 

                       
                                                          

                                   Fig.11. Structure-II for digit-serial RB multiplier 
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                                  Fig.12. Structure-III for digit-serial RB multiplier 

 

The pipelined tree: 

We can further transform the PSFG 

of Fig. 4 to reduce the latency and hardware 

complexity of PS-I. To obtain the proposed 

structure, serially-connected A nodes of the 

PSFG of Fig. 4 are merged into a pipeline 

form of A nodes as shown within the 

dashed-box in Fig. 6(a). These pipelined A 

nodes can be implemented by a pipelined 

XOR tree, as shown in Fig. 6(b). Since all 

the AND cells can be processed in parallel, 

there is no need of using extra “0”s on the 

input path to meet the timing requirement in 

systolic pipeline. The critical path and 

throughput of PS-II are the same as those of 

PS-I. Similarly, PS-II can be easily extended 

to larger values of d to have low register-

complexity structures. 

Cut-set retiming : 

Since the S nodes of Fig. 4 perform only the 

bit-shifting operations they do not involve 

any time consumption. Therefore, we can 

introduce a novel cut-set retiming to reduce 

the critical path further, as shown in Fig. 

7(a). It can be observed that the cut-set 

retiming allows to perform the bit-addition 

and bit-multiplication concurrently, so that 

the critical-path is reduced to 
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max{TA+TX}=TX, i.e ,the throughput of the 

design Is increased the pipelined tree for RB 

multiplier, where “R” denotes a register cell. 

(a) Modified PSFG. (b) Structure of RB 

multiplierhave been derived for area-

constrained implementation; and particularly 

for implementation in FPGA platform where 

registers are not abundant. 

 The results of synthesis show that 

proposed structures can achieve saving of 

up to 50% and 20%, respectively, of ADPP 

for FPGA and ASIC implementation, 

respectively, over the best of the existing 

designs. The proposed structures have 

different area-time-power trade-off 

behavior. Therefore, one out of the three 

proposed structures can be chosen 

depending on the requirement of the 

application environments. 

DLL Simulation Results 

 

 

    

 

Fig 14: Schematic diagram of DDL 

     Fig 15: Schematic diagram of DDL-DB 

Technology Schematic of DLL  

 

 

 

Fig 16: Technology schematic of DLL merged regular PPGU 

       

 

 

 

Fig 17: DLL Simulation results of pipelined tree 

Fig 18: DLL Simulation results of cut-set retiming 
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CONCLUSION 

We have proposed a duel logic level 

algorithm for RB multiplication to derive 

high-throughput digit-serial multipliers. By 

suitable projection of SFG of proposed 

algorithm and identifying suitable cut-sets 

for feed-forward cut-set retiming, three 

novel high-throughput digit-serial RB 

multipliers are derived to achieve 

significantly less area-time-power 

complexities than the existing ones. 

Moreover, efficient structures with low 

register-count proposed structures can be 

chosen depending on the requirement of the 

application environments. 
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