
 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1465

Design via DLL Multiplier Using Redundant Basis

for FPGA and ASIC Implementation

M.JAGADEESH MALLIREDDI*, V.RAMARAO

M.JagadeeshMalliReddy, M-Tech (VLSI), ECE Department College of

Engineering and Technology, Eluru JNTUK A.P

V.Ramarao, M-Tech, MIAENG, Assistant-Professor, Department of ECE College

of Engineering and Technology, Eluru JNTUK A.P

 Abstract: Redundant basis (RB) multipliers over Galois Field (GF (2
m

)) have gained huge

popularity in elliptic curve cryptography (ECC) mainly because of their negligible hardware cost

for squaring and modular reduction. In this paper we discuss the growth has started the spread of

architectures for implementing ECC from FPGA towards ASIC. Computing scalar multiplication

and point inversion forms the core ECC architecture. ASIC based implementation of these ECC

arithmetic primitives over finite fields GF (2m). we have proposed a Dual Logic Level (DLL) the

arithmetic components are designed using Verilog and implemented on field programmable gate

array (FPGA) and application specific integrated circuit (ASIC) realization of the proposed

designs especially presented in high-throughput up to 50% and 20% savings area-delay-power

product (ADPP) implementation over the best of the existing designs, respectively.

Index Terms—ASIC, finite field multiplication, FPGA, high-throughput, redundant basis. Dual

Logic Level, digital series RB multiplier.

I. Introduction

 Finite field GF (2m) is a field that

contains finitely many fields. It is especially

useful in translate computer data, which

present in the binary form. Finite Field has

wide applications in cryptography and error

control coding [1], [2]. The key arithmetic

unit for multiple systems based on

computations of finite field is finite field

multiplier because the complex operations

like division and inversioncan be broken

down into successive multiplication

operation. The most common arithmetic is

multiplication which is useful to obtain

efficient multipliers [3].

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1466

 A number of structures have been designed

for efficient finite field multiplication over

finite field based on RB. Semi-systolic

Montgomery multiplier ispresented in [4].

Super-systolic multiplier has been reported

by Pramod Kumar Mehar. Bit-Serial/Parallel

multipliers [8], Comb style architectures are

presented formerly and also several other

RB multipliers are designed for hardware

efficiency and throughput[5] [6]. In this

contribute, an efficient high-throughput

digit-serial/parallel multiplier designs over

finite field based on RB is presented. A

novel recursive decomposition scheme is

presented, based on that parallel algorithms

are obtained for high-throughput digit-serial

multiplication [7]. By depicting the parallel

algorithm to a regular two dimensional

signal-flow-graph (SFG) array go after by

projection of SFG to onedimensional

processor-space flow graph (PSFG), the

algorithm is mapped to three multiplier

architectures. In this work, the

implementation of 10-bit digit-serial RB

multipliers is presented to obtain high-

throughput. The organization of this paper is

as follows: Mathematical representation is

presented in section II. High-throughput

structures for digit-serial RB multipliers are

derived from the proposed algorithm

mentioned in section III. Implementation

and Simulation results are presented in

section IV.

Introduction about the dual logic

level (DLL) High-speed opto coupler is

capable of transmitting binary values the full

specified operating temperature range. The

combination of low input current (1.6 mA)

and Active logic-level output is a fit for

nearly all logic applications.

APPLICATIONS: Requirements for

Standard, Fast, and High* Greater Design

Flexibility Ultra-Low Power Consumption

Saves Space 8-Bump, 0.4mm Pitch, 0.8mm

x 1.6mm WLP Package 8-Pin, 2mm x

2mm Speeds

The Finite Field GF(2
8
).

The case in which n is greater than one is

much more difficult to describe. In

cryptography, one almost always takes p to

be 2 in this case. This section just treats the

special case of p = 2 and n = 8, that is.

GF(2
8
), because this is the field used by the

new U.S. Advanced Encryption Standard

(AES).

Multiplication in GF(2
8
).

 Multiplication is this field is much

more difficult and harder to understand, but

it can be implemented very efficiently in

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1467

hardware and software. The first step in

mutiplying two field elements is to multiply

their corresponding polynomials just as in

beginning algebra (except that the

coefficients are only 0 or 1, and 1 + 1 = 0

makes the calculation easier, since many

terms just drop out). The result would be up

to a degree 14 polynomial -- too big to fit

into one byte. A finite field now makes use

of a fixed degree eight irreducible

polynomial (a polynomial that cannot be

factored into the product of two simpler

polynomials). For the AES the polynomial

used is the following (other polynomials

could have been used): (x) = x
8
 + x

4
 + x

3
 + x

+ 1 = 0x11b (hex). The intermediate product

of the two polynomials must be divided by

m(x). The remainder from this division is

the desired product. This sounds hard, but is

easier to do by hand than it might seem

(though error-prone). To make it easier to

write the polynomials down, adopt the

convension that instead of x
8
 + x

4
 + x

3
 + x +

1 just write the exponents of each non-zero

term. (Remember that terms are either zero

or have a 1 as coefficient.) So write the

following for m(x): (8 4 3 1 0).

Typical Elliptic Curve Crypto processor:

 Elliptic curve crypto systems have a

layered hierarchy as shown in Figure1. The

bottom layer constituting the arithmetic on

the underlying finite field most prominently

influences the area and critical delay of the

overall implementation[9]. The group

operations on the elliptic curve and the

scalar multiplication influences the number

of clock cycles required for encryption.

 Figure 1: ECC layered hierarchy for arithmetic operations

EC

C

Group Operations: Point

Add, Point Double, Point

Reflect

Point

Multiplicati

o

Finite Field

Arithmetic :

Addition,

Multiplicaion,

Inversion

Level

0

Level

1

Level

2

Level

3

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1468

To be usable in real world applications,

implementations of the crypto system must

be efficient, scalable, and reusable[10].

Applications such as smart cards and mobile

phones require implementations where the

amount of resources used and the power

consumed is critical. Such implementations

should be compact and designed for low

power. Computation speed is a secondary

criterion. Also, the degree of

reconfigurability of the device can be kept

minimum [11][12]. This is because such

devices have a short lifetime and are

generally configured only once. On the other

side of the spectrum, high performance

systems such as network servers, data base

systems etc. require high speed

implementations of Elliptic Curve

Cryptoporcessor (ECCP)[13][14]. The

crypto algorithm should not be the

bottleneck on the application‟s performance.

These implementations must also be highly

flexible. Operating parameters such as

algorithm constants, etc. should be

reconfigurable

Figure 2: A typical elliptic curve crypto processor

The Arithmetic primitives from the ECCP

hierarchy can be grouped to constitute a

dedicated hardware. A typical ECCP is

given in Figure2. This crypto processor

should implement the double and add scalar

multiplication algorithm. Point doubling is

performed for every iteration loop of the

algorithm. Point addition is performed only

when the bit is set in the binary expansion of

scalar input k. This constitutes the

Register

 Interface

Arithmetic

Unit

Control

Unit

Output Interface

Input Interface

Scalar k Base

Points

Scalar Product

Done

Start, Clk, Reset

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1469

Arithmetic unit (AU) of ECCP shown in

Figure3. The output is the scalar

multiplication product kP. Here P is the base

point on the curve. Finite Field Arithmetic :

Addition, Multiplicaion, Inversion Group

Operations: Point Add, Point Double, Point

Reflect Level 0 Level 1 Level 2 Level 3

Point Multiplication ECC Input Interface

Output Interface Control Unit Arithmetic

Unit Register Interface Scalar k Base Points

Scalar Product Done Start, Clk, Reset.

 Digit-serial RB multiplier:

 The proposed digit-serial RB multiplier is

derived from the SFG of the proposed

algorithm the representation of RB

multiplication is by two dimensional SFG in

Fig.1. The SFG consists of Q number of

arrays which are in parallel; each array is

with (P-1) bit-shifting nodes which is S

node. The S nodes are two types they are S-I

and S-II. The one position circular bit-

shifting is carryout by S-I and Q positions

circular bit-shifting is carryout by S-II. And

it also consists of P multiplication nodes and

addition nodes, where M nodes and A

nodes.

 Fig.3.The proposed Signal-flow graph (SFG) for parallel realization of RB multiplication

 The role of M nodes and A nodes

are described in Fig.4 (b) and 4(c). M node

carryout AND operation of each serial-input

bits of Awith the B input bits by bit-shifting

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1470

form, and XOR operation is carryout by the

each Anode. The final output is obtained by

performing the bit by bit XOR operation of

the operands Fig.3.By addition of the Q

parallel arrays output the required product

word is obtained. To obtain the PSFG

(Fig.6), the SFG is projected along the jth

direction for digit-serial multiplication.In

PSFG during each clock cycle the p number

of input bits carried in parallel to

multiplication node. The PSFG functionality

is as same as the SFG inFig.1 It consists of

an extra node which is add-accumulation

node (AA) and the role of the add-

accumulation is to carryout accumulation

operation to produce necessary result.

(a) (b) (c)

 Bit-shifting (Xin) →youtXin1. Xin2→yout Xin1+Xin2→yout

Fig. 4. (a) Functional representation of S node. (b) Functional representation of M node. (c)

Functional Representation of A node

 For 1≤T ≤ Q; R← R+ xin; T← T+1 If T=Q

then yout← R;

T←0; R←; R← 0; Endif

Fig.5. Processor- space flow graph (PSFG) of digit-serial realization of finite field RB

multiplication over GF (2m). (a) The PSFG. (b) Functional representation of add-accumulation

(AA) node.

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1471

The digit-serial RB multiplier shown in

Fig.8, mentioned as structure-I. Structure-I

consists of three blocks, which are bit-

permutation module (BPM), partial product

generation module (PPGM) and finite

fieldaccumulator module. The BPM carries

out rewiring of inputsB and the output is fed

to the partial product generation unit. The

PPGM is with the AND, XOR and register

cells which carry out the function of M node

and the finite field accumulator block

consistent with n-bit parallel accumulation

units. The recent input which is received is

added with the past accumulated result, and

the sum is retain in the register cell and used

in the next cycle. And successive output is

obtained. Fig.11 shows the structure of

partial product generation module which

consists of XOR cell, AND cell and register

cells with n parallel input bits and n parallel

output bits.

 Fig.6. structure-I for digit-serial RB multiplier

Modification of Structure –I for Digit-Serial RB Multiplier

We can have (P=kd+l), for any p integer

value, where 0≤�<d and d<P. For

simpleness, we assume l=0, however can

easily extended to the cases where l ≠0.

Define 0≤ℎ ≤�−1, and 0≤�≤�−1,

the PSFG is modified to obtain appropriate

digit-serial multiplier structure Fig.6, a set of

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1472

shifting nodes, a set of multiplication nodes

and a set of addition nodes of PSFG are

combined to form overall node. And these

nodes are executed by new PPGU to obtain

PPGM of P/2 PPGUs. Suitably, in the

structure of Fig.4 the two PPGU are

appeared into a new PPGU, and it consists

of two AND cells, two XOR cells and it

needs only one XOR cell at the first PPGU

of the structure-I when d=2. The

functionality of the AND, XOR and register

cells are same as the structure-I in Fig.4.

Structure- II for digit-serial RB

multiplier

 The Structure-II for digit-serial RB

multiplier is in Fig.9, the (P-1) A nodes of

PSFG which are connected serially are

combined into the pipeline form of (P-2) A

nodes. And these pipeline forms of A nodes

are constructed by using the pipeline XOR

tree. To meet the time requirement there is

no need of padding „0‟ at input due to the

AND cell is organized in parallel. The

function is as same as the structure-I.

Structure-III for digit-serial RB

multiplier

In this, the bit-addition and bit-

multiplication are carried out concurrently

and hence the throughput of the desired

structure can be increased. The structure-III

for digit-serial RB multiplier is shown in

Fig.10, which contains (P+1) PPGUs and

the each PPGU is with the single AND cell,

single XOR cell and two register cells and

the first output of this structure-III can be

obtained at (P+Q+1) cycles. And at Q cycles

the consecutive output is obtained.

 Fig.7. structure of the bit-permutation module (BPM)

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1473

 Fig.8. Structure-I for digit-serial RB multiplier when d=2.

The fig.5 shows the structure of the bit-permutation module, and fig.11(a), 11(b) and

fig.11(c) shows the structure of AND cell, XOR cell and register cell of PPGM. Which the inputs

are given parallel to the AND cell and obtain the output parallel and also which is done similar to

the XOR cell and register cell. This consists of n parallel inputs and n parallel outputs.Fig.8.

Shows the structure of finite field accumulator, the finite field accumulator also consists of XOR

cell and register cell with the parallel inputs and parallel outputs.

Fig.9 (a) Structure of AND cell in partial product generation module. (b) Structure of XOR cell

in partial product generation module. (C) Structure of register cell in partial product generation

module.

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1474

 Fig.10. Structure of the finite field accumulator

 Fig.11. Structure-II for digit-serial RB multiplier

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1475

 Fig.12. Structure-III for digit-serial RB multiplier

The pipelined tree:

We can further transform the PSFG

of Fig. 4 to reduce the latency and hardware

complexity of PS-I. To obtain the proposed

structure, serially-connected A nodes of the

PSFG of Fig. 4 are merged into a pipeline

form of A nodes as shown within the

dashed-box in Fig. 6(a). These pipelined A

nodes can be implemented by a pipelined

XOR tree, as shown in Fig. 6(b). Since all

the AND cells can be processed in parallel,

there is no need of using extra “0”s on the

input path to meet the timing requirement in

systolic pipeline. The critical path and

throughput of PS-II are the same as those of

PS-I. Similarly, PS-II can be easily extended

to larger values of d to have low register-

complexity structures.

Cut-set retiming :

Since the S nodes of Fig. 4 perform only the

bit-shifting operations they do not involve

any time consumption. Therefore, we can

introduce a novel cut-set retiming to reduce

the critical path further, as shown in Fig.

7(a). It can be observed that the cut-set

retiming allows to perform the bit-addition

and bit-multiplication concurrently, so that

the critical-path is reduced to

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1476

max{TA+TX}=TX, i.e ,the throughput of the

design Is increased the pipelined tree for RB

multiplier, where “R” denotes a register cell.

(a) Modified PSFG. (b) Structure of RB

multiplierhave been derived for area-

constrained implementation; and particularly

for implementation in FPGA platform where

registers are not abundant.

 The results of synthesis show that

proposed structures can achieve saving of

up to 50% and 20%, respectively, of ADPP

for FPGA and ASIC implementation,

respectively, over the best of the existing

designs. The proposed structures have

different area-time-power trade-off

behavior. Therefore, one out of the three

proposed structures can be chosen

depending on the requirement of the

application environments.

DLL Simulation Results

Fig 14: Schematic diagram of DDL

 Fig 15: Schematic diagram of DDL-DB

Technology Schematic of DLL

Fig 16: Technology schematic of DLL merged regular PPGU

Fig 17: DLL Simulation results of pipelined tree

Fig 18: DLL Simulation results of cut-set retiming

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1477

CONCLUSION

We have proposed a duel logic level

algorithm for RB multiplication to derive

high-throughput digit-serial multipliers. By

suitable projection of SFG of proposed

algorithm and identifying suitable cut-sets

for feed-forward cut-set retiming, three

novel high-throughput digit-serial RB

multipliers are derived to achieve

significantly less area-time-power

complexities than the existing ones.

Moreover, efficient structures with low

register-count proposed structures can be

chosen depending on the requirement of the

application environments.

REFERENCES

[1] I. Blake, G. Seroussi, and N. P. Smart, Elliptic

Curves in Cryptography, ser. London Mathematical

Society Lecture Note Series.. Cambridge, U.K.:

Cambridge Univ. Press, 1999.

[2] N. R. Murthy and M. N. S. Swamy,

“Cryptographic applications of brahmaqupta-

bhaskara equation,” IEEE Trans. Circuits Syst. I,

Reg.Papers, vol. 53, no. 7, pp. 1565–1571, 2006.

[3] L. Song and K. K. Parhi, “Low-energy digit-

serial/parallel finite field multipliers,” J. VLSI

Digit.Process., vol. 19, pp. 149–C166, 1998.

[4] P. K. Meher, “On efficient implementation of

accumulation in finite field over and its applications,”

IEEE Trans. Very Large ScaleIntegr. (VLSI) Syst.,

vol. 1 7, no. 4, pp. 541–550, 2009.

[5] L. Song, K. K. Parhi, I. Kuroda, and T.Nishitani,

“Hardware/software codesign of finite field datapath

for low-energy Reed-Solomn codecs,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 2,

pp.

160–172, Apr. 2000.[6] G. Drolet, “A new

representation of elements of finite fields yielding

small complexity arithmetic circuits,” IEEE Trans.

Comput., vol. 47, no. 9, pp. 938–946, 1998.[7] C.-Y.

Lee, J.-S. Horng, I.-C. Jou, and E.-H. Lu, “Low-

complexity bit-parallel systolic montgomery

multipliers for special classes of,” IEEE Trans.

Comput., vol. 54, no. 9, pp. 1061–1070, Sep.2005.[8]

P. K. Meher, “Systolic and super-systolic multipliers

for duel logic level based on irreducible trinomials,”

IEEE Trans. Circuits Syst.I, Reg. Papers, vol. 55, no.

4, pp. 1031–1040, May 2008.[9] J. Xie, J. He, and P.

K. Meher, “Lowlatency

systolicmontgomerymultiplier for finite field based

on pentanomials,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 2, pp. 385–389,

Feb.2013.

[10] H.Wu, M. A. Hasan, I. F. Blake, and S. Gao,

“Finite field multiplier using redundant

representation,” IEEE Trans. Comput., vol. 51, no.

11,pp. 1306–1316, Nov. 2002

[11] A. H. Namin, H. Wu, and M. Ahmadi, “Comb

architectures for finite field multiplication in ,” IEEE

Trans. Comput., vol. 56, no. 7, pp.909–916, Jul.

2007.

[12] A. H. Namin, H. Wu, and M. Ahmadi, “A new

finite field multiplier using redundat epresentation,”

IEEE Trans. Comput., vol. 57, no. 5, pp. 716–720,

May 2008.

[13] A. H. Namin, H.Wu, and M. Ahmadi, “A high-

speed word level finite field multiplierF2m in using

redundant representation,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 17, no. 10, pp. 1546–

1550, Oct. 2009.

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 06
May 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1478

[14] A. H. Namin, H. Wu, and M. Ahmadi, “An

efficient finite field multiplier using redundant

representation,” ACMTrans. Embedded Comput.

Sys., vol. 11, no. 2, Jul. 2012, Art. 31.

