

Implementation of PPA-Brent Kung Adder For Computing Application

G.CHANDRASEKHAR *, MOHAMMAD TAJ

G.Chandrasekhar, M-Tech (VLSI), ECE Department Eluru College of Engineering and Technology, JNTUK A.P

Mohammad Taj, Assistant Professor, ECE Department Eluru College of Engineering and Technology, JNTUK A.P

ABSTRACT

In this paper, the implementation of residue number system reverse converters based on Brent Kung adders is analyzed. The parallel prefix adder provides high speed and reduced delay arithmetic operations but it is not widely used since it suffers from high power consumption. Hence, a Brent Kung adder component is presented to perform fast modulo addition in Residue Number System reverse conversion. The proposed components are not only results in fast arithmetic operation and it also highly reduced the hardware complexity since it requires fewer amount of logic elements. In this work, the proposed components are implemented in different module sets reverse converter designs and the performances are compared for different values of n.

KEYWORDS: Digital arithmetic, Brent kung adder, parallel-prefix adder, residue number system (RNS), reverse converter.

INTRODUCTION

The Residue Number System plays a significant role in the battery based and portable devices because of its low power features and its competitive delay. The Residue number system reverse converter is designed with parallel prefix addition by using new components methodology for higher speed operation. The RNS consists of two main components forward and the

reverse converter that are integrated with the existing digital system. The forward converter performs the operation of converting the binary number to the modulo number whereas the reverse converter performs the operation of reverse converting the modulo number to the binary number which is the hard and time consuming process compared with the forward converter. The fundamental RNS

concepts such as 1)RNS definition with properties and their applications,2)consideration of modulo set selection,3)design of forward converter,4)moduloarithmetic

units,5)design of reverse converter are discussed.

The voltage over scaling (VOS) technique is applied to the residue number system to achieve high energy efficiency. The VOS technique introduces soft errors which degrades the performance of the system. To overcome these soft errors a new technique is implemented called joint RNS-RPR (JRR) which is the combination of RNS and the reduced precision redundancy. This method provides the advantage of satisfying the basic properties of RNS includes shorter critical path, reduced complexity and low power. New architectures are presented for the moduli set (2n-1,2n, 2n+1) for the conversion from the residue to the binary equivalents. Here the speed and the cost are major concern.

Distributed arithmetic principles are used to perform the inner product computation. The input data which are in the residue domain which are encoded using the Thermometer code format and the outputs are encoded using the one hot code format. Compared to the conventional method which used Binary code format, the proposed system which achieves higher operating speed. The residue number system which provides carry free addition and fully arithmetic operation, for several applications such as digital signal processing and cryptography.

In this brief, we present a comprehensive method which uses the parallel prefix adder in selected position, thereby using the shift operation on one bit left to design a multiplier on the same design module to achieve a fast reverse converter design. The usage on parallel prefix structure in the design leads to higher speed in operation meanwhile it increases the area and power consumption.Inorder to compensate the tradeoff between the speed, area and power consumption, a novel specific Brent Kung parallel prefix based adder components are used to design the reverse converter. These Brent Kung design which provides the significant reduction in the power delay product (PDP) metric and leads to considerable improvements in the area time² product (AT²) in comparison with the traditional converters without using parallel prefix adders

PARALLEL PREFIX STRUCTURE

The Residue number system mainly composed of three main parts such as, forward converter, modulo arithmetic units and reverse converter. On comparing with the other parts the reverse converter design is a complex and no modular structure. So more attention is needed in designing the reverse converter thereby

preventing the slow operation and compromises the benefits of the RNS.The parallel prefix structure helps to achieve the faster operation in the reverse converter design but causes increased power consumption. In the existing system the novel specific Brent Kung parallel prefix adder based components are used to replace the existing components there by reducing the power consumption and getting faster operation.

A. Parallel Prefix Block.

Fig.1 Basic Parallel prefix structure

The Parallel prefix structure consists of three main blocks, they are preprocessing block, prefix carry tree and post processing block. The parallel prefix adder operation begins with preprocessing stage by generating the Generate (Gi) and Propagate (Pi) equation[1]&[3].The prefix carry tree get proceeded with the previous block signal to yield all carry bit signal and these stage contains three logic complex cells such as Black cell, Gray cell and Buffer cell. Black cell compute both the propagate (P(i,j)) and generate (G(i,j)) by using the equation[3]&[4].The Gray cell executes only the generate(G(i,j)).The carry bits generated in the second stage get passed to the post processing block thereby generating the sum using the equation[5].The block diagram is shown in the Fig1.

Gm:n=An AND Bn	(1)
G0 =Cin	(2)
Pm:n=An XOR Bn	(3)
P0=0	(3)
Gm:n=Gn:k OR Pn:k AND Gk-	-1:n
(5)	
Pm:n=Pn:k AND Pk-1:j	(6)
Sn =Pn XOR Cin	(0)
	()

The Brent Kung adder prefix structure:

It is employed to achieve the higher speed with reduced power consumption. On comparing with the other parallel prefix adder structure the BK adder is chosen mainly for minimum fan-out and should be higher speed in operation than others.Fig.2shows the example BK adder prefix structure which uses the three basic cells in the prefix structure. These structure is elaborated for the proposed design having the modulo addition of (4n+1) for n=5.

Fig.2:4-bit BK adder prefix structure

Fig.3 shows HRPX Structure. The regular parallel prefix adder is used to do the first part of addition and the simplified RCA logic is used to do the second part where the corresponding bits of the operand are fully variable.

Full adder can be designed with XOR/OR gates because of the constant operand. In these reverse converters design the carry chain is not needed and can be ignored. For most modulo sets $(2^{n}-1)$ addition is a necessary operation. The End around Carry (EAC) for $(2^{n}-1)$ addition is represented with two zero, but for the reverse converter design one zero representation is required. To correct these zero representation problem, a detector circuit was employed in the design but it incorporates additional delay. So, the Binary to excess one converter (BEC) is used to solve the double zero representation issue.

NEW PARALLEL-PREFIX-BASED COMPONENTS

The HMPE Structure consists of two parts: Regular prefix adder and the Modified Excess One unit. The first two operands are added using the parallel prefix adder and the result is conditionally incremented based on the control signal generated by the prefix structure to assure the single zero representation. The below figure shows HMPE Structure.

Fig.4: HMPE Structure

Modified Excess One unit Description:

Fig.5: Modified Excess one unit

Fig.5 shows the Modified Excess One unit circuit diagram. The result generated by the prefix structure is conditionally incremented by this unit based on the control signal generated by the parallel prefix adder.

The reverse converter design is implemented for (4n+1) modulo addition (n=5) designing the adder and also the multiplier by using the same adder design without using any parallel prefix multiplier structure for designing multiplier.

In this design, the adder design is implemented by using the Kogge Stone adder parallel prefix structure. Here the first two operands are added by using the prefix adder preprocessing stage thereby generating the propagate and generate equation. The first stage processed signal get passed to the next stage called the prefix carry tree, this stage again computes the generate and propagate equation by using the previous output and all the logic cells employed in the Kogge Stone adder network. These processed signals are passed to the post processing block.

The simulation process has been carried out for different levels of abstraction. The code has been written in Verilog hardware description language. The top module has been synthesized and simulated in Xilinx ISE Design Suite 12.3 and the corresponding delay calculations have been noted. By using Kogge Stone Adder the delay and area was reduced.

Simulation results are shown in fig 6and 7. RTL Schematic diagrams are shown in fig 8 and 9.The design was implemented in Spartan-3E kit.

Fig.6: Simulation result of HMPE-BK Adder Parallel Prefix Structure

Messages			
/HMPE_KS_16/b	-No Data-	950	
🔸 /HMPE_KS_16/a	-No Data-	450	
🔶 /HMPE_KS_16/cin	-No Data-		
1-4/2 /HMPE_KS_16/s_h	-No Data-	1400	

Fig.7: Simulation Result of HMPE-KS Adder Parallel Prefix Structure

5.2: RTL (Register Transfer Level) schematic diagrams:

Fig.8: RTL Schematic of HMPE- BK Adder Parallel Prefix Structure

Fig.9: RTL Schematic of HMPE- KS Adder Parallel Prefix Structure

5.3: Synthesize Result:

Table shows the synthesize result for using Xilinx project navigator for device xc3s400-4pq208

Table Synthesize result				
	HMPE-BK	HMPE-KS		
DELAY(ns)	31.83	29.02		
POWER(mW)	56	56		

Fig.10: performance and power trade-off of different system

Available at <u>https://edupediapublications.org/journals</u>

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 06 May 2017

CONCLUSION

This proposed work presents Brent Kung based adder components that give better tradeoff in area and delay are thus exhibited to design reverse converters. A methodology is described to design reverse converters depending on various of prefix adders. These types components are particularly designed for reverse converters. Implementation results gives that the reverse converters depending on the suggested work significantly decreases the area and delay when contrasted and the original converters, which don't utilize any parallelprefix adders. Future work includes the extension of the bit size and to construct an efficient reverse converter.

REFERENCES

- [1] Omondi and B. Premkumar, Residue Number Systems: Theory and Implementations. London, U.K.: Imperial College Press, 2007.
- [2] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd ed., New York, NY, USA: Oxford Univ. Press, 2010.
- [3] J. Chen and J. Hu, "Energy-efficient digital signal processing via voltageover scalingbased residue number system," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 7, pp. 1322–1332, Jul. 2013.
- [4] C. H. Vun, A. B. Premkumar, and W. Zhang, "A new RNS based DA approach for inner product computation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2139–2152, Aug. 2013.
- [5] S. Antão and L. Sousa, "The CRNS framework and its application to programmable and reconfigurable cryptography," ACM Trans. Archit. Code Optim., vol. 9, no. 4, p. 33, Jan. 2013.
- [6] A. S. Molahosseini, S. Sorouri, and A. A. E. Zarandi, "Research challenges in nextgeneration residue number system

architectures," in Proc. IEEE Int. Conf. Comput. Sci. Educ., Jul. 2012, pp. 1658– 1661.