

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

JMF PLAYER Sumit Yadav; Usha Verma & Chhavi Bhardwaj

P a g e | 1213

JMF player
Sumit Yadav; Usha Verma & Chhavi Bhardwaj

(sumityadav1918@gmail.com),

(usha.verma1991@gmail.com),

(chhavi985@gmail.com)

Abstract:

This research paper help to create your own

media player. Only need for creating a

media player through JMF player is the

basic knowledge of java programming. This

research paper also provides a brief

description of the various classes of JMF

player. This research paper also provides

information to install the JMF player.

1. INTRODUCTION

JMF Player:

JMF is a framework for handling streaming

media in Java programs. JMF is an optional

package of Java 2 standard platform. JMF

provides a unified architecture and

messaging protocol for managing the

acquisition, processing and delivery of time-

based media. JMF enables Java programs to

(i) Present (playback) multimedia contents,

(ii) Capture audio through microphone and

video through Camera,

(iii) Do real-time streaming of media over

the Internet,

(iv) Process media (such as changing media

format, adding special effects),

(v) Store media into a file.

2. INSTALLATION

JAVA package:
JMF player need java package to run.

Install jdk1.7.0 for windows.

1) Download jdk1.7.0 from

oracle website. It is an open

source package.

2) Start installation by double

clicking on it.

3) A setup window will open on

your computer screen. Click

on next option.

4) Select development tools

and click on next. Don’t

change the path of package,

it will create problem at

programming time.

5) The installation will start.

When finish click on the

finish button.

6) You can see a folder named

java in c: drive.

Netbeans IDE 7.0.1:
If you are not a skilled developer I would

prefer that you use this tool for developing

program. It provides error detection and

error correction in the program which make

programming easy. As for notepad and

command prompt one can’t find out the

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

JMF PLAYER Sumit Yadav; Usha Verma & Chhavi Bhardwaj

P a g e | 1214

reason for error. This is freely available

software.

Steps for installation:-

1. Download NetBeans IDE7.0.1

from the internet.

2. Start installation by double

clicking on NetBeans IDE7.0.1.

3. Netbeans IDE installer windows

open. Click on next button.

4. Accept the terms and conditions

and click on next button.

5. A path is shown where your

software will be installed. Don’t

change the path and click on

next button.

6. Click on install button and

installation will start.

7. After completion of installation

you can see a folder named

NetBeans 7.0.1 in c:\program

files(x86) mostly.

JMF Player:

JMF Player provides features connected to

media player. It provide accessibility to

media files in java programming. This

package makes the programming easier

than core java programming.

Steps for installation:

1. Download JMF2.1.1e for

windows from oracle website

under java API’s category.

2. Start the start the setup by

double clicking on th jmf-

2_1_1e-windows package.

3. It asks for license agreement.

Click on yes.

4. At next step path is shown.

Don’t change the path and

click on next.

5. Again click on next.

6. Click on finish.

7. You can see JMF2.1.1e

named folder in c:\program

files(x86) mostly.

3. JMF Player directory

In JMF player the first one is bin directory. It

contain following application.

• JMStudio - A simple player GUI.

• JMFRegistry - A GUI for managing the

JMF "registry," which manages

preferences, plug-ins, etc.

• JMFCustomizer - Used for creating a

JAR file that contains only the classes

needed by a specific JMF application,

which allows developers to ship a

smaller application.

• JMFInit

4. Features of JMF

JMF supports many popular media formats

such as JPEG, MPEG-1, MPEG-2, QuickTime,

AVI, WAV, MP3, GSM, G723, H263, and

MIDI. JMF supports popular media access

protocols such as file, HTTP, HTTPS, FTP,

RTP, and RTSP.

JMF uses a well-defined event reporting

mechanism that follows the “Observer”

design pattern. JMF uses the “Factory”

design pattern that simplifies the creation

of JMF objects. The JMF support the

reception and transmission of media

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

JMF PLAYER Sumit Yadav; Usha Verma & Chhavi Bhardwaj

P a g e | 1215

streams using Real-time Transport Protocol

(RTP) and JMF supports management of

RTP sessions.

JMF scales across different media data

types, protocols and delivery mechanisms.

JMF provides a plug-in architecture that

allows JMF to be customized and extended.

Technology providers can extend JMF to

support additional media formats. High

performance custom implementation of

media players, or codecs possibly using

hardware accelerators can be defined and

integrated with the JMF.

Why JMF?

The main drawback of native

implementations of media players is that

they are platform dependent. Hence they

are not portable across platforms. This

directly means applications using platform-

dependent media players and processors

are unsuitable for web-deployment. JMF

provides a platform-neutral framework for

handling multimedia.

The JMF API provides an abstraction that

hides these implementation details from

the developer. For example, a particular

JMF Player implementation might choose to

leverage an operating system's capabilities

by using native methods. Indeed Sun’s

implementation of JMF has different

versions each one tailored for one platform.

5. Component Architecture
JMF is built around a component

architecture. The compenents are

organized into a number of main

categories:

• Media handlers

• Data sources

• Codecs/Effects

• Renderers

• Mux/Demuxes

Media Handlers

MediaHandlers are registered for each type

of file that JMF must be able to handle. To

support new fileformats, a new

MediaHandler can be created.

Data Sources
A DataSource handler manages source

streams from various inputs. These can be

for network protocols, such as http or ftp,

or for simple input from disk.

Codecs/Effects
Codecs and Effects are components that

take an input stream, apply a

transformation to it and output it. Codecs

may have different input and output

formats, while Effects are simple

transformations of a single input format to

an output stream of the same format.

Renderers
A renderer is similar to a Codec, but the

final output is somewhere other than

another stream. A VideoRenderer outputs

the final data to the screen, but another

kind of renderer could output to different

hardware, such as a TV out card.

Mux/Demuxes
Multiplexers and Demultiplexers are used

to combine multiple streams into a single

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

JMF PLAYER Sumit Yadav; Usha Verma & Chhavi Bhardwaj

P a g e | 1216

stream or vice-versa, respectively. They are

useful for creating and reading a package of

audio and video for saving to disk as a single

file, or transmitting over a network.

6. Player states
 A Player can be in one of six states. The

Clock interface defines the two primary

states: Stopped and Started. To facilitate

resource management, Controller breaks

the Stopped state down into five standby

states:

· Prefetched

· Prefetching

· Realized

· Realizing

· Unrealized

In normal operation, a Player steps through

each state until it reaches the Started state:

• A Player in the Unrealized state has

been instantiated, but does not yet

know anything about its media.

When a media Player is first

created, it is Unrealized.

• When realize is called, a Player

moves from the Unrealized state

into the Realizing state. A Realizing

Player is in the process of

determining its resource

requirements. During realization, a

Player acquires the resources that it

only needs to acquire once. These

might include rendering resources

other than exclusive-use resources.

(Exclusive use resources are limited

resources such as particular

hardware devices that can only be

used by one Player at a time; such

resources are acquired during

Prefetching.) A Realizing Player

often downloads assets over the

network.

• When a Player finishes Realizing, it

moves into the Realized state. A

Realized Player knows what

resources it needs and information

about the type of media it is to

present. Because a Realized Player

knows how to render its data, it can

provide visual components and

controls. Its connections to other

objects in the system are in place,

but it does not own any resources

that would prevent another Player

from starting.

• When prefetch is called, a Player

moves from the Realized state into

the Prefetching state. A Prefetching

Player is preparing to present its

media. During this phase, the Player

preloads its media data, obtains

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

JMF PLAYER Sumit Yadav; Usha Verma & Chhavi Bhardwaj

P a g e | 1217

exclusive-use resources, and does

whatever else it needs to do to

prepare itself to play. Prefetching

might have to recur if a Player

objects media presentation is

repositioned, or if a change in the

Player objects rate requires that

additional buffers be acquired or

alternate processing take place.

• When a Player finishes Prefetching,

it moves into the Prefetched state.

A Prefetched Player is ready to be

started.

• Calling start puts a Player into the

Started state. A Started Player

objects time-base time and media

time are mapped and its clock is

running, though the Player might be

waiting for a particular time to

begin presenting its media data.

7. Presenting Data
The Java Media Framework provides a

number of pre-built classes that handle the

reading, processing and display of data.

Using the Player, media can easily be

incorporated into any graphical application

(AWT or Swing). The Processor allows you

to control the encoding or decoding process

at a finer level than the Player, such as

adding a custom codec or effect between

the input and output stages.

Using the Player
The Player class is an easy way to embed

multimedia in an application. It handles the

setup of the file handler, video and audio

decoders, and media renderers

automatically. It is possibly to embed the

Player in a Swing application, but care must

be taken as it is a heavy-weight component

(it won’t clip if another component is placed

in front of it).

import java.applet.*;

import java.awt.*;

import java.net.*;

import javax.media.*;

public class PlayerApplet extends Applet {

Player player = null;

public void init() {

setLayout(new BorderLayout());

String mediaFile = getParameter("FILE");

try {

URL mediaURL = new URL(

getDocumentBase(), mediaFile);

player = Manager.createRealizedPlayer(

mediaURL);

if (player.getVisualComponent() != null)

add("Center",

player.getVisualComponent());

if (player.getControlPanelComponent() !=

null)

add("South",

player.getControlPanelComponent());

} catch (

Exception e) {

System.err.println("Got exception " + e);

}

} public void start() {

player.start();

}

public void stop() {

player.stop();

player.deallocate();

} public void destroy() {

player.close();

}

}

Audio player using swing component

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

JMF PLAYER Sumit Yadav; Usha Verma & Chhavi Bhardwaj

P a g e | 1218

The Player can be easily used in a Swing

application as well. The following code

creates a Swing-based TV capture program

with the video output displayed in the

entire window:

import javax.media.*;

import javax.swing.*;

import java.awt.*;

import java.net.*;

import java.awt.event.*;

import javax.swing.event.*;

public class JMFTest extends JFrame {

Player _player;

JMFTest() {

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e

) {

_player.stop();

_player.deallocate();

_player.close();

System.exit(0);

}

});

setExtent(0, 0, 320, 260);

JPanel panel = (JPanel)getContentPane();

panel.setLayout(new BorderLayout());

String mediaFile = "vfw://1";

try {

MediaLocator mlr = new MediaLocator(

mediaFile);

_player = Manager.createRealizedPlayer(

mlr);

if (_player.getVisualComponent() != null)

panel.add("Center",

_player.getVisualComponent());

if (_player.getControlPanelComponent() !=

null)

panel.add("South",

_player.getControlPanelComponent());

}

catch (Exception e) {

System.err.println("Got exception " + e);

}

}

public static void main(String[] args) {

JMFTest jmfTest = new JMFTest();

jmfTest.show();

}}

8. References
[1] Gordon, R., & Talley, S. (1999).

Essential JMF: Developer's Java
Media Players. Prentice Hall PTR.

[2] DeCarmo, L. (1999). Core Java

media framework. Prentice Hall
PTR.

[3] Abdel-Wahab, H., Kim, O., Kabore,

P., & Favreau, J. P. (1999, April).
Java-based multimedia collaboration
and application sharing environment.
In Colloque Francophone sur
L’Ingenierie des Protocoles
(CFIP’99), Nancy, France (pp. 451-
463).

[4] Sullivan, S., Winzeler, L., Brown,

D., & Deagen, J. (1998).
Programming with the Java media
framework. John Wiley & Sons, Inc..

[5] Wong, D. C., Rivas, J. D., &

Yamasani, A. (2001). U.S. Patent
No. 6,216,152. Washington, DC:
U.S. Patent and Trademark Office.

