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Abstract:  

In this paper, we study two types of definite integrals. 

The closed forms of the two types of definite integrals 

can be determined by using two theorems of Cauchy. 

Moreover, some examples are provided to do 

calculation practically. The research method 

adopted in this study is to find solutions through 

manual calculations and verify our answers using 

Maple. This type of research method not only allows 

the discovery of calculation errors, but also helps 

modify the original directions of thinking from 

manual and Maple calculations. For this reason, 

Maple provides insights and guidance regarding 

problem-solving methods. 
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1. Introduction 

The computer algebra system (CAS) has been 

widely employed in mathematical and scientific 

studies. The rapid computations and the visually 

appealing graphical interface of the program render 

creative research possible. Maple possesses 

significance among mathematical calculation 

systems and can be considered a leading tool in the 

CAS field. The superiority of Maple lies in its simple 

instructions and ease of use, which enable beginners 

to learn the operating techniques in a short period. In 

addition, through the numerical and symbolic 

computations performed by Maple, the logic of 

thinking can be converted into a series of instructions. 

The computation results of Maple can be used to 

modify our previous thinking directions, thereby 

forming direct and constructive feedback that can aid 

in improving understanding of problems and 

cultivating research interests. Inquiring through an 

online support system provided by Maple or 

browsing the Maple website (www.maplesoft.com) 

can facilitate further understanding of Maple and 

might provide unexpected insights.  

In calculus and engineering mathematics, there are 

many methods to solve the integral problems 

including change of variables method, integration by 

parts method, partial fractions method, trigonometric 

substitution method, etc. This article considers the 

following two types of definite integrals which are 

not easy to obtain their answers using the methods 

mentioned above. 
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where  ,,,sr  are real numbers, km, are non-

negative integers, rs  , and na are real numbers 

for all non-negative integers n ( mn  ). The closed 

forms of the two types of definite integrals can be 

obtained using Cauchy  theorem and Cauchy integral 

formula for derivatives; these are the major results of 

this paper (i.e., Theorems 1 and 2). Yu [1-26], Yu 

and B. -H. Chen [27], and Yu and Sheu [28-30] used 

the following techniques: complex power series 

method, integration term by term theorem, 

differentiation with respect to a parameter, Parseval’s 

theorem, and area mean value theorem, to evaluate 

some types of integral problems. In this paper, two 

examples are used to demonstrate the proposed 

calculations, and the manual calculations are verified 

using Maple. 

2. Methods and Results 

Firstly, we introduce some notations, formulas and 

theorems used in this paper. 

2.1. Notations:  

Define )1()1()(  qrrrr q  , and 1)( 0 r , 

where r is a real number, and q is a positive integer. 

2.2. Formulas and theorems: 

2.2.1. Euler’s formula:  

xixeix sincos  , where 1i , and x  is 

any real number. 

2.2.2. DeMoivre’s formula: 
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mximxxix m sincos)sin(cos  , where 

m  is any integer, and x  is any real number. 

2.2.3. Binomial theorem:   

Suppose that vu,  are complex numbers, and n  is a 

positive integer, then .
!
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Next, we introduce two theorems of Cauchy in 

complex analysis used in this study, which can be 

found in [31, p109] and [32, p115] respectively. 

2.2.4. Cauchy theorem:  

Let f  be analytic on a simply connected region 

D and C be a simple closed curve in D , then 

0)(  dzzf
C

. 

2.2.5. Cauchy integral formula for derivatives:  

Suppose that f is an analytic function in a simply 

connected domain D and that C  is a regular closed 

curve lying in D . Then for each z inside C  and 
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In the following, we determine the closed form of 

the definite integral (1). 

Theorem 1  Suppose that  ,,,sr  are real 

numbers, km, are non-negative integers,  rs  , 

and na are real numbers for all non-negative 

integers mn  , then the definite integral 
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Case 1. If rs  . Since 0r  is trivial, we may 

assume that 0r . By Cauchy theorem, we have 
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Using Eq. (5) yields 
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Thus, by the equality of real parts of both sides of Eq. 

(7), we obtain 
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Case 2. If rs  . Then using Cauchy integral 

formula for derivatives yields 
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By Eq. (5), we have 
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Therefore, using the equality of real parts of both 

sides of Eq. (9) yields 
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q.e.d. 

Next, we determine the closed form of the definite 

integral (2). 
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Theorem 2  Assume that the assumptions are the 

same as Theorem 1, then  
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Proof  If rs  , then by the equality of imaginary 

parts of both sides of Eq. (7), we obtain Eq. (10). If 

rs  , then using the equality of imaginary parts 

of both sides of Eq. (9) yields Eq. (11) holds.                                       

q.e.d. 

3. Examples 

In the following, for the two types of definite 

integrals in this paper, we propose two examples and 

use Theorems 1 and 2 to obtain their closed forms. In 

addition, we use Maple to calculate the 

approximations of these definite integrals and their 

solutions for verifying our answers. 

3.1. Example  

In Theorem 1, let ,1,3/,4,3  msr   

, ,20 a and 51 a , then by Eq. (3) we obtain 
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(12) 

Next, we use Maple to verify the correctness of Eq. 

(12). 

>evalf(int((159+18*cos(theta)+32*cos(theta-2*Pi/3) 

+360*cos(theta-Pi/3)+240*cos(2*theta-2*Pi/3))/(25+ 

24*cos(theta-Pi/3))^2,theta=0..2*Pi),18); 

0. 

On the other hand, if ,6/,2,6   sr  

,3,1,1 0  akm and 41 a  in Theorem 1, 

then using Eq. (4) yields 
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3

4
 .                                                             (13) 

We also use Maple to verify the correctness of Eq. 

(13). 

>evalf(int((864+36*sqrt(3)+108*cos(theta)+12*cos(t

heta+Pi/3)+576*cos(theta+Pi/6)+96*cos(2*theta+Pi/

3))/(40+24*cos(theta+Pi/6))^2,theta=0..2*Pi),18); 

4.18879020478639098 

>evalf(4*Pi/3,18); 

4.18879020478639098 

3.2. Example  

In Theorem 2, let 1,4/,7,2  msr   

,6,0, 0  ak and 31 a , by Eq. (10) we have 
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Using Maple to verify the correctness of Eq. (14) as 

follows: 

>evalf(int((12*sin(theta)-42*sin(theta-Pi/4)-42*sin(2 

*theta-Pi/4))/(53-28*cos(theta-Pi/4)),theta=0..2*Pi), 

18); 

0. 

I n  ad d i t io n ,  i f  ,3/,4,8   sr  

,7,0,1 0  akm and 21 a  in Theorem 2, 

then using Eq. (11) yields 
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.3                                                         (15) 

The correctness of Eq. (15) can be verified by Maple. 

>evalf(int((128*sin(theta)+8*sin(theta+Pi/3)-64*sin( 

2*theta+Pi/3))/(80-64*cos(theta+Pi/3)),theta=0..2*Pi) 

,18); 

-5.44139809270265354 

>evalf(-sqrt(3)*Pi,18); 

-5.44139809270265354 

4. Conclusion 

In this paper, Cauchy theorem and Cauchy integral 

formula for derivatives are used to evaluate two 

types of definite integrals. In fact, the applications of 

these two methods are extensive, and can be used to 

easily solve many difficult problems; we endeavor to 

conduct further studies on related applications. In 
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addition, Maple also plays a vital assistive role in 

problem-solving. In the future, we will extend the 

research topic to other calculus and engineering 

mathematics problems and use Maple to verify our 

answers. These results will be used as teaching 

materials for Maple on education and research to 

enhance the connotations of calculus and engineering 

mathematics. 
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