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Abstract:  

This article uses the mathematical software Maple as 

an auxiliary tool to study the integral problems of  

rational functions. We can use binomial series and  

integration term by term theorem to find the infinite 

series form of the indefinite integral of some type of 

rational function, and hence greatly reducing the 

difficulty of evaluate its definite integral. On the 

other hand, we propose two rational functions to find 

their definite integrals, and the answers of these 

definite integrals are presented in infinite series 

forms. The research method adopted in this paper is 

to find out the answers, and then uses Maple to verify 

our results. This kind of research method not only 

allows us to find the calculation errors, but also can 

help us to amend the original thinking direction  

because we can verify the correctness of our theory 

from the consistency of manual and Maple 

calculations. Therefore, Maple can give us the 

inspiration of the problem and let us find the answers 

of the problems. 
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1. Introduction 

As information technology advances, whether 

computers can become comparable with human 

brains to perform abstract tasks, such as abstract art 

similar to the paintings of Picasso and musical 

compositions similar to those of Beethoven, is a 

natural question. Currently, this appears unattainable. 

In addition, whether computers can solve abstract 

and difficult mathematical problems and develop 

abstract mathematical theories such as those of 

mathematicians also appears unfeasible. 

Nevertheless, in seeking for alternatives, we can 

study what assistance mathematical software can 

provide. This study introduces how to conduct 

mathematical research using the mathematical 

software Maple. The main reasons of using Maple in 

this study are its simple instructions and ease of use, 

which enable beginners to learn the operating 

techniques in a short period. By employing the 

powerful computing capabilities of Maple, difficult 

problems can be easily solved. Even when Maple 

cannot determine the solution, problem-solving hints 

can be identified and inferred from the approximate 

values calculated and solutions to similar problems, 

as determined by Maple. For this reason, Maple can 

provide insights into scientific research. 

In calculus and engineering mathematics courses, 

there are many methods to solve the integral 

problems, for example, change of variables method, 

integration by parts method, partial fractions method, 

trigonometric substitution method, etc. On the other 

hand, Adams et al. [1], Nyblom [2], and Oster [3] 

provided some techniques to solve the integral 

problems. Moreover, Yu [4-27], Yu and Chen [28], 

and Yu and Sheu [29-31] used complex power series 

method, Parseval’s theorem, area mean value 

theorem, and generalized Cauchy integral formula to 

evaluate some types of integrals. This article studies 

the following indefinite integral of some type of 

rational function, which is not easy to obtain its 

answer using the methods mentioned above. 
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where xb,,  are real numbers, 0b , bx /1 ,  

and m is a positive integer. Using binomial series 

and integration term by term theorem, the infinite 

series form of this type of integral can be determined, 

that is the major result of this article: Theorem A. 

Therefore, the difficulty of solving this problem can 

be greatly reduced. In addition, we propose two 

examples of rational functions, and actually evaluate 

their indefinite integrals and calculate some definite 

integrals. The research method used in this paper is 

to go through the process of obtaining the answers, 

and then use Maple to verify the answers. This 

approach not only let us find the calculation errors, 

but also help us revise the direction of the original 

thinking, because the consistency of the results 

obtained from manual and Maple calculations can 

verify the correctness of our theory.  
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2. Preliminaries and Results 

First, we introduce some notations, formulas, and 

theorems used in this article. 

2.1. Notations: 

2.1.1. Suppose that  iz  , where , are real 

numbers, and 1i .  , the real part of z , is 

denoted by )Re(z ;   the imaginary part of z , is 

denoted by )Im(z . 

2.1.2. Assume that a  is a real number, and k  is a 

positive integer. Define )1()1()(  kaaaa k , 

and 1)( 0 a . 

2.2. Formulas: 

2.2.1. Euler’s formula:  

yiyeiy sincos  , where y is a real number. 

2.2.2. DeMoivre’s formula: 

nxinxxix n sincos)sin(cos  , where  n  

is an integer, and x  is a real number. 

2.2.3. Binomial series: 

If a  is a real number, z is a complex number, 

and 1z , then .
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2.3. Theorems: 

2.3.1. Binomial theorem: 

Suppose that zw,  are complex numbers, and m  is a 

non-negative integer, then  
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2.3.2. Integration term by term theorem:([32, p269]) 

Let  
0nng

 
be a sequence of Lebesgue integrable 

functions defined on I . If  


0n
I ng  is convergent, 

then  
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In the following, we obtain the major result in this 

paper, the infinite series form of indefinite integral of 

some type of rational function. 

Theorem A Suppose that xb,,  are real numbers, 

0b , bx /1 , m is a positive integer, and let 
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(by Eq. (4) and binomial series) 
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(by Euler’s formula) 

Hence, by integration term by term theorem, we 

obtain Eq. (2). 

Case 2. If 
b
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(by Euler’s formula) 

Also, by integration term by term theorem, we obtain 

Eq. (3).                                                                q.e.d. 

3. Examples 

In the following, for the integral problem in this 

paper, we provide two examples and use Theorem A 

to determine their infinite series forms. Additionally,  

Maple is used to calculate the approximations of 

some definite integrals and their infinite series forms  

to verify our results. 

Example 3.1.  In Theorem A , let ,2,3  b  

,5m  and let the rational function  
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Case 1.  If 
2

1
x , then using Eq. (2) yields the 

indefinite integral 
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Thus, we obtain the following definite integral 
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Next, we use Maple to verify the correctness of Eq. 

(7).  

>evalf(int((1-5*x-20*x^2+80*x^3-40*x^4-16*x^5) 

/(1-2*x+4*x^2)^5,x=-1/8..1/4),20);  

0.12814105233930306817 

>evalf(sum(product(5+i,i=0..k-1)*2^k/(k!*(k+1))* 

cos(k*Pi/3)*((1/4)^(k+1)-(-1/8)^(k+1)),k=0..infinity), 

20); 

0.12814105233930306817 

Case 2. If 
2

1
x , then by Eq. (3) we have 
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Also, using Maple to verify the correctness of Eq. (9).  

>evalf(int((1-5*x-20*x^2+80*x^3-40*x^4-16*x^5)/ 

(1-2*x+4*x^2)^5,x=2..7),20);  

 

>evalf(1/32*sum(product(5+i,i=0..k-1)/(k!*(k+4))* 

(1/2)^k*cos((k+5)*Pi/3)*(1/7^(k+4)-

1/2^(k+4)),k=0.. 

infinity),20); 

 

Example 3.2.  Let 4,
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in Theorem A, and let 
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Case 1. If 
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(12) 

We also employ Maple to verify the correctness of 

Eq. (12).  

>evalf(int((1+2*x)/(1+4*x+16*x^2),x=-1/8..1/16),20) 

;  

0.18950184761257350693 

>evalf(sum((-4)^k/(k+1)*cos(k*arccos(1/2))*((1/16) 

^(k+1)-(-1/8)^(k+1)),k=0..infinity),20); 

0.18950184761257350692 

Case 2. If 
4

1
x , then by Eq. (3) we obtain 
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Thus,   
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(14) 

Using Maple to verify the correctness of Eq. (14).  

>evalf(int((1+2*x)/(1+4*x+16*x^2),x=2..5),20);  

0.12235289808692021233 

>evalf(-1/4*sum(1/k*(-1/4)^k*cos((k+1)*arccos(1/2)) 

*(1/5^k-1/2^k),k=1..infinity)+1/8*ln(5/2),20); 

0.12235289808692021236 

4. Conclusion 

In this study, we mainly use binomial series and 

integration term by term theorem to study the 

integral problem of some type of rational function. In 

fact, the applications of these two theorems are 

extensive, and can be used to easily solve many 

difficult problems; we endeavor to conduct further 

studies on related applications. In addition, Maple 

also plays a vital assistive role in problem-solving. In 

the future, we will extend the research topic to other 

calculus and engineering mathematics problems and 

use Maple to verify our answers. 
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