
      

 

 

 

 

DEADLOCKS IN DISTRIBUTED SYSTEMS Yogesh Bhatia &   Sanjeev Verma

P a g e  | 1249 

International Journal of Research (IJR)   Vol-1, Issue-9 October 2014   ISSN 2348-6848 

Deadlocks in Distributed Systems 

 
Yogesh Bhatia#1     Sanjeev Verma#2 

 

Department of Information Technology, 
Dronacharya College of Engineering, Gurgaon, Hr, India – 123506 

 
dgenx93@gmail.com , verma_sanjeev111@yahoo.com 

 

Abstract 

In a distributed database environment, 
where the data is spread across 
several sites there are many concerns 
to deal with such as concurrency 
control, deadlock. Deadlock is defined 
as the permanent blocking of a set of 
processes that compete for system 
resources, including database records 
and communication lines i.e. it is a 
condition in a system where a process 
cannot proceed because it needs to 
obtain a resource held by another 
process but it itself is holding a 
resource that the other process needs. 
In other words processes are blocked, 
waiting on events that could never 
happen. Deadlocks impact the overall 
performance of the system. This paper 
describes the detection of deadlocks in 
distributed data bases-a hierarchically 
organized one and a distributed one. 
Deadlock detection and resolution is 
one among the major challenges faced 
by a Distributed System 

Introduction  

A deadlock is a state where a set of 
processes request resources that are 
held by other processes in the set. A 
deadlock is a condition in a system 
where a process cannot proceed 

because it needs to obtain a resource 
held by another process but it itself is 
holding a resource that the other 
process needs. Distributed database 
systems (DDBS) consist of different 
number of sites which are 
interconnected by a communication 
network. In such a resource sharing 
environment the database activities 
can be performed both at the local and 
global level so if the allocation of the 
resource is not properly controlled than 
it may lead to a situation that is 
referred to as deadlock. In Distributed 
database system model, the database 
is considered to be distributed over 
several interconnected computer 
systems. Users interact with the 
database via transactions. A 
transaction is a sequence of activities 
such as read, write, lock, or unlock 
operations. 

Conditions for deadlock in 
resource allocation 

– Mutual exclusion: The 
resource can be used by 
only one process at a 
time 

– Hold and wait: A process 
holds a resource while 



      

 

 

 

 

DEADLOCKS IN DISTRIBUTED SYSTEMS Yogesh Bhatia &   Sanjeev Verma

P a g e  | 1250 

International Journal of Research (IJR)   Vol-1, Issue-9 October 2014   ISSN 2348-6848 

waiting for other 
resources 

– No preemption: A 
process cannot be 
preempted to free up the 
resource 

– Circular wait: A closed 
cycle of processes is 
formed, where each 
process holds one or 
more resources needed 
by the next process in 
the cycle 

 

The FOUR Strategies for handling 
deadlocks 

• The Ostrich algorithm 

– No dealing with the 
problem at all is as good 
and as popular in 
distributed systems as it 
is in single-processor 
systems. 

– In distributed systems 
used for programming, 
office automation, 
process control, no 
system-wide deadlock 
mechanism is present -- 
distributed databases will 
implement their own if 
they need one. 

• Deadlock detection and 
recovery is popular because 
prevention and avoidance are 
so difficult to implement. 

• Deadlock prevention is possible 
because of the presence of 
atomic transactions. We will 
have two algorithms for this. 

• Deadlock avoidance is never 
used in distributed system, in 
fact, it is not even used in single 
processor systems. 

– The problem is that the 
banker’s algorithm need 
to know (in advance) 
how much of each 
resource every process 
will eventually need. This 
information is rarely, if 
ever, available. 

Deadlock Avoidance 

Deadlock avoidance is an 
approach in which deadlocks 
are dealt before they occur. All 
the possible ways are taken to 
avoid the deadlock. When a 
transaction requests a lock on 
the data item that has already 
been locked by some another 
transaction in an incompatible 
mode, the deadlock avoidance 
algorithm decides if the 
requesting transaction can wait 
or if one of the waiting 
transactions need to be 
aborted. 

Deadlock Prevention 

 It is an approach that prevents 
the system from committing an 
allocation of locks that will 
eventually lead to a deadlock. 
This technique requires pre- 



      

 

 

 

 

DEADLOCKS IN DISTRIBUTED SYSTEMS Yogesh Bhatia &   Sanjeev Verma

P a g e  | 1251 

International Journal of Research (IJR)   Vol-1, Issue-9 October 2014   ISSN 2348-6848 

acquisition of all locks. The 
transactions are required to lock 
the entire data item that they 
need before execution. 
Deadlock prevention deals with 
deadlock ahead of time. Thus it 
may prevent a deadlock to 
occur. 

Distributed Deadlock Detection 

In this approach, deadlock may have 
already occurred and the deadlock 
detection technique tries to detect it 
and gives the process by which it can 
be resolved. Thus the system 
periodically checks for them. The 
existence of a directed cycle in 
the Wait-for-Graph indicates a 
deadlock. To break the deadlock cycle 
the victim transaction is selected, 
which is then aborted to make the 
system deadlock free. 

• Since preventing and avoiding 
deadlocks to happen is difficult, 
researchers works on detecting 
the occurrence of deadlocks in 
distributed system. 

• The presence of atomic 
transaction in some distributed 
systems makes a major 
conceptual difference. 

– When a deadlock is 
detected in a 
conventional system, we 
kill one or more 
processes to break the 
deadlock --- one or more 
unhappy users. 

– When deadlock is 
detected in a system 
based on atomic 
transaction, it is resolved 
by aborting one or more 
transactions. 

– But transactions have 
been designed to 
withstand being aborted. 

– When a transaction is 
aborted, the system is 
first restored to the state 
it had before the 
transaction began, at 
which point the 
transaction can start 
again. 

– Thus the difference is 
that the consequences of 
killing off a process are 
much less severe when 
transactions are used. 

ALGORITHMS:- 

 

Path-pushing algorithms: The basic 
idea underlying this class of algorithms 
is to build some simplified form of 
global WFG at each site. For this 
purpose each site sends its local WFG 
to a number of neighboring sites every 
time a deadlock computation is 
performed. After the local data 
structure of each site is updated, this 
updated WFG is then passed along, 
and the procedure is repeated until 
some site has sufficiently complete 
picture of the global situation to 
announce deadlock or to establish that 



      

 

 

 

 

DEADLOCKS IN DISTRIBUTED SYSTEMS Yogesh Bhatia &   Sanjeev Verma

P a g e  | 1252 

International Journal of Research (IJR)   Vol-1, Issue-9 October 2014   ISSN 2348-6848 

no deadlocks are present. The main 
features of this scheme, namely, to 
send around paths of the global WFG, 
have led to the term path-pushing 
algorithms. 

Edge-chasing algorithms: The 
presence of a cycle in a distributed 
graph structure can be verified by 
propagating  special messages called 
probes along the edges of the graph. 
Probes are assumed to be distinct 
from resource request and grant 
messages. When the initiator of such a 
probe computation receives a 
matching probe, it knows that it is in 
cycle in the graph. A nice feature of 
this approach is that executing 
processes can simply discard any 
probes they receive. Blocked 
processes propagate the probe along 
their outgoing edges. 

 

Deadlock Recovery 

Once the deadlock algorithm has 
successfully detected a deadlock, 
some strategy is needed for recovery. 
There are various ways: 

1. Recovery through Preemption : 
In some cases it may be 
possible to temporarily take a 
resource away from its current 
owner and give it to another. 

2. Recovery through Rollback: If it 
is known that deadlocks are 
likely, one can arrange to have 
processes checkpointed 
periodically.  

3. Recovery through Termination:  
The most trivial way to break a 

deadlock is to kill one or more 
processes. One possibility is to 
kill a process in the cycle 
 
References 

 
[1] Approaches for Deadlock 
Detection and Deadlock Prevention 
for  
[2] Distributed systems, Gupta 
Dhiraj and Gupta V.K. Research 
Journal of Recent Sciences. ISSN 
2277-2502 
[3] Deadlock Detection 
Techniques in Distributed Database  
[4] System, Swati Gupta. 
International Journal of Computer 
Applications (0975 – 8887) Volume 
74– No. 21, July 2013. 
 
[5] Locking and Deadlock 
Detection in Distributed Data Bases, 
DANIEL A. MENASCE AND 
RICHARD R. MUNTZ. IEEE 
TRANSACTIONS ON SOFTWARE 
ENGINEERING, VOL. SE-5, NO. 3, 
MAY 1979 
 
[6] Analysis for Deadlock 
Detection and Resolution 
Techniques in  
[7] Distributed Database, Swati 
Gupta , Meenu Vijarania. 
International Journal of Advanced 
Research in Computer Science and 
Software Engineering . Volume    
[8] 3, Issue 7, July 2013 ISSN: 
2277 128X 
 
[9] Distributed Operating 
Systems by SHUBHRA GARG.  


