

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

CACHE AND ITS PERFORMANCE Preeti Chhabra, Radhika Gogia, Rupa Kumari

P a g e | 1260

Cache and Its Performance
Preeti Chhabra, Radhika Gogia, Rupa Kumari
 Dronacharya College of Engineering, Gurgaon, India

chhabra.preeti28@gmail.com1

gogia.radhika13@gmail.com2

 rupasingh252@gmail.com3

Abstract-

This paper presents a basic idea of cache
memory and its performance. The memory
system consists of a hierarchy of storage
elements. Excluding the register set, the
cache has the shortest access time, or
latency of all the levels of the storage
system. The goal that an effective memory
system will have to achieve is that the
effective access time that the processor sees
is very close to t0, the access time of the
cache. Here in this paper, we will first see
an overview and then we we will study how
to improve the performance of a cache by
various methods.

Keywords- Hit Ratio, Miss ratio, Miss
rate, Miss penalty, performance

I. INTRODUCTION

A CPU cache is a cache used by the central
processing unit (CPU) of a computer to reduce
the average time to access data from the main
memory. The cache is a smaller, faster memory
which stores copies of the data from frequently
used main memory locations. Most CPUs have
different independent caches, including
instruction and data caches, where the data
cache is usually organized as a hierarchy of
more cache levels (L1, L2 etc.). Basic
performance metrics for cache are :

Hit ratio(h)= Number of memory references that
hit in the cache / total number of memory
references
Typically h = 0.90 to 0.97
Miss ratio m = 1 –h

II. CACHE PERFORMANCE
OVERVIEW

When the processor needs to read from or write
to a location in main memory, it first checks
whether a copy of that data is in the cache. If so,
the processor immediately reads from or writes
to the cache, which is much faster than reading
from or writing to main memory.
Average memory access time is a useful
measure to evaluate the performance of a
memory-hierarchy configuration.
Average memory access time:
AMAT = Hit Time + Miss Rate × Miss Penalty

There are three ways to improve cache
performance:
1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache

A. MISS RATE REDUCTION

We can classify the misses as 4Cs :

• Compulsory : The first access to a block
is not in the cache, so the block must be
brought into the cache. Also called cold
start misses or first.

• Capacity—If the cache cannot contain
all the blocks needed during execution

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

CACHE AND ITS PERFORMANCE Preeti Chhabra, Radhika Gogia, Rupa Kumari

P a g e | 1261

of a program, capacity misses will occur
due to blocks being discarded and later
retrieve.

• Conflict—If block-placement strategy is
set associative or direct mapped, conflict
misses (in addition to compulsory &
capacity misses) will occur because a
block can be discarded and later
retrieved if too many blocks map to its
set. Also called collision misses or
interference misses.

• Coherence - Misses caused by cache
coherence: data may have been
invalidated by another processor or I/O
device.

There are various ways to reduce the miss rate:

1) REDUCE MISSES VIA LARGER BLOCK
SIZE

The performance curve is U-shaped because
Small blocks have a higher miss rate and Large
blocks have a higher miss penalty (even if miss
rate is not too high).

2) REDUCING MISSES BY
HARDWARE PREFETCHING OF
INSTRUCTIONS & DATA

In this an extra block is placed in “stream
buffer”. After a cache miss, the stream
buffer initiates fetch for next block. But it is
not allocated into cache to avoid “pollution”.
On miss, it check the stream buffer in
parallel with cache. It relies on having extra
memory Bandwidth.

3) REDUCING MISSES BY SOFTWARE
PRE-FETCHING DATA :

Data prefetching means loading the data into
register. Cache pre-fetch means load into cache.
Special prefetching instructions cannot cause
faults. Pre-fetching comes in two flavours:

a) Binding Pre-fetch : Requests load
directly into register.

b) Non-Binding Pre-fetch: Load into
cache.

4) Reducing Misses by Compiler

Optimizations:

This can be done by the following techniques:

a) Merging Arrays: Improve spatial locality by
single array of compound elements vs. 2 arrays.
b) Permuting a multidimensional array :
Improve spatial locality by matching array
layout to traversal order.

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

CACHE AND ITS PERFORMANCE Preeti Chhabra, Radhika Gogia, Rupa Kumari

P a g e | 1262

c) Loop Interchange : change nesting of loops
to access data in order stored in memory.
d) Loop Fusion: Combine 2 independent loops
that have same looping and some variables
overlap
e) Blocking: Improve temporal locality by
accessing “blocks” of data repeatedly vs. going
down whole columns or rows.

B) MISS PENALTY REDUCTION

1) Write Policy 1:Write-Through vs Write-
Back

• In a write-through cache, every write to
the cache causes a write to main
memory.

• Alternatively, in a write-back or copy-
back cache, writes are not immediately
mirrored to the main memory. Instead,
the cache tracks which locations have
been written over .The data in these
locations are written back to the main
memory only when that data is evicted
from the cache. For this reason, a read
miss in a write-back cache may
sometimes require two memory accesses
to service: one to first write the dirty
location to memory and then another to
read the new location from memory.

2) Write Policy 2: Write-allocate vs Non-
Allocate

• In write allocate, we allocate a new

cache line. It means that we have to do a
“read miss” to fill in rest of the cache
line.

• In write non-allocate or write around,
simply send write data through to
underlying memory/cache. In this, we
do not allocate new cache line.

3) REDUCING THE MISS PENALTY

a) READ PRIORITY OVER

WRITE ON MISS

If a system has a write buffer, writes can be
delayed to come after reads. The system must,

however, be careful to check the write buffer to
see if the value being read is about to be written.
A simple method of dealing with this problem is
stall reads until the write buffer is empty.
However, this method increases the read miss
penalty considerably since the write buffer in
write-through is likely to have blocks waiting to
be written.

b) NON BLOCKING CACHES TO
REDUCE STALLS ON MISSES:

A non-blocking cache, in conjunction with out-
of-order execution, can allow the CPU to
continue executing instructions after a data
cache miss. The cache continues to supply hits
while processing read misses(hit under miss).
The instruction needing the missed data waits
for the data to arrive). Complex caches can even
have multiple outstanding misses (miss under
miss).

c) EARLY RESTART AND
CRITICAL WORD FIRST

This strategy does not require extra hardware
(like the previous two techniques). It optimizes
the order in which the words of a block are
fetched and when the desired word is delivered
to the CPU.

a) Early Restart : With early restart, the CPU
gets its data (and thus resumes execution) as
soon as it arrives in the cache without waiting
for the rest of the block.

b)Critical Word First : Instead of starting the
fetch of a block with the first word, the cache
can fetch the requested word first and then fetch
the rest afterward. In conjunction with early
restart , this reduces the miss penalty by
allowing the CPU to continue execution while
most of the block is still being fetched. Also
called wrapped fetch and requested word first.

C) REDUCE THE TIME TO HIT IN THE
CACHE

1) FAST HITS BY AVOIDING THE

ADDRESS TRANSLATION

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

CACHE AND ITS PERFORMANCE Preeti Chhabra, Radhika Gogia, Rupa Kumari

P a g e | 1263

Sending the virtual address to cache is Virtually
Addressed cache. Every time process is switched
logically must flush the cache; otherwise get
false hits. Cost is time to flush + “compulsory”
misses from empty cache. It deals with aliases.

a)Solution to Aliases

• HW guarantees that every cache block
has unique physical address

• SW guarantees that lower n bits must
have same address; as long as covers
index field & direct mapped, they must
be unique; called page coloring.

b)Solution to cache flush
• Add process identifier tag that

identifies process as well as address
within process

2)FAST WRITES ON MISSES VIA SMALL
SUBBLOCKS

If most writes are 1 word, subblock size is 1
word, & write through then always write
subblock and tag immediately.

a)Tag match and valid bit already set :

Writing the block was proper and nothing lost
by setting valid bit again.

b) Tag match and valid bit not set:

The tag match means that this is the proper
block; writing the data into the subblock makes
it appropriate to turn the valid bit on.

c) Tag mismatch:

This is a miss and will modify the data portion
of the block. Since write-through cache, no harm
was done; memory still has an up-to-date copy
of the old value. Only the tag to the
address of the write and the valid bits of the
other subblock need be changed because the
valid bit for this subblock has already been set.

3) FAST HIT TIMES VIA PIPELINED
WRITES

Pipeline tag check and update cache as separate
stages; current write tag check & previous write
cache update. If shade is “Delayed Write
Buffer”; it must be checked on reads; either
complete write or read from buffer.

REFERENCES

[1] Jouppi, N. P. (1990, May).
Improving direct-mapped cache
performance by the addition of a
small fully-associative cache and
prefetch buffers. In Computer
Architecture, 1990. Proceedings.,
17th Annual International
Symposium on (pp. 364-373). IEEE.

[2] Lam, M. D., Rothberg, E. E., &
Wolf, M. E. (1991). The cache
performance and optimizations of
blocked algorithms. ACM SIGOPS
Operating Systems Review,
25(Special Issue), 63-74.

[3] Jin, H., Frumkin, M., & Yan, J.
(1999). The OpenMP implementation
of NAS parallel benchmarks and its
performance (Vol. 192). Technical
Report NAS-99-011, NASA Ames
Research Center.

[4] Zhang, X. Y., Zhang, Q., Zhang, Z.,
Song, G., & Zhu, W. (2004). A
construction of locality-aware
overlay network: mOverlay and its
performance. Selected Areas in
Communications, IEEE Journal on,
22(1), 18-28.

