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Abstract:  

In this article, the mathematical software Maple is 

used as an auxiliary tool to study two types of  

double integrals. The infinite series forms of these 

two types of double integrals can be determined by 

complex analysis method. In addition, two examples 

of double integrals are proposed and we actually 

find their infinite series forms. The research method 

adopted in this paper is to find out the answers by 

manual calculation, and then uses Maple to verify 

the answers. This research method not only allows us 

to find the calculation errors, but also can help us to 

amend the original thinking direction  because we 

can verify the correctness of our theory from the 

consistency of manual and Maple calculations.  

Keywords  
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1. Introduction 

The computer algebra system (CAS) has been 

widely employed in mathematical and scientific 

studies. The rapid computations and the visually 

appealing graphical interface of the program render 

creative research possible. Maple possesses 

significance among mathematical calculation 

systems and can be considered a leading tool in the 

CAS field. The superiority of Maple lies in its simple 

instructions and ease of use, which enable beginners 

to learn the operating techniques in a short period. In 

addition, through the numerical and symbolic 

computations performed by Maple, the logic of 

thinking can be converted into a series of 

instructions. The computation results of Maple can 

be used to modify previous thinking directions, 

thereby forming direct and constructive feedback that 

can aid in improving understanding of problems and 

cultivating research interests.  Inquiring through an 

online support system provided by Maple or 

browsing the Maple website (www.maplesoft.com) 

can facilitate further understanding of Maple and 

might provide unexpected insights. For the 

instructions and operations of Maple, we can refer to 

[1-5]. 

In calculus and engineering mathematics, the area 

of the surface, the volume under the surface, and the 

centroid position of the sheet are involved in double 

integrals, so the numerical calculation of double 

integrals is an important issue. Adams et al. [6], 

Nyblom [7], and Oster [8] provided some methods to 

solve the integral problems. Yu [9-32], Yu and Chen 

[33], Yu and Sheu [34-36] used complex power 

series method, integration term by term theorem, 

differentiation with respect to a parameter, Parseval’s 

theorem, area mean value theorem, and generalized 

Cauchy integral formula to solve some types of 

integral problems. This paper studies the following 

two types of double integrals 
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where 2121 ,,, rr  are real numbers, and pm, are 

positive integers. Using binomial series and 

integration term by term theorem, the infinite series 

form of these two types of double integrals can be 

determined,  these are the major results of this article: 

Theorems 1 and 2. Thus, the difficulty of solving the 

double integral problems can be greatly reduced. On 

the other hand, we propose some examples to do 

calculation practically. The research method used in 

this paper is to go through the process of obtaining 

the answers, and then use Maple to verify the 

answers. This approach not only let us find the 

calculation errors, but also help us revise the 

direction of the original thinking, because the 

consistency of the results obtained from manual and 

Maple calculations can verify the correctness of our 

theory.  

2. Preliminaries and Main Results 

First, we introduce some notations, formulas, and 

theorems used in this article. 

2.1. Notations: 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848  
e-ISSN: 2348-795X  

Volume 04 Issue 07  
June 2017 

   

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 146    

2.1.1. Suppose that  iz  , where , are real 

numbers, and 1i .  , the real part of z , is 

denoted as )Re(z ;   the imaginary part of z , is 

denoted as )Im(z , and the conjugate complex 

number of z , is denoted as z  . 

2.1.2. Assume that a  is a real number, and k  is a 

positive integer. Define )1()1()(  kaaaa k , 

and 1)( 0 a . 

2.2. Formulas: 

2.2.1. Euler’s formula:  

yiyeiy sincos  , where y is a real number. 

2.2.2. DeMoivre’s formula: 

nxinxxix n sincos)sin(cos  , where  n  

is an integer, and x  is a real number. 

2.2.3. Binomial series: 

If a  is a real number, z is a complex number, 

and 1z , then .
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2.3. Theorems: 

2.3.1. Binomial theorem: 

Assume that vu,  are complex numbers, and m  is a 

non-negative integer, then  
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2.3.2. Integration term by term theorem:([37, p269]) 

Let  
0nng

 
be a sequence of Lebesgue integrable 

functions defined on I . If  


0n
I ng  is convergent, 

then  



I

n
ng

0

 





0n

I ng . 

To obtain the main results in this paper, we need the 

following  lemma: 

Lemma Assume that ,r are real numbers, 

pm, are positive integers,  and let irez  , then 















 m

p

z

z

)1(
Re ,

)cos21(

)cos(
)!(!

!

2
0

m

m

n

pn

rr

npr
nmn

m

















 

(3) 

and 















 m

p

z

z

)1(
Im .

)cos21(

)sin(
)!(!

!

2
0

m

m

n

pn

rr

npr
nmn

m

















     

 (4) 

Proof   














 m

p

z

z

)1(
Re  




















mm

mp

zz

zz

)1()1(

)1(
Re  





























m

m

n

np

zzz

z
nmn

m
z

)1(

)!(!

!

Re
2

0   

(by binomial theorem) 































m

m

n

npipn

rr

er
nmn

m

)cos21(

)!(!

!

Re
2

0

)(





 

m

m

n

pn

rr

npr
nmn

m

)cos21(

)cos(
)!(!

!

2
0

















. 

Similarly,  















 m

p

z

z

)1(
Im  .

)cos21(

)sin(
)!(!

!

2
0

m

m

n

pn

rr

npr
nmn

m

















 

           q.e.d. 

In the following, the infinite series form of double 

integral (1) can be determined. 

Theorem 1 Suppose that 2121 ,,, rr  are real 

numbers, and pm, are positive integers. 

Case 1.  If 1,1 21  rr , then 
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Case 2. If 1,1 21  rr ,  and 01mp , then 
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Proof   Let irez  .  

Case 1. If 1,1 21  rr . Since 
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   (since 1z , we can use binomial series) 
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          (by Euler’s formula) 

If follows that the double integral 
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q.e.d. 

Next, we obtain the infinite series form of double 

integral (2). 

Theorem 2 If the assumptions are the same as 

Theorem 1. 
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Case 2. If 1,1 21  rr ,  and 01mp , then 
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Proof   Also, let irez  .  

Case 1. If 1,1 21  rr . Since 
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3. Examples 

For the double integral problem discussed in this 

paper, we will provide some examples and use 

Theorems 1 and 2 to determine their infinite series 

forms. In  addition,  Maple is used to calculate the 

approximations of some double integrals and their 

infinite series forms  to verify our answers. 

Example 3.1.  In Theorem 1, if ,4,3  pm  

2/1,3/1 21  rr 3/,6/, 21   , then by 

Eq. (5) we have 
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(13) 

We employ Maple to verify the correctness of Eq. 

(13) as follows: 

>evalf(Doubleint(sum(3!/(n!*(3-n)!)*r^(n+4)*cos((4 

-n)*theta),n=0..3)/(1+2*r*cos(theta)+r^2)^3,r=1/3..1 

/2,theta=Pi/6..Pi/3),14); 

 

>evalf(sum(product(-3-j,j=0..(k-1))*((1/2)^(k+5)-(1/ 

3)^(k+5))*(sin((k+4)*Pi/3)-sin((k+4)*Pi/6))/(k!*(k+ 

5)*(k+4)),k=0..infinity),14); 

 

On the other hand, if ,2,5  pm ,6,3 21  rr  

  21 ,2/  in Theorem 1, then using Eq. (6) 

yields 
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(14) 

Using Maple to verify the correctness of Eq. (14) as 

follows: 

>evalf(Doubleint(sum(5!/(n!*(5-n)!)*r^(n+2)*cos((2 

-n)*theta),n=0..5)/(1+2*r*cos(theta)+r^2)^5,r=3..6, 

theta=Pi/2..Pi),14); 

0.0070816832171841 

>evalf(sum(product(-5-j,j=0..(k-1))*(6^(-2-k)-3^(-2-
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k))*(sin((-3-k)*Pi)-sin((-3-k)*Pi/2))/(k!*(-2-k)*(-3-

k)),k=0..infinity),14); 

0.0070816832171836 

Example 3.2.  In Theorem 2, let ,7,6  pm  

3/1,5/1 21  rr 2/,4/, 21   , then 

using Eq. (9) yields 








drd

rr

nr
nn

n

n

 











2/

4/

3/1

5/1 62

6

0

7

)cos21(

)7sin(
)!6(!

!6

 

.
)7)(8(!

]4/)7cos(2/)7][cos()5/1()3/1[()6(

0

88













k

kk
k

kkk

kk 

       (15) 

Using Maple to verify the correctness of Eq. (15) . 

>evalf(Doubleint(sum(6!/(n!*(6-n)!)*r^(n+7)*sin((7 

-n)*theta),n=0..6)/(1+2*r*cos(theta)+r^2)^6,r=1/5..1 

/3,theta=Pi/4..Pi/2),14); 

0.0000020196179825389 

>evalf(-sum(product(-6-j,j=0..(k-1))*((1/3)^(k+8)-(1/ 

5)^(k+8))*(cos((k+7)*Pi/2)-cos((k+7)*Pi/4))/(k!*(k+ 

8)*(k+7)),k=0..infinity),14); 

0.0000020196179825390 

 

 

 

 

 

In addition, if ,1,3  pm ,9,2 21  rr  

,3/1    2  in Theorem 2, then by Eq. (10) 

we have 
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(16) 

We also use Maple to verify the correctness of Eq. 

(16). 

>evalf(Doubleint(sum(3!/(n!*(3-n)!)*r^(n+1)*sin((1 

-n)*theta),n=0..3)/(1+2*r*cos(theta)+r^2)^3,r=2..9, 

theta=Pi/3..Pi),14); 

0.45123626373626 

>evalf(-sum(product(-3-j,j=0..(k-1))*(9^(-1-k)-2^(-1-

k))*(cos((-2-k)*Pi)-cos((-2-k)*Pi/3))/(k!*(-1-k)*(-2-

k)),k=0..infinity),14); 

0.45123626373626 

4. Conclusion 

In this paper, we use binomial series and 

integration term by term theorem to study two types 

of double integral problems. In fact, the applications 

of these two theorems are extensive, and can be used 

to easily solve many difficult problems; we endeavor 

to conduct further studies on related applications. In 

addition, Maple also plays a vital assistive role in 

problem-solving. In the future, we will extend the  

subject of the study to another mathematical 

problems in calculus and engineering mathematics 

and use Maple to verify our answers. 
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