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Abstract:  

This paper takes advantage of the mathematical 

software Maple to study two types of improper 

integrals. The infinite series forms of these two types 

of improper integrals can be obtained by using 

differentiation with respect to a parameter and 

differentiation term by term theorem. In addition, 

two examples of improper integrals are proposed 

and we actually find their infinite series forms. The 

research method adopted in this article is to obtain  

the answers by manual calculation, and then uses 

Maple to verify the answers. This research method 

not only allows us to find the calculation errors, but 

also helps us to amend the original thinking direction  

because we can verify the correctness of our theory 

from the consistency of manual and Maple 

calculations.  
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1. Introduction 

Computer Algebra System (CAS) has been widely 

used in mathematical and scientific research. 

Through the computer's fast computing and beautiful 

affinity of the graphical interface, mathematical and 

scientific research increase the infinite imagination. 

The mathematical software Maple can be said to be 

the leader in the field of CAS, which occupies a 

pivotal position in the mathematical operation 

system. Maple The advantage of this software is that 

its instructions are simple and easy to learn, allowing 

people who engaged in mathematical and scientific 

research to save a lot of time of learning computer 

programming language, most of the spirit into the 

study of the problem. On the other hand, through 

Maple's numerical and symbolic operations, the 

thinking logic is transformed into a series of 

instructions, and the results of Maple's operations are 

used to correct the direction of previous inferences 

and reflections. Because this feedback is 

straightforward and constructive, it can enhance our 

understanding of the problem and the interest in 

research. Inquiring through an online support system 

provided by Maple or browsing the Maple website 

(www.maplesoft.com) can facilitate further 

understanding of Maple and might provide 

unexpected insights. For the instructions and 

operations of Maple, we can refer to [1-5]. 

In the course of advanced calculus or engineering 

mathematics, the study of improper integrals is an 

important issue. For example, the Gamma function 

and the Beta function and some other special 

functions are presented in the form of improper 

integrals. Therefore, the numerical calculation of 

improper integrals is important in physics, 

engineering, or other natural sciences. On the other 

hand, Adams et al. [6], Nyblom [7], and Oster [8] 

provided some methods to solve the integral 

problems. Yu [9-32], Yu and Chen [33], Yu and 

Sheu [34-36] used complex power series method, 

integration term by term theorem, differentiation 

with respect to a parameter, Parseval’s theorem, area 

mean value theorem, and generalized Cauchy 

integral formula to solve some types of integral 

problems. This paper mainly studies the following 

two types of improper integrals: 
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where ,0,0  ba  and m  is a non-negative 

integer. Using differentiation with a parameter and  

differentiation term by term theorem, we can obtain 

the infinite series forms of the two types of improper  

integrals, that is, the  main results: Theorems 1 and 2. 

Therefore, the difficulty of solving the improper 

integral problems can be greatly reduced. In addition, 

we provide some examples to demonstrate the 

calculation practically. The research method adopted 

in this paper is to go through the process of obtaining 

the answers, and then use Maple to verify the 

answers. This approach not only let us find the 

calculation errors, but also help us revise the 

direction of the original thinking, because the 

consistency of the results obtained from manual and 

Maple calculations can verify the correctness of our 

theory.  

2. Preliminaries and Results 

At first, we introduce some notations, formulas, 

and theorems used in this paper. 

2.1. Notations: 
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Suppose that t  is a real number, and m  is a positive 

integer.  Define )1()1()(  mtttt m ,  and 

1)( 0 t . 

2.2. Formulas: ([38, p452, Formula 652 & 664]) 
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2.3. Theorems: 

2.3.1. Differentiation with respect to a parameter ([39, 

p405]):  

Suppose that 21, II  are real intervals, and assume 

that two variables function ),( yxf and its first order 

partial derivative with respect to y  , ),( yxf y  are all 

defined on 21 II  . If the following two conditions 

are satisfied: (i) For all 2Iy , Lebesgue 

integrals 
1

),(
I
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1

),(
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(ii) ),( yxf y is a continuous function defined on 

21 II   such that 
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2.3.2. Differentiation term by term theorem ([37, 

p230]):  

For all non-negative integers k , if the functions 

Rbagk ),(: sat is fy the fol lowing three 

conditions: (i) there exists a point ),(0 bax  such 

that 
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is convergent, (ii) all functions 
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Next, we determine the infinite series form of 

improper integral (1). 

Theorem 1  Assume that 0,0  ba , and m  is a 

non-negative integer, then 
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  (by Formula 2.2.1) 
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Using differentiation with respect to a parameter and 

differentiation term by term theorem, differentiating 

m  times with respect to a  on both sides of Eq. (4), 

the desired result holds.                                   q.e.d. 

In the following, we determine the infinite series 

form of improper integral (2). 

Theorem 2  If the assumptions are the same as 

Theorem 1, then 
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Also, by differentiation with respect to a parameter 

and differentiation term by term theorem, 

differentiating m  times with respect to a  on both 

sides of Eq. (6), the desired result holds.          q.e.d. 
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3. Examples 

In the following, for the improper integral 

problems discussed in this article, some examples are 

provided and we use Theorems 1 and 2 to obtain 

their infinite series forms. On the other hand,  Maple 

is used to calculate the approximations of some 

improper integrals and their infinite series forms  to 

verify our answers. 

Example 3.1.  Using Theorem 1 yields  
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We employ Maple to verify the correctness of Eq. (7) 

as follows: 

>evalf(int(x^20*exp(-3*x^2-4/x^2),x=0..infinity),20); 

1.6936129291376077076 

>evalf(sqrt(Pi)/2*sum((-2)^k*product((k-1)/2-j,j=0.. 

9)/k!*3^((k-21)/2)*4^(k/2),k=0..infinity),20); 

1.6936129291376077076 

Example 3.2.  By Theorem 2, we have  
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Using Maple to verify the correctness of Eq. (8) as 

follows: 

>evalf(int(x^38*exp(-6*x^2)*cos(10*x),x=0..infinity 

),20); 

0.53208107422709030716 

>evalf(-sqrt(Pi)/2*sum((-1/4)^k*product((-2*k-1)/2-

j,j=0..18)/k!*6^((-2*k-39)/2)*10^(2*k),k=0..infinity), 

20); 

0.53208107422709030716 

4. Conclusion 

As mentioned, we use differentiation with respect 

to a parameter and differentiation term by term 

theorem to solve two types of improper integrals. In 

fact, the applications of these two theorems are 

extensive, and can be used to easily solve many 

difficult problems; we endeavor to conduct further 

studies on related applications. Moreover, Maple also 

plays a vital assistive role in problem-solving. In the 

future, we will extend the study subject to another 

mathematical problems and use Maple to verify our 

answers. 
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