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Abstract: In mobile navigation services, 

on-road path planning is a basic function 

that finds a route between a queried start 

location and a destination. While on roads, 

a path planning query may be issued due 

to dynamic factors in various scenarios, 

such as a sudden change in driving 

direction, unexpected traffic conditions, or 

lost ofGPS signals. In these scenarios, path 

planning needs to be delivered in a timely 

fashion. The requirement of timeliness is 

even more challenging when an 

overwhelming number of path planning 

queries is submitted to the server, 

e.g.,during peak hours. As the response 

time is critical to user satisfaction with 

personal navigation services, it is a 

mandate for the server to efficiently handle 

the heavy workload of path planning 

requests. To meet this need, we propose a 

system, namely, Path Planning by Caching 

(PPC), that aims to answer a new path 

planning query efficiently by caching and 

reusing historically queried paths (queried-

paths in short). Unlike conventional cache-

based path planning systems where a 

cached query is returned only when it 

matches completely with a new query, 

PPC leverages partially matched queried-

paths in cache to answer part(s) of the new  

query. As a result, the server only needs to 

compute the unmatched path segments, 

thus significantly reducing the overall 

system workload. 

Keywords: Spatial Database, Path 

Planning, Cache. 

I. INTRODUCTION 

Due to advances in big data 

analytics, there is a growing need for 

scalable parallel algorithms. These 

algorithms encompass many domains 

including graph processing, machine 

learning, and signal processing. However, 

one of the most challenging algorithms lie 

in graph processing. Graph algorithms are 

known to exhibit low locality, data 

dependence memory accesses, and high 

memory requirements. Even their parallel 

versions do not scale seamlessly, with 

bottlenecks stemming from architectural 

constraints, such as cache effects and on-

chip network traffic. Path Planning 

algorithms, such as the famous Dijkstra’s 

algorithm, fall in the domain of graph 
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analytics, and exhibit similar issues. These 

algorithms are given a graph containing 

many vertices, with some neighboring 

vertices to ensure connectivity, and are 

tasked with finding the shortest path from 

a given source vertex to a destination 

vertex. Parallel implementations assign a 

set of vertices or neighboring vertices to 

threads, depending on the parallelization 

strategy. These strategies naturally 

introduce input dependence. Uncertainty in 

selecting the subsequent vertex to jump to, 

results in low locality for data accesses. 

Moreover, threads converging onto the 

same neighboring vertex sequentialize 

procedures due to synchronization and 

communication. Partitioned data structures 

and shared variables ping-pong within on-

chip caches, causing coherence 

bottlenecks. All these mentioned issues 

make parallel path planning a challenge. 

Prior works have explored parallel path 

planning problems from various 

architectural angles. Path planning 

algorithms have been implemented in 

graph frameworks. These distributed 

settings mostly involve large clusters, and 

in some cases smaller clusters of CPUs. 

However, these works mostly optimize 

workloads across multiple sockets and 

nodes, and mostly constitute either 

complete shared memory or message 

passing (MPI) implementations. In the 

case of single node (or single-chip) setup, 

a great deal of work has been done for 

GPUs are a few examples to name a few. 

These works analyze sources of 

bottlenecks and discuss ways to mitigate 

them. Summing up these works, we devise 

that most challenges remain in the fine-

grain inner loops of path planning 

algorithms. We believe that analyzing and 

scaling path planning on single-chip setup 

can minimize the fine-grain bottlenecks. 

Since shared memory is efficient at the 

hardware level, we proceed with 

parallelization of the path planning 

workload for single-chip multi-cores. The 

single-chip parallel implementations can 

be scaled up at multiple nodes or clusters 

granularity, which we discuss. 

 

Furthermore, programming language 

variations for large scale processing also 

cause scalability issues that need to be 

analyzed effectively so far the most 

efficient parallel shared memory 

implementations for graph processing are 

in C/C++. However, due to security 

exploits and other potential vulnerabilities, 

other safe languages are commonly used 

in mission-deployed applications. Safe 

languages guarantee dynamic security 

checks that mitigate vulnerabilities, and 

provide ease of programming. However, 

security checks increase memory and 

performance overheads. Critical sections 

of code, such as locked data structures, 
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now take more time to process, and hence 

communication and 

 

synchronization overheads exacerbate for 

parallel implementations. Python is a 

subtle example of a safe language, and 

hence we analyze it’s overheads in the 

context of our parallel path planning 

workloads. This paper makes the 

following contributions: 

 

 We study sources of bottlenecks 

arising in parallel path planning 

workloads, such as input 

dependence and scalability, in the 

context of a single node, single 

chip setup. 

 

 We analyze issues arising from safe 

languages, in our case Python, and 

discuss what safe languages need to 

ensure for seamless scalability. 

 

 We plan to open source all 

characterized programs with the 

publication of this paper. 

II.PATH PLANNING ALGORITHMS 

AND PARALLELIZATIONS  
Dijkstra that is an optimal algorithm, is 

the de facto baseline used in path planning 

applications. However, several heuristic 

based variations exist that trade-off 

parameters such as parallelism and 

accuracy. ∆-stepping is one example 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Dijkstra’s Algorithm 

Parallelization’s. Vertices Allocated to 

Threads Shown in Different Colors. 

 

which classifies graph vertices and 

processes them in different stages of the 

algorithm. The A*/D* algorithms are 

another example that use aggressive 

heuristics to prune out computational work 

(graph vertices), and only visit vertices 

that occur in the shortest path. In order to 

maintain optimality and a suitable 

baseline, we focus on Dijkstra’s algorithm 

in this paper. 

 

A. Dijkstra’s Algorithm and Structure 

Dijkstra’s algorithm consists of two 

main loops, an outer loop that traverses 

each graph vertex once, and an inner loop 

that traverses the neighboring vertices of 

the vertex selected by the outer loop. The 

most efficient generic implementation of 
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Dijkstra’s algorithm utilizes a heap 

structure, and has a complexity of O(E + V 

logV). However, in parallel 

implementations, queues are used instead 

of heaps, to reduce overheads associated 

with re-balancing the heap after each 

parallel iteration. Algorithm 1 shows the 

generic pseudo-code skeleton for 

Dijkstra’s algorithm. For each vertex, each 

neighboring vertex is visited and compared 

with other neighboring vertices in the 

context of distance from the source vertex 

(the starting vertex). The neighboring 

vertex with the minimum distance cost is 

selected as the next best vertex for the next 

outer loop iteration. The distances from the 

source vertex to the neighboring vertices 

are then updated in the program data 

structures, after which the algorithm 

repeats for the next selected vertex. A 

larger graph size means more outer loop 

iterations, while a large graph density 

means more inner loop iterations. 

Consequently, these iterations translate 

into parallelism, with the graph’s size and 

density dictating how much parallelism is 

exploitable. We discuss the parallelizations 

in subsequent subsections and show 

examples in Fig 1. 
 
 
 
 
 
 
B. Inner Loop Parallelization  

The inner loop in Algorithm 1 

parallelizes the neighboring vertex 

checking. Each thread is given a set of 

neighboring vertices of the current vertex, 

and it computes a local minimum and 

updates that neighboring vertex’s distance. 

A master thread is then called to take all 

the local minimums, and reduce to find a 

global minimum, which becomes the next 

best vertex to jump to in the next outer 

loop iteration. Barriers are required 

between local minimum and global 

minimum reduction steps as the global 

minimums can only be calculated when 

the master thread has access to all the 

local minimums. Parallelism is therefore 

dependent on the graph density, i.e. the 

number of neighboring vertices per vertex. 

Sparse graphs constitute low density, and 

therefore cannot scale with this type of 

parallelization. Dense graphs having high 

densities are expected to scale in this case. 

 

C. Outer Loop Parallelization 

The outer loop parallelization strategy 

partitions the graph vertices among 

threads, depicted in Algorithm 1. Each 

thread runs inner loop iterations over its 

vertices, and updates the distance arrays in 

the process. However, atomic clocks over 

shared memory are required to update 

vertex distances, as vertices may be 

sharing neighbors in different threads. 
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1. Convergence Outer Loop 

Parallelization: The convergence based 

outer loop statically partitions the graph 

vertices to threads. Threads work on their 

allocated chunks independently, update 

tentative distance arrays, and update the 

final distance array once each thread 

completes work on its allocated vertices. 

The algorithm then repeats, until the final 

distance arrays stabilize, where the 

stabilization sets the convergence 

condition. Significant redundant work is 

involved as each vertex is computed upon 

multiple times during the course of this 

algorithm’s execution. 

 

2. Ranged based Outer Loop 

Parallelization: The range based outer 

loop parallelization opens pare to fronts on 

vertices in each iteration. Vertices in these 

fronts are equally divided amongst threads 

to compute on, however, atomic clocks are 

still required due to vertex sharing. As 

pare to fronts are intelligently opened 

using the graph connectivity, a vertex can 

be safely relaxed just once during the 

course of the algorithm. Redundant work 

is therefore mitigated, while maintaining 

significant parallelism. However, as initial 

and final pare to fronts contain less 

vertices, limited parallelism is available 

during the initial and final phases of the 

algorithm. Higher parallelism is available 

during the middle phases of the algorithm. 

This algorithm’s available parallelism 

hereto follows a normal distribution, with 

time on the x-axis. 

 

III. METHODS 

This section outlines multicore 

machine configuration and programming 

methods used for analysis. We also 

explain the graph structures used for the 

various path planning workloads. 

A. Many-core Real Machine Setups 

We use Intel’s Core i7-4790 has 

well processor to analyze our workloads. 

The machine has 4 cores with 2-way hyper 

threading; an 8MB shared L3 cache, and a 

256KB per-core private L2 cache. 

 

B. Metrics and Programming Language 

Variations 

 

We use C/C++ to create efficient 

implementations of our parallel path 

planning algorithms. We use the p thread 

parallel library, and enforce gcc/g++ 

compiler -O3 optimizations to ensure 

maximum performance. The p thread 

library is preferred over Open MP to allow 

for the use of lower level synchronization 

primitives and optimizations. For Python 

implementations, we use both threading 

and multiprocessing libraries to parallelize 

programs, with Python3 as the language 

version. We use these two parallelization 

paradigms to show the limitations and 
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shortcomings in parallel safe language 

paradigms. For each simulation run, we 

measure the Completion Time, i.e., the 

time in parallel region of the benchmark. 

The time is measured just before threads/ 

processes are spawned/forked, and also 

after they are joined, after which the time 

difference is measured as the Completion 

Time. To ensure an unbiased comparison 

to sequential runs, we measure the 

Completion Time for only the parallelized 

code regions. These parallel completion 

times are compared with the best 

sequential implementations to compute 

speedups, as given by Eq (1). Values 

greater than 1 show speedups, while 

values between 0 and 1 depict slowdowns 

in addition to performance, memory 

effects in a specific parallelization strategy 

also affect scalability. To evaluate cache 

effects, the cache accesses are therefore 

measured using hardware performance 

counters. 

 

Speedup = Sequential Time/Parallel 

Time (1) 
 
C. Graph Input Data Sets and 

Structures 

TABLE I. Synthetic Graphs Used 

for Evaluation               
 

 

 

Synthetic graphs and datasets are 

generated using a modified version of the 

GT Graph generator, which uses RMAT 

graphs from Graph500. We also use real 

world graphs from the Stanford Large 

Network Dataset Collection (SNAP), such 

as road networks. These are undirected 

graphs, with a degree irregularly varying 

from 1 to 4. Generated graphs have 

random edge weights and connectivity. All 

graphs are represented in the form of 

adjacency lists, with one data structure 

containing the edge weights, and another 

for edge connectivity, and all values 

represented by integers. Both sparse and 

dense graphs are used to analyze 

parallelizations across different input 

types, as shown in Table I. We also scale 

synthetic graphs from 16K vertices to 1M 

vertices, and the graph density from 16 up 

to 8K connections per vertex. 

IV. EXPERIMENTS 

A. Dataset 

We conduct a comprehensive 

performance evaluation of the proposed 

PPC system using the road network 

dataset of Seattle obtained from ACM 

SIGSPATIAL Cup 2012. The dataset has 

25,604 nodes and 74,276 edges. For the 

query log, we obtain the Points-of-interest 

(POIs) in Seattle from. Next, we randomly 

select pairs of nodes from these POIs as 

the source and destination nodes for path 
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planning queries. Four sets of query logs 

with different distributions are used in the 

experiments: QLnormal and QLuniform are 

query logs with normal and uniform 

distributions, respectively. QLcentral is used 

to simulate a large-scale event (e.g., the 

Olympics or the World Cup) held in a city. 

QLdirection is to simulate possible driving 

behavior (e.g., changing direction) based 

on a random walk method described as 

follows. We firstly randomly generate a 

query to be the initial navigational route. 

Next, we randomly draw a probability to 

determine the chance for a driver to 

change direction. The point of direction 

change is treated as a new source. This 

process is repeated until the anticipated 

numbers of queries are generated. The 

parameters used in our experiments are 

shown in Table 2. 

 

B. Cache-Supported System 

Performance 

1. Cache versus Non-Cache 

 

The main idea of a cache-supported 

system is to leverage the cached query 

results to answer a new query. Thus, we 

are interested in finding how much 

improvement our path planning system 

achieves over a conventional non-cache 

system. We generate query sets of various 

sizes to compare the paths generated by 

our PPC and A* algorithm. The 

performance is evaluated by two metrics: 

a) Total number of visited nodes: it counts 

the number of nodes visited by an 

algorithm under comparison in computing 

a path, and b) Total query time: it is the 

total time an algorithm takes to compute 

the path. By default, we apply 3,000 

randomly generated queries to warm up 

the cache before proceeding to measure 

experimental results. Table 5 summarizes 

the statistics of the above two metrics with 

five different sized query sets. From the 

statistics we find that our cache-supported 

algorithm greatly reduces both the total 

visited nodes and the total query time. On 

average, PPC saves 23 percent of visiting 

nodes and 30.22 percent of response time 

compared with a non-cache system. 

TABLE II. Experimental 

Parameters 

 

 

 

 

 

 

 

 

TABLE III. Performance 

Comparison between PPC and 

the Non-Cache Algorithm 
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V. CONCLUSION 

We propose a system, namely, Path 

Planning by Caching (PPC), that aims to 

answer a new path planning query 

efficiently by caching and reusing 

historically queried paths (queried-paths in 

short).The proposed system consists of 

three main components: (i) PPattern 

Detection, (ii) Shortest Path Estimation, 

and (iii) Cache Management. Given a path 

planning query, which contains a source 

location and a destination location, PPC 

firstly determines and retrieves a number 

of historical paths in cache, called 

PPatterns, that may match this new query 

with high probability.The idea of 

PPatterns is based on an observation that 

similar starting and destination nodes of 

two queries may result in similar shortest 

paths (known as the path coherence 

property). In the component PPatern 

Detection, we propose a novel 

probabilistic model to estimate the 

likelihood for a cached queried-path to be 

useful for answering the new query by 

exploring their geospatial characteristics. 

To facilitate quick detection of PPatterns, 

instead of exhaustively scanning all the 

queried paths in cache, we design a grid-

based index for the PPattern Detection 

module. Based on these detected 

PPatterns, the Shortest Path Estimation 

module constructs candidate paths for the 

new query and chooses the best (shortest) 

one. In this component, if a PPattern 

perfectly matches the query, we 

immediately return it to the user; 

otherwise, the server is asked to compute 

the unmatched path segments between the 

PPattern and the query. Because the 

unmatched segments are usually only a 

smaller part of the original query, the 

server only processes a “smaller 

subquery”, with a reduced workload. Once 

we return the estimated path to the user, 

the Cache Management module is 

triggered to determine which queried-

paths in cache should be evicted if the 

cache is full. An important part of this 

module is a new cache replacement policy 

which takes into account the unique 

characteristics of road networks.In this 

paper, we provide a new framework for 

reusing the previously cached query 

results as well as an effective algorithm for 

improving the query evaluation on the 

server. 
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