

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 438

A Review on Effective Cache-Supported Path

Planning on Roads
Sailaja Yandrapati, M.Tech 2

nd
 Year,Dept.Of CSE, VRS & YRN College of

Engineering and Technology , Chirala,India

Damarla Sree Latha,Associate professor,Dept of CSE, VRS & YRN College

of Engineering and Technology , Chirala,India

Abstract: In mobile navigation services,

on-road path planning is a basic function

that finds a route between a queried start

location and a destination. While on roads,

a path planning query may be issued due

to dynamic factors in various scenarios,

such as a sudden change in driving

direction, unexpected traffic conditions, or

lost ofGPS signals. In these scenarios, path

planning needs to be delivered in a timely

fashion. The requirement of timeliness is

even more challenging when an

overwhelming number of path planning

queries is submitted to the server,

e.g.,during peak hours. As the response

time is critical to user satisfaction with

personal navigation services, it is a

mandate for the server to efficiently handle

the heavy workload of path planning

requests. To meet this need, we propose a

system, namely, Path Planning by Caching

(PPC), that aims to answer a new path

planning query efficiently by caching and

reusing historically queried paths (queried-

paths in short). Unlike conventional cache-

based path planning systems where a

cached query is returned only when it

matches completely with a new query,

PPC leverages partially matched queried-

paths in cache to answer part(s) of the new

query. As a result, the server only needs to

compute the unmatched path segments,

thus significantly reducing the overall

system workload.

Keywords: Spatial Database, Path

Planning, Cache.

I. INTRODUCTION

Due to advances in big data

analytics, there is a growing need for

scalable parallel algorithms. These

algorithms encompass many domains

including graph processing, machine

learning, and signal processing. However,

one of the most challenging algorithms lie

in graph processing. Graph algorithms are

known to exhibit low locality, data

dependence memory accesses, and high

memory requirements. Even their parallel

versions do not scale seamlessly, with

bottlenecks stemming from architectural

constraints, such as cache effects and on-

chip network traffic. Path Planning

algorithms, such as the famous Dijkstra’s

algorithm, fall in the domain of graph

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 439

analytics, and exhibit similar issues. These

algorithms are given a graph containing

many vertices, with some neighboring

vertices to ensure connectivity, and are

tasked with finding the shortest path from

a given source vertex to a destination

vertex. Parallel implementations assign a

set of vertices or neighboring vertices to

threads, depending on the parallelization

strategy. These strategies naturally

introduce input dependence. Uncertainty in

selecting the subsequent vertex to jump to,

results in low locality for data accesses.

Moreover, threads converging onto the

same neighboring vertex sequentialize

procedures due to synchronization and

communication. Partitioned data structures

and shared variables ping-pong within on-

chip caches, causing coherence

bottlenecks. All these mentioned issues

make parallel path planning a challenge.

Prior works have explored parallel path

planning problems from various

architectural angles. Path planning

algorithms have been implemented in

graph frameworks. These distributed

settings mostly involve large clusters, and

in some cases smaller clusters of CPUs.

However, these works mostly optimize

workloads across multiple sockets and

nodes, and mostly constitute either

complete shared memory or message

passing (MPI) implementations. In the

case of single node (or single-chip) setup,

a great deal of work has been done for

GPUs are a few examples to name a few.

These works analyze sources of

bottlenecks and discuss ways to mitigate

them. Summing up these works, we devise

that most challenges remain in the fine-

grain inner loops of path planning

algorithms. We believe that analyzing and

scaling path planning on single-chip setup

can minimize the fine-grain bottlenecks.

Since shared memory is efficient at the

hardware level, we proceed with

parallelization of the path planning

workload for single-chip multi-cores. The

single-chip parallel implementations can

be scaled up at multiple nodes or clusters

granularity, which we discuss.

Furthermore, programming language

variations for large scale processing also

cause scalability issues that need to be

analyzed effectively so far the most

efficient parallel shared memory

implementations for graph processing are

in C/C++. However, due to security

exploits and other potential vulnerabilities,

other safe languages are commonly used

in mission-deployed applications. Safe

languages guarantee dynamic security

checks that mitigate vulnerabilities, and

provide ease of programming. However,

security checks increase memory and

performance overheads. Critical sections

of code, such as locked data structures,

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 440

now take more time to process, and hence

communication and

synchronization overheads exacerbate for

parallel implementations. Python is a

subtle example of a safe language, and

hence we analyze it’s overheads in the

context of our parallel path planning

workloads. This paper makes the

following contributions:

 We study sources of bottlenecks

arising in parallel path planning

workloads, such as input

dependence and scalability, in the

context of a single node, single

chip setup.

 We analyze issues arising from safe

languages, in our case Python, and

discuss what safe languages need to

ensure for seamless scalability.

 We plan to open source all

characterized programs with the

publication of this paper.

II.PATH PLANNING ALGORITHMS

AND PARALLELIZATIONS
Dijkstra that is an optimal algorithm, is

the de facto baseline used in path planning

applications. However, several heuristic

based variations exist that trade-off

parameters such as parallelism and

accuracy. ∆-stepping is one example

Fig.1. Dijkstra’s Algorithm

Parallelization’s. Vertices Allocated to

Threads Shown in Different Colors.

which classifies graph vertices and

processes them in different stages of the

algorithm. The A*/D* algorithms are

another example that use aggressive

heuristics to prune out computational work

(graph vertices), and only visit vertices

that occur in the shortest path. In order to

maintain optimality and a suitable

baseline, we focus on Dijkstra’s algorithm

in this paper.

A. Dijkstra’s Algorithm and Structure

Dijkstra’s algorithm consists of two

main loops, an outer loop that traverses

each graph vertex once, and an inner loop

that traverses the neighboring vertices of

the vertex selected by the outer loop. The

most efficient generic implementation of

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 441

Dijkstra’s algorithm utilizes a heap

structure, and has a complexity of O(E + V

logV). However, in parallel

implementations, queues are used instead

of heaps, to reduce overheads associated

with re-balancing the heap after each

parallel iteration. Algorithm 1 shows the

generic pseudo-code skeleton for

Dijkstra’s algorithm. For each vertex, each

neighboring vertex is visited and compared

with other neighboring vertices in the

context of distance from the source vertex

(the starting vertex). The neighboring

vertex with the minimum distance cost is

selected as the next best vertex for the next

outer loop iteration. The distances from the

source vertex to the neighboring vertices

are then updated in the program data

structures, after which the algorithm

repeats for the next selected vertex. A

larger graph size means more outer loop

iterations, while a large graph density

means more inner loop iterations.

Consequently, these iterations translate

into parallelism, with the graph’s size and

density dictating how much parallelism is

exploitable. We discuss the parallelizations

in subsequent subsections and show

examples in Fig 1.

B. Inner Loop Parallelization

The inner loop in Algorithm 1

parallelizes the neighboring vertex

checking. Each thread is given a set of

neighboring vertices of the current vertex,

and it computes a local minimum and

updates that neighboring vertex’s distance.

A master thread is then called to take all

the local minimums, and reduce to find a

global minimum, which becomes the next

best vertex to jump to in the next outer

loop iteration. Barriers are required

between local minimum and global

minimum reduction steps as the global

minimums can only be calculated when

the master thread has access to all the

local minimums. Parallelism is therefore

dependent on the graph density, i.e. the

number of neighboring vertices per vertex.

Sparse graphs constitute low density, and

therefore cannot scale with this type of

parallelization. Dense graphs having high

densities are expected to scale in this case.

C. Outer Loop Parallelization

The outer loop parallelization strategy

partitions the graph vertices among

threads, depicted in Algorithm 1. Each

thread runs inner loop iterations over its

vertices, and updates the distance arrays in

the process. However, atomic clocks over

shared memory are required to update

vertex distances, as vertices may be

sharing neighbors in different threads.

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 442

1. Convergence Outer Loop

Parallelization: The convergence based

outer loop statically partitions the graph

vertices to threads. Threads work on their

allocated chunks independently, update

tentative distance arrays, and update the

final distance array once each thread

completes work on its allocated vertices.

The algorithm then repeats, until the final

distance arrays stabilize, where the

stabilization sets the convergence

condition. Significant redundant work is

involved as each vertex is computed upon

multiple times during the course of this

algorithm’s execution.

2. Ranged based Outer Loop

Parallelization: The range based outer

loop parallelization opens pare to fronts on

vertices in each iteration. Vertices in these

fronts are equally divided amongst threads

to compute on, however, atomic clocks are

still required due to vertex sharing. As

pare to fronts are intelligently opened

using the graph connectivity, a vertex can

be safely relaxed just once during the

course of the algorithm. Redundant work

is therefore mitigated, while maintaining

significant parallelism. However, as initial

and final pare to fronts contain less

vertices, limited parallelism is available

during the initial and final phases of the

algorithm. Higher parallelism is available

during the middle phases of the algorithm.

This algorithm’s available parallelism

hereto follows a normal distribution, with

time on the x-axis.

III. METHODS

This section outlines multicore

machine configuration and programming

methods used for analysis. We also

explain the graph structures used for the

various path planning workloads.

A. Many-core Real Machine Setups

We use Intel’s Core i7-4790 has

well processor to analyze our workloads.

The machine has 4 cores with 2-way hyper

threading; an 8MB shared L3 cache, and a

256KB per-core private L2 cache.

B. Metrics and Programming Language

Variations

We use C/C++ to create efficient

implementations of our parallel path

planning algorithms. We use the p thread

parallel library, and enforce gcc/g++

compiler -O3 optimizations to ensure

maximum performance. The p thread

library is preferred over Open MP to allow

for the use of lower level synchronization

primitives and optimizations. For Python

implementations, we use both threading

and multiprocessing libraries to parallelize

programs, with Python3 as the language

version. We use these two parallelization

paradigms to show the limitations and

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 443

shortcomings in parallel safe language

paradigms. For each simulation run, we

measure the Completion Time, i.e., the

time in parallel region of the benchmark.

The time is measured just before threads/

processes are spawned/forked, and also

after they are joined, after which the time

difference is measured as the Completion

Time. To ensure an unbiased comparison

to sequential runs, we measure the

Completion Time for only the parallelized

code regions. These parallel completion

times are compared with the best

sequential implementations to compute

speedups, as given by Eq (1). Values

greater than 1 show speedups, while

values between 0 and 1 depict slowdowns

in addition to performance, memory

effects in a specific parallelization strategy

also affect scalability. To evaluate cache

effects, the cache accesses are therefore

measured using hardware performance

counters.

Speedup = Sequential Time/Parallel

Time (1)

C. Graph Input Data Sets and

Structures

TABLE I. Synthetic Graphs Used

for Evaluation

Synthetic graphs and datasets are

generated using a modified version of the

GT Graph generator, which uses RMAT

graphs from Graph500. We also use real

world graphs from the Stanford Large

Network Dataset Collection (SNAP), such

as road networks. These are undirected

graphs, with a degree irregularly varying

from 1 to 4. Generated graphs have

random edge weights and connectivity. All

graphs are represented in the form of

adjacency lists, with one data structure

containing the edge weights, and another

for edge connectivity, and all values

represented by integers. Both sparse and

dense graphs are used to analyze

parallelizations across different input

types, as shown in Table I. We also scale

synthetic graphs from 16K vertices to 1M

vertices, and the graph density from 16 up

to 8K connections per vertex.

IV. EXPERIMENTS

A. Dataset

We conduct a comprehensive

performance evaluation of the proposed

PPC system using the road network

dataset of Seattle obtained from ACM

SIGSPATIAL Cup 2012. The dataset has

25,604 nodes and 74,276 edges. For the

query log, we obtain the Points-of-interest

(POIs) in Seattle from. Next, we randomly

select pairs of nodes from these POIs as

the source and destination nodes for path

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 444

planning queries. Four sets of query logs

with different distributions are used in the

experiments: QLnormal and QLuniform are

query logs with normal and uniform

distributions, respectively. QLcentral is used

to simulate a large-scale event (e.g., the

Olympics or the World Cup) held in a city.

QLdirection is to simulate possible driving

behavior (e.g., changing direction) based

on a random walk method described as

follows. We firstly randomly generate a

query to be the initial navigational route.

Next, we randomly draw a probability to

determine the chance for a driver to

change direction. The point of direction

change is treated as a new source. This

process is repeated until the anticipated

numbers of queries are generated. The

parameters used in our experiments are

shown in Table 2.

B. Cache-Supported System

Performance

1. Cache versus Non-Cache

The main idea of a cache-supported

system is to leverage the cached query

results to answer a new query. Thus, we

are interested in finding how much

improvement our path planning system

achieves over a conventional non-cache

system. We generate query sets of various

sizes to compare the paths generated by

our PPC and A* algorithm. The

performance is evaluated by two metrics:

a) Total number of visited nodes: it counts

the number of nodes visited by an

algorithm under comparison in computing

a path, and b) Total query time: it is the

total time an algorithm takes to compute

the path. By default, we apply 3,000

randomly generated queries to warm up

the cache before proceeding to measure

experimental results. Table 5 summarizes

the statistics of the above two metrics with

five different sized query sets. From the

statistics we find that our cache-supported

algorithm greatly reduces both the total

visited nodes and the total query time. On

average, PPC saves 23 percent of visiting

nodes and 30.22 percent of response time

compared with a non-cache system.

TABLE II. Experimental

Parameters

TABLE III. Performance

Comparison between PPC and

the Non-Cache Algorithm

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 445

V. CONCLUSION

We propose a system, namely, Path

Planning by Caching (PPC), that aims to

answer a new path planning query

efficiently by caching and reusing

historically queried paths (queried-paths in

short).The proposed system consists of

three main components: (i) PPattern

Detection, (ii) Shortest Path Estimation,

and (iii) Cache Management. Given a path

planning query, which contains a source

location and a destination location, PPC

firstly determines and retrieves a number

of historical paths in cache, called

PPatterns, that may match this new query

with high probability.The idea of

PPatterns is based on an observation that

similar starting and destination nodes of

two queries may result in similar shortest

paths (known as the path coherence

property). In the component PPatern

Detection, we propose a novel

probabilistic model to estimate the

likelihood for a cached queried-path to be

useful for answering the new query by

exploring their geospatial characteristics.

To facilitate quick detection of PPatterns,

instead of exhaustively scanning all the

queried paths in cache, we design a grid-

based index for the PPattern Detection

module. Based on these detected

PPatterns, the Shortest Path Estimation

module constructs candidate paths for the

new query and chooses the best (shortest)

one. In this component, if a PPattern

perfectly matches the query, we

immediately return it to the user;

otherwise, the server is asked to compute

the unmatched path segments between the

PPattern and the query. Because the

unmatched segments are usually only a

smaller part of the original query, the

server only processes a “smaller

subquery”, with a reduced workload. Once

we return the estimated path to the user,

the Cache Management module is

triggered to determine which queried-

paths in cache should be evicted if the

cache is full. An important part of this

module is a new cache replacement policy

which takes into account the unique

characteristics of road networks.In this

paper, we provide a new framework for

reusing the previously cached query

results as well as an effective algorithm for

improving the query evaluation on the

server.

VI. REFERENCES

[1]Ying Zhang, Member, IEEE, Yu-Ling

Hsueh, Member, IEEE, Wang-Chien Lee,

Member, IEEE, and Yi-Hao Jhang,

“Efficient Cache-Supported Path Planning

on Roads”, IEEE Transactions on

Knowledge and Data Engineering, Vol.

28, No. 4, April 2016.

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 446

[2]H. Mahmud, A. M. Amin, M. E. Ali,

and T. Hashem, “Shared execution of path

queries on road networks,” Clinical

Orthopaedics Related Res., vol.

abs/1210.6746, 2012.

[3]L.Zammit, M.Attard, and K. Scerri,

“Bayesian hierarchical modelling of traffic

flow - With application to Malta’s road

network,” in Proc. Int. IEEE Conf. Intell.

Transp. Syst., 2013, pp. 1376–1381.

[4]S. Jung and S. Pramanik, “An efficient

path computation model for hierarchically

structured topographical road maps,” IEEE

Trans. Knowl. Data Eng., vol. 14, no. 5,

pp. 1029–1046, Sep. 2002.

[5]E. W. Dijkstra, “A note on two

problems in connation with graphs,” Num.

Math., vol. 1, no. 1, pp. 269–271, 1959.

[6]U. Zwick, “Exact and approximate

distances in graphs – a survey,” in Proc.

9th Annu. Eur. Symp. Algorithms, 2001,

vol. 2161, pp. 33–48.

[7]A. V. Goldberg and C. Silverstein,

“Implementations of Dijkstra’s algorithm

based on multi-level buckets,” Network

Optimization, vol. 450, pp. 292–327,

1997.

[8]P. Hart, N. Nilsson, and B. Raphael, “A

formal basis for the heuristic determination

of minimum cost paths,” IEEE Trans. Syst.

Sci. Cybern., vol. SSC-4, no. 2, pp. 100–

107, Jul. 1968.

[9]A. V. Goldberg and C. Harrelson,

“Computing the shortest path: A search

meets graph theory,” in Proc. ACM Symp.

Discr. Algorithms, 2005, pp. 156–165.

[10]R. Gutman, “Reach-based routing: A

new approach to shortest path algorithms

optimized for road networks,” in Proc.

Workshop Algorithm Eng. Experiments,

2004, pp. 100– 111.

[11]A. V. Goldberg, H. Kaplan, and R. F.

Werneck, “Reach for A*: Efficient point-

to-point shortest path algorithms,” in Proc.

Workshop Algorithm Eng. Experiments,

2006, pp. 129– 143.

[12]S. Jung and S. Pramanik, “An efficient

path computation model for hierarchically

structured topographical road maps,” IEEE

Trans. Knowl. Data Eng., vol. 14, no. 5,

pp. 1029–1046, Sep. 2002.

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 447

Author’s Profile:

Sailaja Yandrapati
received B.Tech

degree in Computer

Science and

Engineering and

pursuing M.Tech in

Computer Science

and Engineering

from VRS & YRN College of

Engineering and Technology ,Dept

of CSE,Chirala,Prakasam,India.

Damarla Sree

Latha working

as Associate

professor in VRS

& YRN College

of

Engineering and

Technology ,Dept of

CSE,Chirala,Prakasam,India.

