

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 511

Location Aware Keyword Query Suggestion

1. P DIVYA, 2.DR. K NAGESWARARAO

1
Pg Scholar, Department of CSE, Mother Teresa Institute of Science and Technology, Sathupally,

divya.potlapalli@gmail.com

2
 Professor & HOD, Department of CSE, Mother Teresa Institute of Science and Technology, Sathupally,

nageswararaokapu@yahoo.com

ABSTRACT-Keyword suggestion in web

search helps users to access relevant

information without having to know how to

precisely express their queries. Existing

keyword suggestion techniques do not

consider the locations of the users and the

query results; i.e., the spatial proximity of a

user to the retrieved results is not taken as a

factor in the recommendation. However, the

relevance of search results in many

applications (e.g., location-based services) is

known to be correlated with their spatial

proximity to the query issuer. In this paper,

we design a location-aware keyword query

suggestion framework. We propose a

weighted keyword-document graph, which

captures both the semantic relevance

between keyword queries and the spatial

distance between the resulting documents

and the user location. The graph is browsed

in a random-walk-with-restart fashion, to

select the keyword queries with the highest

scores as suggestions. To make our

framework scalable, we propose a partition-

based approach that outperforms the

baseline algorithm by up to an order of

magnitude. The appropriateness of our

framework and the performance of the

algorithms are evaluated using real data.

 1 INTRODUCTION

 Users often have difficulties in expressing

their web search needs; they may not know

the keywords that can retrieve the

information they require [1]. Keyword

suggestion (also known as query

suggestion), which has become one of the

most fundamental features of commercial

Web search engines, helps in this direction.

After submitting a keyword query, the user

may not be satisfied with the results, so the

keyword suggestion module of the search

engine recommends a set of m keyword

queries that are most likely to refine the

user’s search in the right direction. Effective

keyword suggestion methods are based on

click information from query logs [2], [3],

[4], [5], [6], [7], [8] and query session data

[9], [10], [11], or query topic models [12].

New keyword suggestions can be

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 512

determined according to their semantic

relevance to the original keyword query.

The semantic relevance between two

keyword queries can be determined (i) based

on the overlap of their clicked URLs in a

query log [2], [3], [4], (ii) by their proximity

in a bipartite graph that connects keyword

queries and their clicked URLs in the query

log [5], [6], [7], [8], (iii) according to their

cooccurrences in query sessions [13], and

(iv) based on their similarity in the topic

distribution space [12]. However, none of

the existing methods provide locationaware

keyword query suggestion, such that the

suggested keyword queries can retrieve

documents not only related to the user

information needs but also located near the

user location. This requirement emerges due

to the popularity of spatial keyword search

that takes a user location and user-supplied

keyword query as arguments and returns

objects that are spatially close and textually

relevant to these arguments. Google

processed a daily average of 4.7 billion

queries in 20111 , a substantial fraction of

which have local intent and target spatial

web objects (i.e., points of interest with a

web presence having locations as well as

text descriptions) or geo-documents (i.e.,

documents • S. Qi, D. Wu and N. Mamoulis

are with the Department of Computer

Science, the University of Hong Kong,

Hong Kong 1.

http://www.statisticbrain.com/google-

searches associated with geo-locations).

Furthermore, 53% of Bing’s mobile searches

in 2011 were found to have a local intent.2

To fill this gap, we propose a Location-

aware Keyword query Suggestion (LKS)

framework. We illustrate the benefit of LKS

using a toy example. Consider five geo-

documents d1–d5 as listed in

Figure 1(a). Each document di is associated

with a location di .λ as shown in Figure 1(b).

Assume that a user issues a keyword query

kq = “seafood” at location λq, shown in

Figure 1(b). Note that the relevant

documents d1–d3 (containing “seafood”) are

far from λq. A locationaware suggestion is

“lobster”, which can retrieve nearby

documents d4 and d5 that are also relevant

to the user’s original search intention.

Previous keyword query suggestion models

(e.g., [6]) ignore the user location and would

suggest “fish”, which again fails to retrieve

nearby relevant documents. Note that LKS

has a different goal and therefore differs

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 513

from other location-aware recommendation

methods (e.g., auto-completion/instant

search tag recommendation).

3 LKS FRAMEWORK

 Consider a user-supplied query q with

initial input kq; kq can be a single word or a

phrase. Assuming that the query issuer is at

location λq, two intuitive criteria for

selecting good suggestions are: (i) the

suggested keyword queries (words or

phrases) should satisfy the user’s

information needs based on kq and (ii) the

suggested queries can retrieve relevant

documents spatially close to λq. The

proposed LKS framework captures these

two criteria. 2.1 Keyword-Document Graph

Without loss of generality, we consider a set

of geodocuments D such that each document

di ∈ D has a point location di .λ. 3 Let K be

a collection of keyword queries from a

query log. We consider a directed weighted

bipartite graph G = (D, K, E) between D and

K and refer to it as the keyword-document

graph (or simply KD-graph). If a document

di is clicked by a user who issued keyword

query kj in the query log, E contains an edge

e from kj to di and an edge e 0 from di to kj .

Initially, the weights of edges e and e 0 are

the same and equal to the number of clicks

on document di , given keyword query kj

[2]. Therefore, the direct relevance between

a keyword query and a clicked document is

captured by the edge weight. Furthermore,

the semantic relevance between two

keyword queries is captured by their

proximity in the graph G (e.g., computed as

their RWR distance). Any updates in the

query log and/or the document database can

be easily applied on the KD-graph; for a

new query/document, we add a new node to

the graph; for new clicks, we only need to 3.

If a document relates to multiple locations,

we can model it as multiple documents, each

referring to a single location.

Locationindependent documents can also be

included in our framework by turning off the

location awareness component for them

update the corresponding edge weights

accordingly. As an example, Figure 1(a)

shows five documents d1–d5 and three

keyword queries k1–k3. The corresponding

KD-graph is shown in Figure 1(c). For the

ease of presentation, the edge weights are

normalized (i.e., divided by the maximum

number of clicks in the log for any query-

document pair).

 3.2 Location-aware Edge Weight

Adjustment

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 514

The initial KD-graph is what a classic

keyword suggestion approach would use [5],

[6], [7], [8], [10], [11], because it captures

the semantics and textual relevance between

the keyword query and document nodes; i.e.,

the first criterion of location-aware

suggestion. In order to satisfy the second

criterion (i.e., location awareness), we

propose to adjust the edge weights in the

KD-graph based on the spatial relationships

between the location of the query issuer and

the nodes of the KD-graph. Note that this

edge adjustment is query-dependent and

dynamic. In other words, different

adjustment is used for each different query

independently. We now outline the details of

the edge weights adjustment. Recall that a

user-supplied query q consists of two

arguments: an input keyword query kq (a

word or a phrase) and a query location λq.

Given q, the weight w(e) of the edge e from

a keyword query node ki to a document

node dj is adjusted by the following

function: w˜(e) = β × w(e) + (1 − β) × (1 −

dist(λq, dj .λ)) (1) where w(e) is the initial

weight of e in the KD-graph, w˜(e) is the

adjusted edge weight, dist(λq, dj .λ) is the

Euclidean distance between the query

issuer’s location λq and document dj , and

parameter β ∈ [0, 1] is used to balance the

importance between the original (i.e., click-

based) weight and the distance of dj to the

query location. Euclidean distances are

normalized to take values in [0, 1]. This

keywordto-document edge weight

adjustment increases the weights of the

documents that are close to the user’s

location. Let D(ki) be the set of documents

connected to a keyword query ki ∈ K in the

KD-graph. D(ki) may contain multiple

documents and the locations of them form a

spatial distribution. We propose to adjust the

weights of the edges pointing to ki by the

minimum distance between λq and the

locations of documents in D(ki). 4 Such an

adjustment favors keyword query nodes

which have at least one relevant document

close to the query issuer’s location λq.

Specifically, the weight w(e 0) of the edge e

0 from a document node dj to a keyword

query node ki is adjusted as follows: w˜(e 0

) = β × w(e 0) + (1 − β) × (1 − mindist(λq,

D(ki))) (2) where mindist(λq, D(ki)) is the

minimum Euclidean distance5 between λq

and any document in D(ki). For example,

Figure 1(b) shows the locations of the 5

documents of Figure 1(a) and a query

location λq; Figure 1(d) includes the

(approximate) Euclidean distances between

λq and the five documents. Figure 2

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 515

illustrates how the edge 4. Since the

locations of past query issuers are not

always available (e.g., due to privacy

constraints), in this paper, we focus on the

case where only document locations are

known. Therefore, the edge adjustments for

keyword-to-document edges and document-

to-keyword edges are performed differently.

5. The effect of using the average distance to

D(ki) is similar. weights from keyword

query nodes to document nodes (Figure

2(a)) and from document nodes to keyword

query nodes (Figure 2(b)) are adjusted based

on the query location, assuming β = 0.5.

Take the edge from k1 to d1 as a concrete

example. Its weight is calculated using

Equation 1 where dist(λq, d1.λ) = 1. The

weight of the edge from d1 to k1 is

computed using Equation 2 where D(k1) =

{d1, d2} and mindist(λq, D(k1)) = 0.9. We

remark that the original KD-graph G is

constructed only once in advance (as in

previous work [5], [6], [7], [8], [10], [11]).

In addition, any update operations on the

KDgraph are independent to our edge

weight adjustment strategy, which is query-

dependent. Given a user-supplied query q,

the adjusted graph Gq is dynamically

derived from G based on the query location

λq, used to compute suggestions for q, and

then dropped. During this process, Gq is

maintained separately and G is not changed,

so that concurrent or follow up queries are

not affected. As we will discuss in Section

3.1, only a small portion of edges, relevant

to the current query, are adjusted and

cached, hence the adjustment is conducted

efficiently and on-demand, during the

keyword query suggestion process

4 ALGORITHMS

In this section, we introduce a baseline

algorithm (BA) to compute the location-

aware suggestions. Then, we propose a more

efficient partition-based algorithm (PA)

(Baseline Algorithm (BA) We extend the

popular Bookmark-Coloring Algorithm

(BCA) to compute the top-m suggestions as

a baseline algorithm (BA). BCA models

RWR as a bookmark coloring process.

Starting with one unit of active ink injected

into node kq, BA processes the nodes in the

graph in descending order of their active ink.

Different from typical personalized

PageRank problems where the graph is

homogeneous, our KD-graph Gq has two

types of nodes: keyword query nodes and

document nodes. As opposed to BCA, BA

only ranks keyword query nodes; a keyword

query node retains α portion of its active ink

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 516

and distributes 1−α portion to its neighbor

nodes based on its outgoing adjusted edge

weights, while a document node distributes

all its active ink to its neighbor nodes. In our

implementation, the weight of each edge e is

adjusted based on λq online, at the time

when the source node of e is distributing

ink. This means that the edge weight

adjustment is done during BA (i.e., Gq

needs not be computed and materialized

before the algorithm starts). Moreover, a

node may be processed several times; thus,

the adjusted weights of its outgoing edges

are cached after the node is first processed,

for later usage. A node can distribute ink

when its active ink exceeds a threshold .

Algorithm BA terminates when either (i) the

ink retained at the topmth keyword query

node is more than the ink retained at the top-

(m + 1)th keyword query node plus the sum

of the active ink of all nodes [30] or (ii) the

active ink of each node is less than

(typically, = 10−5). Algorithm 1 is a

pseudo code of BA. Priority queue Q

maintains the nodes to be processed in

descending order of their active ink (line 1).

Q initially contains one entry, i.e., the user-

supplied keywords kq with active ink 1 (line

2). Priority queue C, initially empty, stores

the candidate suggestions in descending

order of their retained ink (line 1). The sum

of the active ink of all nodes AINK is set to

1 (line 3). Termination conditions (i) and (ii)

are checked at lines 4 and 8, respectively.

The processing of a keyword query node

ALGORITHM 1:

Baseline BA

Input : G(D, K, E), q = (kq, λq), m,

 Output: C

1 PriorityQueue Q ← ∅, C ← ∅

2 Add kq to Q with kq.aink ← 1

3 AINK ← 1

4 while Q 6= ∅ and Q.top.aink ≥1 do

5 Deheap the first entry top from Q

6 tm = the top-m entry from C

 7 tm0 = the top-(m + 1) entry from C

8 if tm.rink > tm0 .rink + AINK then

 9 break

 10 distratio = 1

11 if top is a keyword query node then

 12 distratio = 1 − α

13 top.rink ← top.rink + top.aink × α

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 517

14 AINK ← AINK − top.aink × α

15 if there exist a copy t of top in C then

16 Remove t from C

17 top.rink ← top.rink + t.rink

18 Add top to C

19 for each node v connected to top in G do

 20 v.aink ← top.aink × distratio × w˜(top,

v)

21 if there exists a copy v 0 of v in Q then

22 Remove v 0 from Q; v.aink ← v.aink + v

0 .aink

 23 Add v to Q

 24 return the top-m entries (excluding kq)

in C involves retaining α portion of its active

ink (line 13) and distributing 1 − α portion

to each of its neighbor document nodes

based on the adjusted edge weights (lines

19–23). The total active ink AINK is

modified accordingly (line 14). As soon as a

keyword query node has some retained ink,

it enters C. The processing of a document

node involves distributing all its active ink

to neighbor keyword query nodes according

to the adjusted edge weights (lines 19– 23).

The algorithm returns the top-m candidate

suggestions other than kq in C as the result

(line 24). Example 2. Figure 3 shows the

steps of BA (for m = 1, = 0.1 and α = 0.5),

when applied to the adjusted KD graph of

our running example (see Example 1 and

Figures 1,2). The number next to each node

indicates its amount of active ink. The

numbers in rounded rectangles are the

amount of retained ink. Initially, one unit

amount of ink is injected into node k2, i.e.,

the keyword query kq = “seafood” supplied

by the user. In the first iteration, node k2

retains 0.5 amount of ink and distributes 0.5

amount of ink to its neighbor document

nodes d1–d3 according to the adjusted edge

weights. In the second iteration, d3

distributes its active ink of amount 0.325 to

its neighbor keyword query nodes k2 and

k3. BA terminates at the sixth iteration

where the active ink of each node is smaller

than . The top-1 suggestion (excluding user

query k2) is k3 = “lobster”, with the largest

amount of retained ink (0.098). 3.2

Partition-based Algorithm (PA) Algorithm

BA can be slow for several reasons. First, at

each iteration, only one node is processed;

thus, the active ink drops slowly and the

termination conditions are met. Second,

given the large number of iterations, the

overhead of maintaining queue Q is

significant. Finally, the nodes distribute their

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 518

active ink to all their neighbors, even if

some of them only receive a small amount

of ink. We note that existing pre-processing

techniques that can accelerate RWR search

and BCA (e.g., the pre-selection of hub

nodes) require complete knowledge of the

graph before the algorithm starts. Therefore,

they are not applicable to our problem,

because the edge weights in graph Gq

depend on the query location, which is

unknown in advance. Applying a pre-

computation technique for all possible query

locations (i.e., all possible Gq) has extreme

computational and storage requirements. To

improve the performance of BA, in this

section, we propose a partition-based

algorithm (PA) that divides the keyword

queries and the documents in the KD-graph

G into groups. Let P K = {P K i } be the

partitions of the keyword queries and P D =

{P D i } be the document partitions.

Algorithm PA follows the basic routine of

algorithm BA, but with the following

differences: (1) Node-Partition Graphs. PA

uses two directed graphs GKP and GDP

constructed offline from the KD-graph G

and partitions P K and P D. In graph GKP ,

a keyword query node ki connects to a

document partition P D if ki connects in G

to at least one document in P D. Similarly,

in graph GDP , a document node dj connects

to a keyword partition P K if dj connects in

G to at least one keyword query node ki . As

an example, in Figure 4, the document

partitions are P D 1 = {d1, d2} and P D 2 =

{d3, d4, d5} and the keyword query

partitions are P K 1 = {k1} and P K 2 = {k2,

k3}. The edge weights are defined based on

graph Gq, computed during the execution of

PA. Each edge weight shown in Figure 4

indicates the portion of the ink to be

distributed to a partition P from a node v

that is the sum of the adjusted weights of the

edges from node v to the nodes in P

according to Gq. (2) Ink Distribution. In PA,

each node distributes its active ink to its

neighbor partitions (contrast this to BA,

where each node distributes its active ink to

each of its neighbor nodes). The priority

queue used in BA maintains the nodes that

will distribute ink, but the priority queue

used in PA records the partitions that will be

processed. The ink received by a partition is

not spread to the nodes inside the partition

until this partition reaches the head of the

priority queue. The benefit is that a partition

may receive ink from the same node several

times while waiting in the queue, so that the

nodes in this partition receive ink in batch

when this k2 0.35 0.65 d1 d2 d3 d4 k3 k1

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 519

1.0 1.0 PD 1 PD 2 PK 1 PK 2 d5 (a)

Keywords to Partitions k2 d1 d2 d3 d4 k3 k1

PD 1 PD 2 PK 1 PK 2 d5 0.3 0.7 0.5 0.5 1.0

1.0 1.0 (b) Documents to Partitions. In

algorithm PA, the active ink drops fast and

the termination conditions may be fulfilled

early. Thus, the number of iterations needed

is largely reduced and so is the cost spent for

maintaining the priority queue Q. Moreover,

since the number of partitions is much

smaller than that of nodes, the size of queue

Q is much smaller compared to that used in

BA, so operations on it are fast as well. As

an example, in Figure 5, in algorithm BA,

node k2 distributes its active ink to each of

its three neighbor nodes d1–d3. However, in

algorithm PA, the active ink of k2 is only

distributed to two recipients: partitions P D

1 and P D 2 ; an underlying document node

will not receive the ink, until its partition

reaches the top of the queue. Lazy

Distribution Mechanism.. This is an

interesting subject for our future work.

Learning to Rank Approaches. Some query

suggestion approaches are based on learning

models trained from co-occurrences of

queries in search logs. Another learningto-

rank approach is trained based on several

types of query features, including query

performance prediction. Li et al. [12] train a

hidden topic model. For each candidate

query, its posterior distribution over the

hidden topic space is determined. Given a

user query q, a list of suggestions is

produced based on their similarity to q in the

topic distribution space. Our work is not

based on learning models; in the future, it

would be interesting to study how these

models can be extended to consider location

information. Clustering based Approaches.

Beeferman and Berger [3] view the query

log as a query-URL bipartite graph. By

applying an agglomerative clustering

algorithm on the vertices in the graph, query

clusters can be identified. Then, given a

user-supplied query q, the queries that

belong to the same cluster as q does are

returned to the user as suggestions. further

extended the approach to also take into

account the similarity between the query

content during clustering. In [2], a similar

approach is proposed: the queries are

modeled as term-weighted vectors and then

clustered. The vector of a query q includes

the clicked URLs by the users who posed q

as terms and the weights are calculated

based on term frequency and the click

popularity of the URL in the answers of q.

Cao et al. [4] take into account the

immediately preceding queries as context in

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 520

query suggestion. They summarize queries

in search logs into concepts by clustering a

query-URL bipartite graph. User session

data are converted to concept sequences and

indexed by a suffix tree. The query sequence

submitted by the user is mapped to a

sequence of concepts; the suffix tree is then

searched to find query suggestions. Finally,

Li et al. cluster queries from search logs to

extract query concepts, based on which

recommended queries are selected and

employ a probabilistic model and a greedy

heuristic algorithm to achieve

recommendation diversification. Location

information could also be considered in all

these clustering models. Such an approach is

out of the scope of our current work, but we

are interested in investigating its

effectiveness in the future. Miscellaneous

Approaches. Zhang and Nasraoui try to

create a graph with edges between

consecutive queries in each session,

weighted by the textual similarity between

these queries. A candidate suggestion for a

given query is given a score based on the

length of the path between the two queries,

aggregated across all sessions in a query log

where the query and the suggestion co-

occurred. Cucerzan and White propose to

generate query suggestions based on user

landing pages (that is, the web pages that

users end a query with, through post-query

browsing). Given a user query, they utilize

its recorded landing pages and suggest to the

user other queries that have these landing

pages in their top ranked results. A

probabilistic mechanism generates query

suggestions from the corpus without using

query logs. Location-aware type-ahead

search. References and both study the

problem of location-aware type-ahead

search (LTAS), also known as instant

search. LTAS finds documents near a user

location, as the user types in a keyword

query character by character. This problem

is more related to keyword query completion

than to the query suggestion problem that

we study in this paper, since the

recommended keywords must have the

user’s input as prefix. On the other hand, the

query suggestion problem that we study in

this paper takes a completed query and

recommends other queries that are

semantically relevant without the constraint

that the suggestions should have the original

user query as prefix. Therefore, our LKS

framework is more flexible and can help

users to express various aspects of a topic.

The suggested keywords can be different

than the usersupplied keywords, but they

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 521

should be textually relevant. In addition, the

methods for LTAS are very different to our

LKS algorithms, as they take advantage of

the prefix requirement to reduce the search

space (with the help of trie data structures).

Location-aware suggestions based on user

history. Google provides location-based

query suggestions by simply selecting the

user’s past search queries that have results

close to the user’s current location. These

suggestions may be insufficient if the user

did not perform any historical searches near

her current location. In addition, query

suggestion based on location only may not

match the user’s search intent. On the other

hand, our framework aims at suggesting

keyword queries that satisfy the user’s

information needs and have nearby results,

irrespectively to the user’s search history.

Query relaxation. The database research

community has studied a relevant problem

to query suggestion, called query relaxation.

The objective is to generalize an SQL query

in case it returns too few or no results .

Query relaxation approaches cannot be

applied for keyword query suggestion,

because they require the relaxed query to

contain the results of the original query,

which is not essentially the case in query

suggestion.

5.2 Random Walk Computation Random

walk with restart (RWR), also known as

Personalized PageRank (PPR), has been

widely used for node similarity measures in

graph data, especially since its successful

application by the Google search engine

[47]. Pre-computation based Approaches.

Some matrix-based methods [22], [23] solve

PPR by pre-computing the inversion matrix.

Tong et al. [22] propose a matrix-based

approach B LIN that reduces the pre-

computation cost of the full matrix inversion

by partitioning the graph. Fujiwara et al.

[23] propose a K-dash method that finds the

top-k nodes with the highest PPR scores,

based on a LU decomposition of the

transition matrix. Alternative to matrix-

based approaches, Monte Carlo (MC)

methods [24], [25], [26] can be used to

simulate the RWR process. Fogaras et al.

[24] propose to approximate PPR by pre-

computing and approximating for each node

u a set of ending vertices for random walks

starting from u. If u later becomes a query

node, its PPR is approximated according to

the distribution of these vertices. Similarly,

Bahmani et al. [25] approximate PPR by

counting the number of times a node is

visited by precomputed random walk paths.

All above methods require the apriori

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 522

knowledge of the complete graph; however,

in our problem, the edge weights are

dynamically adjusted according to the user

location, thus these approaches are

inapplicable. Online Approaches. MC can

also be applied online, without relying on

pre-computations; a number of random

walks are tried from the query node and the

PPR score of other nodes are estimated from

these samples [26]. However, as shown later

in [27], a large number of (expensive)

random walks are required in order to

achieve acceptable precision. Fujiwara et al.

[27] propose a method for efficient ad-hoc

top-k PPR search with exact node ranking.

They compute the random walk (without

restart) probabilities of the nodes, and

employ the probabilities to estimate

upper/lower bounds of the candidate nodes.

This approach is applicable when the

complete transition matrix is available

beforehand, however, obtaining the

complete transition matrix in our problem

involves the multiplication of two matrices

and it is very expensive. Berkhin proposes

the Bookmark Coloring Algorithm (BCA) to

derive an approximation of the PPR vector.

Gupta et al extend BCA and employ early

termination heuristics for the top-k PPR

calculation. We extend algorithm BCA as

our baseline algorithm (BA) to compute the

location-aware suggestions.

 6 CONCLUSION

In this paper, we proposed an LKS

framework providing keyword suggestions

that are relevant to the user information

needs and at the same time can retrieve

relevant documents near the user location. A

baseline algorithm extended from algorithm

BCA is introduced to solve the problem.

Then, we proposed a partition-based

algorithm (PA) which computes the scores

of the candidate keyword queries at the

partition level and utilizes a lazy mechanism

to greatly reduce the computational cost.

Empirical studies are conducted to study the

effectiveness of our LKS framework and the

performance of the proposed algorithms.

The result shows that the framework can

offer useful suggestions and that PA

outperforms the baseline algorithm

significantly. In the future, we plan to

further study the effectiveness of the LKS

framework by collecting more data and

designing a benchmark. In addition, subject

to the availability of data, we will adapt and

test LKS for the case where the locations of

the query issuers are available in the query

log. In addition, we believe that PA can also

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 523

be applied to accelerate RWR on general

graphs with dynamic edge weights and we

will investigate its general applicability in

the future. Moreover, the current version of

PA seems to be independent of the

partitioning method. It would be interesting

to investigate whether alternative

partitioning heuristics can further reduce the

cost of the algorithm.

REFERENCES

[1] M. P. Kato, T. Sakai, and K. Tanaka,

“When do people use query suggestion? A

query suggestion log analysis,” Inf. Retr.,

vol. 16, no. 6, pp. 725–746, 2013.

TECHNICAL REPORT, DEPARTMENT

OF COMPUTER SCIENCE, UNIVERSITY

OF HONG KONG 14

[2] R. Baeza-Yates, C. Hurtado, and M.

Mendoza, “Query recommendation using

query logs in search engines,” in EDBT,

2004, pp. 588–596.

[3] D. Beeferman and A. Berger,

“Agglomerative clustering of a search

engine query log,” in KDD, 2000, pp. 407–

416.

[4] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao,

E. Chen, and H. Li, “Context-aware query

suggestion by mining click-through and

session data,” in KDD, 2008, pp. 875–883.

[5] N. Craswell and M. Szummer, “Random

walks on the click graph,” in SIGIR, 2007,

pp. 239–246.

[6] Q. Mei, D. Zhou, and K. Church, “Query

suggestion using hitting time,” in CIKM,

2008, pp. 469–478.

[7] Y. Song and L.-w. He, “Optimal rare

query suggestion with implicit user

feedback,” in WWW, 2010, pp. 901–910.

 [8] T. Miyanishi and T. Sakai, “Time-aware

structured query suggestion,” in SIGIR,

2013, pp. 809–812.

[9] A. Anagnostopoulos, L. Becchetti, C.

Castillo, and A. Gionis, “An optimization

framework for query recommendation,” in

WSDM, 2010, pp. 161–170.

 [10] P. Boldi, F. Bonchi, C. Castillo, D.

Donato, A. Gionis, and S. Vigna, “The

query-flow graph: Model and applications,”

in CIKM, 2008, pp. 609–618.

[11] Y. Song, D. Zhou, and L.-w. He,

“Query suggestion by constructing term-

transition graphs,” in WSDM, 2012, pp.

353–362.

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 524

[12] L. Li, G. Xu, Z. Yang, P. Dolog, Y.

Zhang, and M. Kitsuregawa, “An efficient

approach to suggesting topically related web

queries using hidden topic model,” WWW,

pp. 273–297, 2013. [13] U. Ozertem, O.

Chapelle, P. Donmez, and E. Velipasaoglu,

“Learning to suggest: A machine learning

framework for ranking query suggestions,”

in SIGIR, 2012, pp. 25–34. [14] D. Wu, M.

L. Yiu, and C. S. Jensen, “Moving spatial

keyword queries: Formulation, methods, and

analysis,” ACM Trans. Database Syst., vol.

38, no. 1, 2013.

 [15] D. Wu, G. Cong, and C. S. Jensen, “A

framework for efficient spatial web object

retrieval,” VLDB J., vol. 21, no. 6, pp. 797–

822, 2012.

 [16] J. Fan, G. Li, L. Zhou, S. Chen, and J.

Hu, “SEAL: Spatio-textual similarity

search,” PVLDB, vol. 5, no. 9, pp. 824–835,

2012.

