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ABSTRACT-Keyword suggestion in web 

search helps users to access relevant 

information without having to know how to 

precisely express their queries. Existing 

keyword suggestion techniques do not 

consider the locations of the users and the 

query results; i.e., the spatial proximity of a 

user to the retrieved results is not taken as a 

factor in the recommendation. However, the 

relevance of search results in many 

applications (e.g., location-based services) is 

known to be correlated with their spatial 

proximity to the query issuer. In this paper, 

we design a location-aware keyword query 

suggestion framework. We propose a 

weighted keyword-document graph, which 

captures both the semantic relevance 

between keyword queries and the spatial 

distance between the resulting documents 

and the user location. The graph is browsed 

in a random-walk-with-restart fashion, to 

select the keyword queries with the highest 

scores as suggestions. To make our 

framework scalable, we propose a partition-

based approach that outperforms the 

baseline algorithm by up to an order of 

magnitude. The appropriateness of our 

framework and the performance of the 

algorithms are evaluated using real data.  

 1 INTRODUCTION 

 Users often have difficulties in expressing 

their web search needs; they may not know 

the keywords that can retrieve the 

information they require [1]. Keyword 

suggestion (also known as query 

suggestion), which has become one of the 

most fundamental features of commercial 

Web search engines, helps in this direction. 

After submitting a keyword query, the user 

may not be satisfied with the results, so the 

keyword suggestion module of the search 

engine recommends a set of m keyword 

queries that are most likely to refine the 

user’s search in the right direction. Effective 

keyword suggestion methods are based on 

click information from query logs [2], [3], 

[4], [5], [6], [7], [8] and query session data 

[9], [10], [11], or query topic models [12]. 

New keyword suggestions can be 
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determined according to their semantic 

relevance to the original keyword query. 

The semantic relevance between two 

keyword queries can be determined (i) based 

on the overlap of their clicked URLs in a 

query log [2], [3], [4], (ii) by their proximity 

in a bipartite graph that connects keyword 

queries and their clicked URLs in the query 

log [5], [6], [7], [8], (iii) according to their 

cooccurrences in query sessions [13], and 

(iv) based on their similarity in the topic 

distribution space [12]. However, none of 

the existing methods provide locationaware 

keyword query suggestion, such that the 

suggested keyword queries can retrieve 

documents not only related to the user 

information needs but also located near the 

user location. This requirement emerges due 

to the popularity of spatial keyword search 

that takes a user location and user-supplied 

keyword query as arguments and returns 

objects that are spatially close and textually 

relevant to these arguments. Google 

processed a daily average of 4.7 billion 

queries in 20111 , a substantial fraction of 

which have local intent and target spatial 

web objects (i.e., points of interest with a 

web presence having locations as well as 

text descriptions) or geo-documents (i.e., 

documents • S. Qi, D. Wu and N. Mamoulis 

are with the Department of Computer 

Science, the University of Hong Kong, 

Hong Kong 1. 

http://www.statisticbrain.com/google-

searches associated with geo-locations). 

Furthermore, 53% of Bing’s mobile searches 

in 2011 were found to have a local intent.2 

To fill this gap, we propose a Location-

aware Keyword query Suggestion (LKS) 

framework. We illustrate the benefit of LKS 

using a toy example. Consider five geo-

documents d1–d5 as listed in  

Figure 1(a). Each document di is associated 

with a location di .λ as shown in Figure 1(b). 

Assume that a user issues a keyword query 

kq = “seafood” at location λq, shown in 

Figure 1(b). Note that the relevant 

documents d1–d3 (containing “seafood”) are 

far from λq. A locationaware suggestion is 

“lobster”, which can retrieve nearby 

documents d4 and d5 that are also relevant 

to the user’s original search intention. 

Previous keyword query suggestion models 

(e.g., [6]) ignore the user location and would 

suggest “fish”, which again fails to retrieve 

nearby relevant documents. Note that LKS 

has a different goal and therefore differs 
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from other location-aware recommendation 

methods (e.g., auto-completion/instant 

search tag recommendation).  

3 LKS FRAMEWORK 

 Consider a user-supplied query q with 

initial input kq; kq can be a single word or a 

phrase. Assuming that the query issuer is at 

location λq, two intuitive criteria for 

selecting good suggestions are: (i) the 

suggested keyword queries (words or 

phrases) should satisfy the user’s 

information needs based on kq and (ii) the 

suggested queries can retrieve relevant 

documents spatially close to λq. The 

proposed LKS framework captures these 

two criteria. 2.1 Keyword-Document Graph 

Without loss of generality, we consider a set 

of geodocuments D such that each document 

di ∈ D has a point location di .λ. 3 Let K be 

a collection of keyword queries from a 

query log. We consider a directed weighted 

bipartite graph G = (D, K, E) between D and 

K and refer to it as the keyword-document 

graph (or simply KD-graph). If a document 

di is clicked by a user who issued keyword 

query kj in the query log, E contains an edge 

e from kj to di and an edge e 0 from di to kj . 

Initially, the weights of edges e and e 0 are 

the same and equal to the number of clicks 

on document di , given keyword query kj 

[2]. Therefore, the direct relevance between 

a keyword query and a clicked document is 

captured by the edge weight. Furthermore, 

the semantic relevance between two 

keyword queries is captured by their 

proximity in the graph G (e.g., computed as 

their RWR distance). Any updates in the 

query log and/or the document database can 

be easily applied on the KD-graph; for a 

new query/document, we add a new node to 

the graph; for new clicks, we only need to 3. 

If a document relates to multiple locations, 

we can model it as multiple documents, each 

referring to a single location. 

Locationindependent documents can also be 

included in our framework by turning off the 

location awareness component for them 

update the corresponding edge weights 

accordingly. As an example, Figure 1(a) 

shows five documents d1–d5 and three 

keyword queries k1–k3. The corresponding 

KD-graph is shown in Figure 1(c). For the 

ease of presentation, the edge weights are 

normalized (i.e., divided by the maximum 

number of clicks in the log for any query-

document pair). 

 3.2 Location-aware Edge Weight 

Adjustment  
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The initial KD-graph is what a classic 

keyword suggestion approach would use [5], 

[6], [7], [8], [10], [11], because it captures 

the semantics and textual relevance between 

the keyword query and document nodes; i.e., 

the first criterion of location-aware 

suggestion. In order to satisfy the second 

criterion (i.e., location awareness), we 

propose to adjust the edge weights in the 

KD-graph based on the spatial relationships 

between the location of the query issuer and 

the nodes of the KD-graph. Note that this 

edge adjustment is query-dependent and 

dynamic. In other words, different 

adjustment is used for each different query 

independently. We now outline the details of 

the edge weights adjustment. Recall that a 

user-supplied query q consists of two 

arguments: an input keyword query kq (a 

word or a phrase) and a query location λq. 

Given q, the weight w(e) of the edge e from 

a keyword query node ki to a document 

node dj is adjusted by the following 

function: w˜(e) = β × w(e) + (1 − β) × (1 − 

dist(λq, dj .λ)) (1) where w(e) is the initial 

weight of e in the KD-graph, w˜(e) is the 

adjusted edge weight, dist(λq, dj .λ) is the 

Euclidean distance between the query 

issuer’s location λq and document dj , and 

parameter β ∈ [0, 1] is used to balance the 

importance between the original (i.e., click-

based) weight and the distance of dj to the 

query location. Euclidean distances are 

normalized to take values in [0, 1]. This 

keywordto-document edge weight 

adjustment increases the weights of the 

documents that are close to the user’s 

location. Let D(ki) be the set of documents 

connected to a keyword query ki ∈ K in the 

KD-graph. D(ki) may contain multiple 

documents and the locations of them form a 

spatial distribution. We propose to adjust the 

weights of the edges pointing to ki by the 

minimum distance between λq and the 

locations of documents in D(ki). 4 Such an 

adjustment favors keyword query nodes 

which have at least one relevant document 

close to the query issuer’s location λq. 

Specifically, the weight w(e 0 ) of the edge e 

0 from a document node dj to a keyword 

query node ki is adjusted as follows: w˜(e 0 

) = β × w(e 0 ) + (1 − β) × (1 − mindist(λq, 

D(ki))) (2) where mindist(λq, D(ki)) is the 

minimum Euclidean distance5 between λq 

and any document in D(ki). For example, 

Figure 1(b) shows the locations of the 5 

documents of Figure 1(a) and a query 

location λq; Figure 1(d) includes the 

(approximate) Euclidean distances between 

λq and the five documents. Figure 2 
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illustrates how the edge 4. Since the 

locations of past query issuers are not 

always available (e.g., due to privacy 

constraints), in this paper, we focus on the 

case where only document locations are 

known. Therefore, the edge adjustments for 

keyword-to-document edges and document-

to-keyword edges are performed differently. 

5. The effect of using the average distance to 

D(ki) is similar. weights from keyword 

query nodes to document nodes (Figure 

2(a)) and from document nodes to keyword 

query nodes (Figure 2(b)) are adjusted based 

on the query location, assuming β = 0.5. 

Take the edge from k1 to d1 as a concrete 

example. Its weight is calculated using 

Equation 1 where dist(λq, d1.λ) = 1. The 

weight of the edge from d1 to k1 is 

computed using Equation 2 where D(k1) = 

{d1, d2} and mindist(λq, D(k1)) = 0.9. We 

remark that the original KD-graph G is 

constructed only once in advance (as in 

previous work [5], [6], [7], [8], [10], [11]). 

In addition, any update operations on the 

KDgraph are independent to our edge 

weight adjustment strategy, which is query-

dependent. Given a user-supplied query q, 

the adjusted graph Gq is dynamically 

derived from G based on the query location 

λq, used to compute suggestions for q, and 

then dropped. During this process, Gq is 

maintained separately and G is not changed, 

so that concurrent or follow up queries are 

not affected. As we will discuss in Section 

3.1, only a small portion of edges, relevant 

to the current query, are adjusted and 

cached, hence the adjustment is conducted 

efficiently and on-demand, during the 

keyword query suggestion process 

4 ALGORITHMS  

In this section, we introduce a baseline 

algorithm (BA) to compute the location-

aware suggestions. Then, we propose a more 

efficient partition-based algorithm (PA) 

(Baseline Algorithm (BA) We extend the 

popular Bookmark-Coloring Algorithm 

(BCA)  to compute the top-m suggestions as 

a baseline algorithm (BA). BCA models 

RWR as a bookmark coloring process. 

Starting with one unit of active ink injected 

into node kq, BA processes the nodes in the 

graph in descending order of their active ink. 

Different from typical personalized 

PageRank problems where the graph is 

homogeneous, our KD-graph Gq has two 

types of nodes: keyword query nodes and 

document nodes. As opposed to BCA, BA 

only ranks keyword query nodes; a keyword 

query node retains α portion of its active ink 
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and distributes 1−α portion to its neighbor 

nodes based on its outgoing adjusted edge 

weights, while a document node distributes 

all its active ink to its neighbor nodes. In our 

implementation, the weight of each edge e is 

adjusted based on λq online, at the time 

when the source node of e is distributing 

ink. This means that the edge weight 

adjustment is done during BA (i.e., Gq 

needs not be computed and materialized 

before the algorithm starts). Moreover, a 

node may be processed several times; thus, 

the adjusted weights of its outgoing edges 

are cached after the node is first processed, 

for later usage. A node can distribute ink 

when its active ink exceeds a threshold . 

Algorithm BA terminates when either (i) the 

ink retained at the topmth keyword query 

node is more than the ink retained at the top-

(m + 1)th keyword query node plus the sum 

of the active ink of all nodes [30] or (ii) the 

active ink of each node is less than  

(typically,  = 10−5 ). Algorithm 1 is a 

pseudo code of BA. Priority queue Q 

maintains the nodes to be processed in 

descending order of their active ink (line 1). 

Q initially contains one entry, i.e., the user-

supplied keywords kq with active ink 1 (line 

2). Priority queue C, initially empty, stores 

the candidate suggestions in descending 

order of their retained ink (line 1). The sum 

of the active ink of all nodes AINK is set to 

1 (line 3). Termination conditions (i) and (ii) 

are checked at lines 4 and 8, respectively. 

The processing of a keyword query node  

ALGORITHM 1:  

Baseline BA  

Input : G(D, K, E), q = (kq, λq), m,  

 Output: C  

1 PriorityQueue Q ← ∅, C ← ∅  

2 Add kq to Q with kq.aink ← 1  

3 AINK ← 1  

4 while Q 6= ∅ and Q.top.aink ≥1 do  

5 Deheap the first entry top from Q  

6 tm = the top-m entry from C 

 7 tm0 = the top-(m + 1) entry from C  

8 if tm.rink > tm0 .rink + AINK then 

 9 break 

 10 distratio = 1  

11 if top is a keyword query node then 

 12 distratio = 1 − α  

13 top.rink ← top.rink + top.aink × α  
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14 AINK ← AINK − top.aink × α  

15 if there exist a copy t of top in C then  

16 Remove t from C  

17 top.rink ← top.rink + t.rink  

18 Add top to C  

19 for each node v connected to top in G do 

 20 v.aink ← top.aink × distratio × w˜(top, 

v)  

21 if there exists a copy v 0 of v in Q then  

22 Remove v 0 from Q; v.aink ← v.aink + v 

0 .aink 

 23 Add v to Q 

 24 return the top-m entries (excluding kq) 

in C involves retaining α portion of its active 

ink (line 13) and distributing 1 − α portion 

to each of its neighbor document nodes 

based on the adjusted edge weights (lines 

19–23). The total active ink AINK is 

modified accordingly (line 14). As soon as a 

keyword query node has some retained ink, 

it enters C. The processing of a document 

node involves distributing all its active ink 

to neighbor keyword query nodes according 

to the adjusted edge weights (lines 19– 23). 

The algorithm returns the top-m candidate 

suggestions other than kq in C as the result 

(line 24). Example 2. Figure 3 shows the 

steps of BA (for m = 1, = 0.1 and α = 0.5), 

when applied to the adjusted KD graph of 

our running example (see Example 1 and 

Figures 1,2). The number next to each node 

indicates its amount of active ink. The 

numbers in rounded rectangles are the 

amount of retained ink. Initially, one unit 

amount of ink is injected into node k2, i.e., 

the keyword query kq = “seafood” supplied 

by the user. In the first iteration, node k2 

retains 0.5 amount of ink and distributes 0.5 

amount of ink to its neighbor document 

nodes d1–d3 according to the adjusted edge 

weights. In the second iteration, d3 

distributes its active ink of amount 0.325 to 

its neighbor keyword query nodes k2 and 

k3. BA terminates at the sixth iteration 

where the active ink of each node is smaller 

than . The top-1 suggestion (excluding user 

query k2) is k3 = “lobster”, with the largest 

amount of retained ink (0.098). 3.2 

Partition-based Algorithm (PA) Algorithm 

BA can be slow for several reasons. First, at 

each iteration, only one node is processed; 

thus, the active ink drops slowly and the 

termination conditions are met. Second, 

given the large number of iterations, the 

overhead of maintaining queue Q is 

significant. Finally, the nodes distribute their 
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active ink to all their neighbors, even if 

some of them only receive a small amount 

of ink. We note that existing pre-processing 

techniques that can accelerate RWR search 

and BCA (e.g., the pre-selection of hub 

nodes ) require complete knowledge of the 

graph before the algorithm starts. Therefore, 

they are not applicable to our problem, 

because the edge weights in graph Gq 

depend on the query location, which is 

unknown in advance. Applying a pre-

computation technique for all possible query 

locations (i.e., all possible Gq) has extreme 

computational and storage requirements. To 

improve the performance of BA, in this 

section, we propose a partition-based 

algorithm (PA) that divides the keyword 

queries and the documents in the KD-graph 

G into groups. Let P K = {P K i } be the 

partitions of the keyword queries and P D = 

{P D i } be the document partitions. 

Algorithm PA follows the basic routine of 

algorithm BA, but with the following 

differences: (1) Node-Partition Graphs. PA 

uses two directed graphs GKP and GDP 

constructed offline from the KD-graph G 

and partitions P K and P D. In graph GKP , 

a keyword query node ki connects to a 

document partition P D if ki connects in G 

to at least one document in P D. Similarly, 

in graph GDP , a document node dj connects 

to a keyword partition P K if dj connects in 

G to at least one keyword query node ki . As 

an example, in Figure 4, the document 

partitions are P D 1 = {d1, d2} and P D 2 = 

{d3, d4, d5} and the keyword query 

partitions are P K 1 = {k1} and P K 2 = {k2, 

k3}. The edge weights are defined based on 

graph Gq, computed during the execution of 

PA. Each edge weight shown in Figure 4 

indicates the portion of the ink to be 

distributed to a partition P from a node v 

that is the sum of the adjusted weights of the 

edges from node v to the nodes in P 

according to Gq. (2) Ink Distribution. In PA, 

each node distributes its active ink to its 

neighbor partitions (contrast this to BA, 

where each node distributes its active ink to 

each of its neighbor nodes). The priority 

queue used in BA maintains the nodes that 

will distribute ink, but the priority queue 

used in PA records the partitions that will be 

processed. The ink received by a partition is 

not spread to the nodes inside the partition 

until this partition reaches the head of the 

priority queue. The benefit is that a partition 

may receive ink from the same node several 

times while waiting in the queue, so that the 

nodes in this partition receive ink in batch 

when this k2 0.35 0.65 d1 d2 d3 d4 k3 k1 
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1.0 1.0 PD 1 PD 2 PK 1 PK 2 d5 (a) 

Keywords to Partitions k2 d1 d2 d3 d4 k3 k1 

PD 1 PD 2 PK 1 PK 2 d5 0.3 0.7 0.5 0.5 1.0 

1.0 1.0 (b) Documents to Partitions. In 

algorithm PA, the active ink drops fast and 

the termination conditions may be fulfilled 

early. Thus, the number of iterations needed 

is largely reduced and so is the cost spent for 

maintaining the priority queue Q. Moreover, 

since the number of partitions is much 

smaller than that of nodes, the size of queue 

Q is much smaller compared to that used in 

BA, so operations on it are fast as well. As 

an example, in Figure 5, in algorithm BA, 

node k2 distributes its active ink to each of 

its three neighbor nodes d1–d3. However, in 

algorithm PA, the active ink of k2 is only 

distributed to two recipients: partitions P D 

1 and P D 2 ; an underlying document node 

will not receive the ink, until its partition 

reaches the top of the queue.  Lazy 

Distribution Mechanism.. This is an 

interesting subject for our future work. 

Learning to Rank Approaches. Some query 

suggestion approaches are based on learning 

models trained from co-occurrences of 

queries in search logs. Another learningto-

rank approach is trained based on several 

types of query features, including query 

performance prediction. Li et al. [12] train a 

hidden topic model. For each candidate 

query, its posterior distribution over the 

hidden topic space is determined. Given a 

user query q, a list of suggestions is 

produced based on their similarity to q in the 

topic distribution space. Our work is not 

based on learning models; in the future, it 

would be interesting to study how these 

models can be extended to consider location 

information. Clustering based Approaches. 

Beeferman and Berger [3] view the query 

log as a query-URL bipartite graph. By 

applying an agglomerative clustering 

algorithm on the vertices in the graph, query 

clusters can be identified. Then, given a 

user-supplied query q, the queries that 

belong to the same cluster as q does are 

returned to the user as suggestions.  further 

extended the approach to also take into 

account the similarity between the query 

content during clustering. In [2], a similar 

approach is proposed: the queries are 

modeled as term-weighted vectors and then 

clustered. The vector of a query q includes 

the clicked URLs by the users who posed q 

as terms and the weights are calculated 

based on term frequency and the click 

popularity of the URL in the answers of q. 

Cao et al. [4] take into account the 

immediately preceding queries as context in 
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query suggestion. They summarize queries 

in search logs into concepts by clustering a 

query-URL bipartite graph. User session 

data are converted to concept sequences and 

indexed by a suffix tree. The query sequence 

submitted by the user is mapped to a 

sequence of concepts; the suffix tree is then 

searched to find query suggestions. Finally, 

Li et al.  cluster queries from search logs to 

extract query concepts, based on which 

recommended queries are selected and 

employ a probabilistic model and a greedy 

heuristic algorithm to achieve 

recommendation diversification. Location 

information could also be considered in all 

these clustering models. Such an approach is 

out of the scope of our current work, but we 

are interested in investigating its 

effectiveness in the future. Miscellaneous 

Approaches. Zhang and Nasraoui try to 

create a graph with edges between 

consecutive queries in each session, 

weighted by the textual similarity between 

these queries. A candidate suggestion for a 

given query is given a score based on the 

length of the path between the two queries, 

aggregated across all sessions in a query log 

where the query and the suggestion co-

occurred. Cucerzan and White propose to 

generate query suggestions based on user 

landing pages (that is, the web pages that 

users end a query with, through post-query 

browsing). Given a user query, they utilize 

its recorded landing pages and suggest to the 

user other queries that have these landing 

pages in their top ranked results. A 

probabilistic mechanism  generates query 

suggestions from the corpus without using 

query logs. Location-aware type-ahead 

search. References  and both study the 

problem of location-aware type-ahead 

search (LTAS), also known as instant 

search. LTAS finds documents near a user 

location, as the user types in a keyword 

query character by character. This problem 

is more related to keyword query completion 

than to the query suggestion problem that 

we study in this paper, since the 

recommended keywords must have the 

user’s input as prefix. On the other hand, the 

query suggestion problem that we study in 

this paper takes a completed query and 

recommends other queries that are 

semantically relevant without the constraint 

that the suggestions should have the original 

user query as prefix. Therefore, our LKS 

framework is more flexible and can help 

users to express various aspects of a topic. 

The suggested keywords can be different 

than the usersupplied keywords, but they 
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should be textually relevant. In addition, the 

methods for LTAS are very different to our 

LKS algorithms, as they take advantage of 

the prefix requirement to reduce the search 

space (with the help of trie data structures). 

Location-aware suggestions based on user 

history. Google  provides location-based 

query suggestions by simply selecting the 

user’s past search queries that have results 

close to the user’s current location. These 

suggestions may be insufficient if the user 

did not perform any historical searches near 

her current location. In addition, query 

suggestion based on location only may not 

match the user’s search intent. On the other 

hand, our framework aims at suggesting 

keyword queries that satisfy the user’s 

information needs and have nearby results, 

irrespectively to the user’s search history. 

Query relaxation. The database research 

community has studied a relevant problem 

to query suggestion, called query relaxation. 

The objective is to generalize an SQL query 

in case it returns too few or no results . 

Query relaxation approaches cannot be 

applied for keyword query suggestion, 

because they require the relaxed query to 

contain the results of the original query, 

which is not essentially the case in query 

suggestion.  

5.2 Random Walk Computation Random 

walk with restart (RWR), also known as 

Personalized PageRank (PPR), has been 

widely used for node similarity measures in 

graph data, especially since its successful 

application by the Google search engine 

[47]. Pre-computation based Approaches. 

Some matrix-based methods [22], [23] solve 

PPR by pre-computing the inversion matrix. 

Tong et al. [22] propose a matrix-based 

approach B LIN that reduces the pre-

computation cost of the full matrix inversion 

by partitioning the graph. Fujiwara et al. 

[23] propose a K-dash method that finds the 

top-k nodes with the highest PPR scores, 

based on a LU decomposition of the 

transition matrix. Alternative to matrix-

based approaches, Monte Carlo (MC) 

methods [24], [25], [26] can be used to 

simulate the RWR process. Fogaras et al. 

[24] propose to approximate PPR by pre-

computing and approximating for each node 

u a set of ending vertices for random walks 

starting from u. If u later becomes a query 

node, its PPR is approximated according to 

the distribution of these vertices. Similarly, 

Bahmani et al. [25] approximate PPR by 

counting the number of times a node is 

visited by precomputed random walk paths. 

All above methods require the apriori 
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knowledge of the complete graph; however, 

in our problem, the edge weights are 

dynamically adjusted according to the user 

location, thus these approaches are 

inapplicable. Online Approaches. MC can 

also be applied online, without relying on 

pre-computations; a number of random 

walks are tried from the query node and the 

PPR score of other nodes are estimated from 

these samples [26]. However, as shown later 

in [27], a large number of (expensive) 

random walks are required in order to 

achieve acceptable precision. Fujiwara et al. 

[27] propose a method for efficient ad-hoc 

top-k PPR search with exact node ranking. 

They compute the random walk (without 

restart) probabilities of the nodes, and 

employ the probabilities to estimate 

upper/lower bounds of the candidate nodes. 

This approach is applicable when the 

complete transition matrix is available 

beforehand, however, obtaining the 

complete transition matrix in our problem 

involves the multiplication of two matrices 

and it is very expensive. Berkhin proposes 

the Bookmark Coloring Algorithm (BCA) to 

derive an approximation of the PPR vector. 

Gupta et al extend BCA and employ early 

termination heuristics for the top-k PPR 

calculation. We extend algorithm BCA as 

our baseline algorithm (BA) to compute the 

location-aware suggestions. 

 6 CONCLUSION  

In this paper, we proposed an LKS 

framework providing keyword suggestions 

that are relevant to the user information 

needs and at the same time can retrieve 

relevant documents near the user location. A 

baseline algorithm extended from algorithm 

BCA  is introduced to solve the problem. 

Then, we proposed a partition-based 

algorithm (PA) which computes the scores 

of the candidate keyword queries at the 

partition level and utilizes a lazy mechanism 

to greatly reduce the computational cost. 

Empirical studies are conducted to study the 

effectiveness of our LKS framework and the 

performance of the proposed algorithms. 

The result shows that the framework can 

offer useful suggestions and that PA 

outperforms the baseline algorithm 

significantly. In the future, we plan to 

further study the effectiveness of the LKS 

framework by collecting more data and 

designing a benchmark. In addition, subject 

to the availability of data, we will adapt and 

test LKS for the case where the locations of 

the query issuers are available in the query 

log. In addition, we believe that PA can also 
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be applied to accelerate RWR on general 

graphs with dynamic edge weights and we 

will investigate its general applicability in 

the future. Moreover, the current version of 

PA seems to be independent of the 

partitioning method. It would be interesting 

to investigate whether alternative 

partitioning heuristics can further reduce the 

cost of the algorithm.  
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