

ANALYSIS FOR DEADLOCK DETECTION AND RESOLUTION TECHNIQUES IN DISTRIBUTED DATABASE Shweta

Thakur , Kunal Deswal

P a g e | 1312

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

Analysis for Deadlock Detection and Resolution

Techniques in Distributed Database

Shweta Thakur1 & Kunal Deswal2

1 (Student, Dept. of Information Technology DCE, Gurgaon, India)
Email: shwetathakur2424@gmail.com

2 (Student, Dept. of Information Technology DCE, Gurgaon, India)

 ABSTRACT

In an appropriated nature, where the information is
spread over a few destinations there are numerous
concerns to manage, for example, concurrency
control, stop. Deadlocks affect the general
execution of the framework. A deadlock is a
condition in a framework where a procedure can't
continue in light of the fact that it needs to get an
asset held by an alternate methodology which it
itself is holding an asset that alternate process
needs. In writing different systems have been
examined which are utilized to forestall, identify
and resolve the deadlocks. In this paper we have
investigated the deadlock location and
determination procedures that are utilized. We have
audited in detail the calculations introduced by B.
M.Alom[2] for deadlock discovery and
determination in dispersed environment and found
that when we rework the request of the transactions
pair in the calculation by Aloms[2] then it totally
neglects to catch the stops.

Keywords- Deadlocks, framework, transactions

1. INTRODUCTION

Conveyed database frameworks (DDBS) comprise
of diverse number of destinations which are
interconnected by a correspondence system. In
such an asset imparting environment the database
exercises can be performed both at the nearby and
worldwide level so if the allotment of the asset is
not appropriately controlled than it may prompt a
circumstance that is alluded to as stop. In
Distributed database framework display, the
database is thought to be disseminated over a few
interconnected machine frameworks. Clients
communicate with the database by means of
transactions. A transaction is arrangements of
exercises, for example, read, composes, bolt, or
open operations. In the event that the activities of a

transaction include information at a solitary site,
the transaction is said to be nearby, then again a
worldwide transaction include assets at a few
destinations. A stop may happen when a transaction
enters into hold up state, i.e. at the point when
appeal is not conceded because of non-accessibility
of the assets as the asked for asset is constantly
held by an alternate holding up transaction. In such
a circumstance, holding up transaction might never
get an opportunity to transform its state. Stop
representation methods for their simple
identification have been talked about generally in
the writing and graphical representation has been
discovered to be most suitable and compelling
procedure. A stop can be demonstrated by a cycle
in the coordinated diagram called Wait-for-Graph
(WFG) [4] that speaks to the conditions among the
methodologies. A hub in the diagram G speaks to a
transaction and a guided edge from vertex i to
vertex j exist in G, if Ti (Transaction i) needs an
asset, which is constantly held by Tj (Transaction
j). For instance, in Fig 1 a transaction T1 has bolted
information thing P and needs to bolt thing Q, T2
has bolted thing Q and needs to bolt thing P. For
this situation the transactions are sitting tight for
one another and no transaction can keep coming
about into a halt.

 Fig 1: Transaction Wait for Graph

ANALYSIS FOR DEADLOCK DETECTION AND RESOLUTION TECHNIQUES IN DISTRIBUTED DATABASE Shweta

Thakur , Kunal Deswal

P a g e | 1313

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

 In dispersed database framework three methods
are for the most part utilized for taking care of the
halts: Deadlock shirking, Deadlock aversion and
Deadlock discovery.

Deadlock Avoidance: Deadlock evasion is a
methodology in which gridlocks are managed
before they happen. At the point when a transaction
asks for a lock on an information thing that has
been bolted by some an alternate transaction in an
inconsistent mode, the halt evasion calculation
chooses if the asking for transaction can hold up or
if one of the holding up transactions need to be
prematurely ended.

 Deadlock Prevention: It is an approach that keeps
the framework from conferring a portion of bolts
that will inevitably prompt a gridlock. This
procedure requires pre acquisition of all locks. The
transactions are obliged to bolt the whole
information thing that they require before
execution. Gridlock anticipation manages stop
early.

Deadlock Detection: In this methodology, halt
may have officially happened and the stop
discovery system tries to identify it and gives the
procedure by which it can be determined. In this
manner the framework intermittently checks for
them. The presence of a controlled cycle in the
Wait-for-Graph shows a halt. One transaction in the
cycle called victimized person is prematurely
ended, in this way breaking the stop. We have
dissected in detail the calculations introduced by B.
M. Alom [2] for distinguishing and determining
stops in nature's turf. In area 2, we talk about the
transaction model. In segment 3, we take up the
late work and break down the commitments made
by a few specialists managing anticipation,
identification and determining of the gridlocks. In
area 4, we take a case to look at the working of
systems by B. M Alom [2] in subtle elements. In
area 5, we give the closing comments.

2. DISTRIBUTED TRANSACTION MODEL

We next take up a disseminated transaction model
[1, 3] its general structure is indicated in Fig 2. In
this every hub has the accompanying modules: a
Transaction Manager (TM), a Data Manager (DM),
a scheduler (S), and a Transaction Process (T). The
Transaction Manager (TM) present at each one
appropriated site controls the execution of every

transaction process (T).The transactions correspond
with Tms, and thusly Tms speak with Data
Managers (Dms), the Data Manager, deals with the
real information at each one conveyed site. A
solitary TM oversees every transaction executed in
the DDBMS. The transaction issues every last bit
of its database operations to its specific transaction
chief.

 Fig 2: Distributed Transaction Model

The Transaction supervisor controls the execution
of the diverse transaction which requires the
information thing for their execution. It does so by
reaching with the information administrator present
at that specific site. Anyhow if the transaction
procedure obliges an information thing, which is
not show at the site where it starts, the transaction
administrator contacts the information chief of the
other site where the obliged information thing
really dwells. The scheduler thusly, at each one
site, synchronizes the transaction asks for and
performs gridlock location. A transaction may ask
for different information questions all the while.

3. RELATED WORK

Diverse conveyed gridlock discovery and
determination calculations have been proposed in
the writing. In the paper we examine the
commitments of different scientists and the
calculations they have utilized for managing

ANALYSIS FOR DEADLOCK DETECTION AND RESOLUTION TECHNIQUES IN DISTRIBUTED DATABASE Shweta

Thakur , Kunal Deswal

P a g e | 1314

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

gridlocks. Chandy et. al. [4] utilized a Transaction
Wait-for-Graph (TWFG) to speak to the status of
transaction at the neighbourhood locales and tests
to identify worldwide stop. They called the
calculation, as test reckoning by which a
transaction Ti figures out whether it is stopped or
not. A test is issued if a transaction starts to hold up
for an alternate transaction and gets engendered
starting with one site then onto the next focused
around the status of the transaction that got the test.
The tests are implied just for stop location. A
transaction sends at most one test in any test
processing. On the off chance that the initiator of
the test reckoning gets back the test, then it is
included in a gridlock. They found that this plan
does not experience the ill effects of false halt
identification. Menasce D. A. et. al. [9] portrays
two conventions for the location of gridlocks in
disseminated information bases: a progressively
composed and an appropriated. A diagram model,
which portrays the state of execution of all
transactions in the framework, is utilized by both
conventions. A cycle in this diagram is a vital and
sufficient condition for a halt to exist. Qinqin et. al.
[14] have utilized the guideline of nearness grid,
way framework and unequivocally joined part of
basic coordinated chart in diagram hypothesis.
They have proposed a model for identifying stop by
investigating emphatically joined part from asset
assignment diagram. The trial demonstrates that it
can catch assets and courses of action included in
halt successfully. B. M. Alom [2] has presented the
halt identification and determination strategy which
utilizes the idea of making the structure table
named LTS and DTS for catching the nearby and
worldwide stop. In this calculation at whatever
point a gridlock cycle is distinguished, the needs of
the transactions constituting the stop are checked.
The transaction with the slightest need is
prematurely ended so that the assets held by it can
be set free and can be allowed over to the holding
up transactions. Anyhow it has been observed that
on the off chance that we revamp the request of
transaction match in LTS and DTS than this
calculation totally neglect to discover the gridlocks.

4. ILLUSTRATIVE EXAMPLE FOR
PERFORMANCE ANALYSIS

Give us a chance to take two locales, Site1 and
Site2. Various transactions are running on both the
destinations. In this case we have considered

transactions T1, T2, T3, T4 executing on Site1 and
transactions T5, T6, T7 executing on Site2 as
indicated in Fig. 3. We have dissected the methods
in the accompanying sub areas. 4.1 Using B. M.
Alom Technique In this strategy two transaction
structures are utilized: one is straight transaction
structures (LTS) which is utilized to discover
gridlock for each one site provincially and
conveyed transaction structures (DTS), which is
utilized to distinguish halts in nature's turf. On the
off chance that any transaction Tp demands an
information thing that is held by an alternate
transaction Tq, estimations of p and q are put away
on the neighbourhood transaction structure (LTS),
where p and q speak to their comparing transaction
numbers comparatively if there is an edge from Ta
to Tb, both fitting in with distinctive locales, then a
relating passage is carried out in their DTS.
Separated from these transaction structures, they
have utilized a transaction line which comprises of
transaction id and their needs. The LTS for both the
locales is indicated in Table 1.

Fig 3: A Distributed environment having 2 site

 Table 1: LTS forSite1
and Site2

Table 2: Transaction queue with the priority_id

 p q

 1 2

 2 3

 3 4

 4 1

 p q
 5 6
 6 7
 7 5

 Tx_No P_id
 1 1
 2 2
 3 3
 4 4

 Tx_No P_id

 5 1

 6 2

 7 3

ANALYSIS FOR DEADLOCK DETECTION AND RESOLUTION TECHNIQUES IN DISTRIBUTED DATABASE Shweta

Thakur , Kunal Deswal

P a g e | 1315

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

In LTS1 (Site1) there is one deadlock cycle
{1→2,2→3,3→4,4→1}and in LTS2 the deadlock
cycle is {5→6,6→7,7→5,}.According to table 2
the youngest transaction with lowest priority id is
selected and it is aborted to make the system
deadlock free. In the given scenario according to
table 2 for LTS1 and LTS2 the transaction 4 and 7
is selected as they have the lowest priority. The
transaction pairs {4→1} and {7→5} are aborted.
Now for detecting global deadlock, the intra
connected transaction’s (those are connected to
other sites) are seen to find out if there exist a
global deadlock cycle. The DTS (Distributed
transaction structure) for Site1 and Site2 is shown
in Table 3.

Table 3: DTS for site 1 and site 2

The transaction queue for DTS is considered as it is
created for LTS.As a result of which the transaction
pair {5→3} is aborted to free from global
deadlock. According to this approach, the TWFG
without having any local or global deadlock cycle
is shown in fig 4

Fig 4: A deadlock free TWFG of the two sites

We analyse that if we rearrange the transaction pair
in LTS and DTS the BM Alom [2] technique
completely fails to detect the local and global
deadlock as there is a dependency of LTS and DTS
structure on the directed edges of transaction wait
for graph. We can eliminate this problem by
passing on unique timestamp to each transaction.

5. CONCLUSIONS

Deadlocks in a distributed system radically reduce
the performance of the system and therefore have
to be detected and resolved as soon as possible for
the efficiency of the systems. After analyzing
various techniques we have found that the
technique presented by B. M. Alom (section 4.1)[2]
is detecting deadlocks correctly if the priorities are
taken in the same order as taken by him in his
paper but if we take any other order then it detects
false deadlocks. It means that there is a complete
dependency on directed edges of wait for graph in
the B.M Alom technique [2]. The concept of time
stamping could be used to abort the younger
transaction in our future work.

6. REFERENCES

[1]. Alom B.M. Monjurul, Frans Alexander
Henskens, Michael Richard Hannaford,
Optimization of Detected Deadlock Views of
Distributed Database, International Conference on
Data Storage and Data Engineering , pp.44-48,
ISBN: 978-0-7695-3958-4, 2010

[2]. Alom B.M. Monjurul, Frans Alexander
Henskens, Michael Richard Hannaford,“Deadlock
Detection Views of Distributed Database”, IEEE
Sixth International Conference on Information
Technology: New Generations, Page(s):730–737,
2009

[3]. Carlos F. Alastruey, Federico Fariña, Jose
Ramon Gonzalez de Mendivil, “A Distributed
Deadlock Resolution Algorithm for the AND
Model” IEEE transactions on parallel and
distributed systems, Vol. 10, No. 5, pp. 433-447,
May 1999.

[4]. Chandy K. M., Hass L. M and Misra J,
Distributed Deadlock Detection, ACM Transaction
on Computer Systems, Vol.1, No.2, pp.144-56,
1983.

[5]. Elmagarmid A. K. A Survey of Distributed
Deadlock Detection Algorithms, SIGMOD
RECORD, Vol. 15, No.3, pp. 37-45, 1986.

[6]. Gray J., A Straw Man Analysis of the
Probability of Waiting and Deadlocks in a
Database Systems, IBM Research Report, 1981

 p q

 3 4

 4 7

 7 5

 5 3

ANALYSIS FOR DEADLOCK DETECTION AND RESOLUTION TECHNIQUES IN DISTRIBUTED DATABASE Shweta

Thakur , Kunal Deswal

P a g e | 1316

International Journal of Research (IJR) Vol-1, Issue-9 October 2014 ISSN 2348-6848

[7]. Ho G. S. and Ramamoorthy C. V., Protocols
for Deadlock Detection in Distributed Database
Systems IEEE Transaction on Software
Engineering, Vol. 8, No. 6, pp. 554-557, 1982.

[8]. Mehdi Hashemzadeh, Nacer Farajzadeh,
Abolfazl T. Haghighat, "Optimal Detection and
Resolution of Distributed Deadlocks in the
Generalized Model," 14th Euromicro International
Conference on Parallel, Distributed, and Network-
Based Processing (PDP'06), pp.133-136, 2006

[9]. Menasce D. A. and Muntz R. R., Locking and
Deadlock Detection in Distributed Data Bases,
IEEE Transaction on Software Engineering, Vol. 5,
No.3, pp. 195-202, 1979.

[10]. Merritt M. J. and Mitchell D. P. "A
Distributed Algorithm for Deadlock Detection and
Resolution," in ACM, Vol. 2, No. 3, pp. 95-99,
1984.

[11]. Singhal Mukesh “Deadlock Detection in
Distributed System” IEEE transaction on Software
Engineering, Vol. 4, No. 3, pp. 195-199, 1989.

[12]. Jain Kamal, MohammadTaghi Hajiaghayi and
Kunal Talwar, The Generalized Deadlock
Resolution Problem, autoomata, Languages and
Programming, Lecture Notes in Computer Science,
2005, Volume 3580/2005, 103, DOI:
10.1007/11523468_69

[13]. Nacer Farajzadeh, Mehdi Hashemzadeh,
Morteza Mousakhani, Abolfazl T. Haghighat, An
Efficient Generalized Deadlock Detection and
Resolution Algorithm in Distributed Systems, Fifth
International Conference on Computer and
Information Technology (CIT'05), pp.303-309,
2005

[14]. Qinqin Ni, Weizhen Sun, Sen Ma, Deadlock
Detection Based on Resource Allocation Graph,
Fifth International Conference on Information
Assurance and Security, vol. 2, pp.135-138, 2009

[15]. Selvaraj Srinivasan, R. Rajaram, A
decentralized deadlock detection and resolution
algorithm for generalized model in distributed
systems, Distributed and Parallel Databases, Vol.
29, No. 4,pp. 261-276, DOI: 10.1007/s10619-011-
7078-7

[16]. Soojung Lee, Junguk L. Kim, Performance
Analysis of Distributed Deadlock Detection

