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ABSTRACT: Despite recent advances in distributed RDF data management, processing large-

amounts of RDF data in the cloud is still very challenging. In spite of its seemingly simple data 

model, RDF actually encodes rich and complex graphs mixing both instance and schema-level 

data. Sharding such data using classical techniques or partitioning the graph using traditional 

min-cut algorithms leads to very inefficient distributed operations and to a high number of joins. 

In this paper, we describe DiploCloud, an efficient and scalable distributed RDF data 

management system for the cloud. Contrary to previous approaches, DiploCloud runs a 

physiological analysis of both instance and schema information prior to partitioning the data. In 

this paper, we describe the architecture of DiploCloud, its main data structures, as well as the 

new algorithms we use to partition and distribute data. We also present an extensive evaluation 

of DiploCloud showing that our system is often two orders of magnitude faster than state-of-the-

art systems on standard workloads. 

 

I INTRODUCTION 

THE advent of cloud computing enables to 

easily and cheaply provision computing 

resources, for example to test a new 

application or to scale a current software 

installation elastically. The complexity of 

scaling out an application in the cloud (i.e., 

adding new computing nodes to 

accommodate the growth of some process)  

 

very much depends on the process to be 

scaled. Often, the task at hand can be easily 

split into a large series of subtasks to be run 

independently and concurrently. Such 

operations are commonly called 

embarrassingly parallel. Embarrassingly 

parallel problems can be relatively easily 

scaled out in the cloud by launching new  

processes on new commodity machines. 

There are however many processes that are 

much more difficult to parallelize, typically 

because they consist of sequential processes 

(e.g., processes based on numerical methods 

such as Newton’s method). Such processes 

are called inherently sequential as their 

running time cannot be sped up significantly 
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regardless of the number of processors or 

machines used. Some problems, finally, are 

not inherently sequential per se but are 

difficult to parallelize in practice because of 

the profusion of inter-process traffic they 

generate. Scaling out structured data 

processing often falls in the third category. 

Traditionally, relational data processing is 

scaled out by partitioning the relations and 

rewriting the query plans to reorder 

operations and use distributed versions of 

the operators enabling intra-operator 

parallelism. While some operations are easy 

to parallelize (e.g., largescale, distributed 

counts), many operations, such as distributed 

joins, are more complex to parallelize 

because of the resulting traffic they 

potentially generate. While much more 

recent than relational data management, 

RDF data management has borrowed many 

relational techniques; Many RDF systems 

rely on hash-partitioning (on triple or 

property tables, see below Section 2) and on 

distributed selections, projections, and joins. 

Our own Grid- Vine system [1], [2] was one 

of the first systems to do so in the context of 

large-scale decentralized RDF management. 

Hash partitioning has many advantages, 

including simplicity and effective load-

balancing. However, it also generates much 

inter-process traffic, given that related 

triples (e.g., that must be selected and then 

joined) end up being scattered on all 

machines. In this article, we propose 

DiploCloud, an efficient, distributed and 

scalable RDF data processing system for 

distributed and cloud environments. 

Contrary to many distributed systems, 

DiploCloud uses a resolutely non-relational 

storage format, where semantically related 

data patterns are mined both from the 

instance-level and the schema-level data and 

get co-located to minimize internode 

operations.  

II RELATED WORK 

Many approaches have been proposed to 

optimize RDF storage and SPARQL query 

processing; we list below a few of the most 

popular approaches and systems. We refer 

the reader to recent surveys of the field 

(such as [6], [7], [8], [9] or, more recently, 

[10]) for a more comprehensive coverage. 

Approaches for storing RDF data can be 

broadly categorized in three subcategories: 

triple-table approaches, property- table 

approaches, and graph-based approaches. 

Since RDF data can be seen as sets of 

subject-predicate-object triples, many early 

approaches used a giant triple table to store 

all data. Hexastore [11] suggests to index 

RDF data using six possible indices, one for 

each permutation of the set of columns in 
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the triple table. RDF-3X [12] and YARS 

[13] follow a similar approach. BitMat [14] 

maintains a three-dimensional bit-cube 

where each cell represents a unique triple 

and the cell value denotes presence or 

absence of the triple. Various techniques 

propose to speed-up RDF query processing 

by considering structures clustering RDF 

data based on their properties. Wilkinson et 

al. [15] propose the use of two types of 

property tables: one containing clusters of 

values for properties that are often co-

accessed together, and one exploiting the 

type property of subjects to cluster similar 

sets of subjects together in the same table. 

Owens et al. [16] propose to store data in 

three B+-tree indexes. They use SPO, POS, 

and OSP permutations, where each index 

contains all elements of all triples. They 

divide a query to basic graph patterns [17] 

which are then matched to the stored RDF 

data. A number of further approaches 

propose to store RDF data by taking 

advantage of its graph structure. Yan et al. 

[18] suggest to divide the RDF graph into 

subgraphs and to build secondary indices 

(e.g., Bloom filters) to quickly detect 

whether some information can be found 

inside an RDF subgraph or not. Ding et al. 

[19] suggest to split RDF data into 

subgraphs (molecules) to more easily track 

provenance data by inspecting blank nodes 

and taking advantage of a background 

ontology and functional properties. Das et 

al. in their system called gStore [20] 

organize data in adjacency list tables. Each 

vertex is represented as an entry in the table 

with a list of its outgoing edges and 

neighbours. To index vertices, they build an 

S-tree in their adjacency list table to reduce 

the search space. Brocheler et al. [21] 

propose a balanced binary tree where each 

node containing a subgraph is located on one 

disk page. Distributed RDF query 

processing is an active field of research. 

Beyond SPARQL federations approaches 

(which are outside of the scope of this 

paper), we cite a few popular approaches 

below. Like an increasing number of recent 

systems, The Hadoop Distributed RDF Store 

(HDRS)1 uses MapReduce to process 

distributed RDF data. RAPID+ [22] extends 

Apache Pig and enables more efficient 

SPARQL query processing on MapReduce 

using an alternative query algebra. Their 

storage model is a nested hash-map. Data is 

grouped around a subject which is a first 

level key in the map i.e. the data is co-

located for a shared subject which is a hash 

value in the map. The nested element is a 

hash map with predicate as a key and object 

as a value. Sempala [23] builds on top of 
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Impala [24] stores data in a wide unified 

property tables keeping one star-like shape 

per row. The authors split SPARQL queries 

to simple Basic Graph Patterns and rewrite 

them to SQL, following they compute a 

natural join if needed. Jena HBase2 uses the 

HBase popular wide-table system to 

implement both triple-table and property-

table distributed storage. Its data model is a 

column oriented, sparse, multi-dimensional 

sorted map. Columns are grouped into 

column families and timestamps add an 

additional dimension to each cell. Cumulus 

RDF3 uses Cassandra and hash-partitioning 

to distribute the RDF tiples. It stores dataas 

four indices [13] (SPO, PSO, OSP, CSPO) 

to support a complete index on triples and 

lookups on named graphs (contexts). We 

recently worked on an empirical evaluation 

to determine the extent to which such 

noSQL systems can be used to manage RDF 

data in the cloud4 [25]. 

 

III  STORAGE MODEL 

Our storage system in DiploCloud can be 

seen as a hybrid structure extending several 

of the ideas from above. Our system is built 

on three main structures: RDF molecule 

clusters (which can be seen as hybrid 

structures borrowing both from property 

tables and RDF subgraphs), template lists 

(storing literals in compact lists as in a 

column-oriented database system) and an 

efficient key index indexing URIs and 

literals based on the clusters they belong to. 

Contrary to the property-table and column-

oriented approaches, our system based on 

templates and molecules is more elastic, in 

the sense that each template can be modified 

dynamically, for example following the 

insertion of new data or a shift in the 

workload, without requiring to alter the 

other templates or molecules. In addition, 

we introduce a unique combination of 

physical structures to handle RDF data both 

horizontally (to flexibly co-locate entities or 

values related to agiven instance) as well as 

vertically (to co-locate series of entities or 

values attached to similar instances). 

Molecules can be seen as horizontal 

structures storing information about a given 

instance in the database (like rows in 

relational systems). Template lists, on the 

other hand, store vertical lists of values 

corresponding to one attribute (like columns 

in a relational system). Hence, we say that 

Diplo- Cloud is a hybrid system, following 

the terminology used for approaches such as 

Fractured Mirrors or our own recent Hyrise 

system . Molecule clusters are used in two 

ways in our system: to logically group sets 

of related URIs and literals in the hashtable 
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(thus, pre-computing joins), and to 

physically co-locate information relating to a 

given object on disk and in mainmemory to 

reduce disk and CPU cache latencies. 

Template lists are mainly used for analytics 

and aggregate queries, as they allow to 

process long lists of literals efficiently. 

3.1 Key Index 

The Key Index is the central index in 

DiploCloud; it uses a lexicographical tree to 

parse each incoming URI or literal and 

assign it a unique numeric key value. It then 

stores, for every key and every template ID, 

an ordered list of all the clusters IDs 

containing the key (e.g., “key 10011, 

corresponding to a Course object [template 

ID 17], appears in clusters 1011, 1100 and 

1101.This may sound like a pretty peculiar 

way of indexing values, but we show below 

that this actually allows us to execute many 

queries very efficiently simply by reading or 

intersecting such lists in the hash-table 

directly. 

3.2 Templates 

One of the key innovations of DiploCloud 

revolves around the use of declarative 

storage patterns to efficiently collocate large 

collections of related values on disk and in 

main-memory. When setting-up a new 

database, the database administrator may 

give DiploCloud a few hints as to 

how to store the data on disk: the 

administrator can give a list of triple patterns 

to specify the root nodes, both for the 

template lists and the molecule clusters 

3.3 Molecules 

DiploCloud uses physiological RDF 

partitioning and molecule patterns to 

efficiently co-locate RDF data in distributed 

settings.. Molecules have three key 

advantages in our context: Molecules 

represent the ideal tradeoff between 

collocation and degree of parallelism when 

partitioning RDF data. Partitioning RDF 

data at the triple-level is suboptimal because 

of the many joins it generates; Large graph 

partitions (such as those defined in ) are 

suboptimal as well, since in that case too 

many related triples are co-located, thus 

inhibiting parallel processing . All molecules 

are template-based, and hence store data 

extremely compactly Finally, the molecules 

are defined in order to materialize frequent 

joins, for example between an entity and its 

corresponding values (e.g., between a 

student and his/her firstname), or between 

two semantically related entities (e.g., 

between a student and his/heradvisor) that 

are frequently co-accessed. 

 

IV DATA PARTITIONING AND 

ALLOCATION 
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Triple-table and property-table hash-

partitionings are currently the most common 

partitioning schemes for distributed RDF 

systems. While simple, such hash-

partitionings almost systematically implies 

some distributed coordination overhead 

(e.g., to execute joins/ path traversals on the 

RDF graph), thus making it inappropriate for 

most large-scale clusters and cloud 

computing environments exhibiting high 

network latencies. The other two standard 

relational partitioning techniques, (tuple) 

round-robin and range partitioning, are 

similarly flawed for the data and setting we 

consider, since they would partition triples 

either at random or based on the subject 

URI/type, hence seriously limiting the 

parallelism of most operators (e.g., since 

many instances sharing the same type would 

end up on the same node). Partitioning RDF 

data based on standard graph partitioning 

techniques (similarly to what  proposes) is 

also from our perspective inappropriate in a 

cloud context, for three main reasons: Loss 

of semantics: standard graph partitioning 

tools (such as METIS,8 which was used in ) 

consider unlabeled graphs mostly, and hence 

are totally agnostic tothe richness of an RDF 

graph including classes of nodes and edges. 

Loss of parallelism: partitioning an RDF 

graph based, for instance, on a min-cut 

algorithm will lead to very coarse partitions 

where a high number of related instances 

(for instance linked to the same type or 

sharing links to the same objects) will be co-

located, thus drastically limiting the degree 

of parallelism of many operators (e.g., 

projections or selections on certain types of 

instances). Limited scalability: finally, 

attempting to partition very large RDF 

graphs is unrealistic in cloud environments, 

given that state-of-the-art graph partitioning 

techniques are inherently centralized and 

data/CPU intensive (as an anecdotal 

evidence, we had to borrow a powerful 

server and let it run for several hours to 

partition the largest dataset we use use 

METIS). DiploCloud has been conceived 

from the ground up to support distributed 

data partitioning and co-location schemes in 

an efficient and flexible way. DiploCloud 

adopts an intermediate solution between 

tuple-partitioning and graph-partitioning by 

opting for a recurring, fine-grained graph-

partitioning technique taking advantage of 

molecule templates. DiploCloud’s molecule 

templates capture recurring patterns 

occurring in the RDF data naturally, by 

inspecting both the instance-level (physical) 

and the schema-level (logical) data. 

V COMMON OPERATIONS 
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We now turn to describing how our system 

handles typical operations in distributed 

environments.. physiological characterizes 

in our context a process that work both on 

the physical and logical layers of the 

database, as the classical Aries recovery 

algorithm. 

6.1 Bulk Load 

Loading RDF data is generally speaking a 

rather expensive operation in DiploCloud 

but can be executed in a fairly efficient way 

when considered in bulk. We basically trade 

relatively complex instance data 

examination and complex local co-location 

for faster query execution. We are willing to 

make this tradeoff in order to speed-up 

complex queries using our various data 

partitioning and allocation schemes, 

especially in a Semantic Web or LOD 

context where isolated inserts or updates are 

from our experience rather infrequent. We 

assume that the data to be loaded is available 

in a shared space on the cloud. Bulk loading 

is a hybrid process involving both the 

Master whose task is to encode all incoming 

data, to identify potential molecule roots 

from the instances, and to assign them to the 

Workers using some allocation scheme and 

all the Workers which build, store and index 

their respective molecules in parallel based 

on the molecule templates defined. On the 

worker nodes, building the molecule is an n-

pass algorithm (where n is the deepest level 

of the molecule, see Section 3) in 

DiploCloud, since we need to construct the 

RDF molecules in the clusters (i.e., we need 

to materialize triple joins to form the 

clusters). In a first pass, we identify all root 

nodes and their corresponding template IDs, 

and create all clusters 

6.2 Updates 

As for other hybrid or analytic systems, 

updates can be relatively complex to handle 

in DiploCloud, since they might lead to a 

partial rewrite of the key index and molecule 

indices, and to a reorganization of the 

physical structures of several molecules. To 

handle them efficiently, we adopt a lazy 

rewrite strategy, similarly to many modern 

read-optimized system (e.g., CStore or 

BigTable). All updates are performed on 

write-optimized log-structures in main-

memory. At query time, both the primary 

(read-optimized) and logstructured (write-

optimized) data stores are tapped in order to 

return the correct results. We distinguish 

between two kinds of updates: in-place and 

complex updates. In-place updates are 

punctual updates on literal values; they can 

be processed directly in our system by 

updating the key index, the corresponding 

cluster, and the template lists if necessary. 
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Complex updates are updates modifying 

object properties in the molecules. They are 

more complex to handle than in-

placeupdates, since they might require a 

rewrite of a list of clusters in the key index, 

and a rewrite of a list of keys in the 

molecule clusters. To allow for efficient 

operations, complex updates are treated like 

updates in a column-store the corresponding 

structures are flagged in the key index, and 

new structures are maintained in 

writeoptimized structures in main-memory. 

Periodically, the write-optimized structures 

are merged with the main data structures in 

an offline fashion. 

6.3 Query Processing 

Query processing in DiploCloud is very 

different from previous approaches to 

execute queries on RDF data, because of the 

three peculiar data structures in our system: 

a key index associating URIs and literals to 

template IDs and cluster lists, clusters 

storing RDF molecules in a very compact 

fashion, and template lists storing compact 

lists of literals. All queries composed of one 

Basic Graph Pattern (star-like queries) are 

executed totally in parallel, independently 

on all Workers without any central 

coordination thanks to the molecules and 

their indices. For queries that still require 

some degree of distributed coordination 

typically to handle distributed joins we 

resort to adaptive query execution strategies. 

We mainly have two ways of executing 

distributed joins: whenever the intermediate 

result set is small (i.e., up to a few hundred 

tuples according to our Statistics 

components),y. Otherwise, we fall back to a 

distributed hash-join by distributing the 

smallest result set among the Workers. 

Distributed joins can be avoided in many 

cases by resorting to the distributed data 

partitioning and data co-location schemes 

described above. 

 

Algorithm  gives a high-level description of 

our distributed query execution process 

highlighting where particular operations are 

performed in our system. 

Algorithm   

High Level Query Execution Algorithm 

1: Master: divide query based on molecule 

scopes to obtain sub-queries 

2: Master: send sub-queries to workers 

3: Workers: execute sub-queries in parallel 

4: Master: collect intermediate results 

5: Master: perform distributed join whenever 

necessary 

We describe below how a few common 

queries are handled in DiploCloud. 

VI CONCLUSION 
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DiploCloud is an efficient and scalable 

system for managing RDF data in the cloud. 

From our perspective, it strikes an optimal 

balance between intra-operator parallelism 

and data collocation by considering 

recurring, fine-grained physiological RDF 

partitions and distributed data allocation 

schemes, leading however to potentially 

bigger data (redundancy introduced by 

higher scopes or adaptive molecules) and to 

more complex inserts and updates. 

DiploCloud is particularly suited to clusters 

of commodity machines and cloud 

environments where network latencies can 

be high, since it systematically tries to avoid 

all complex and distributed operations for 

query execution. Our experimental 

evaluation showed that it very favorably 

compares to state-of-the-art systems in such 

environments. We plan to continue 

developing DiploCloud in several directions: 

First, we plan to include some further 

compression mechanisms (e.g., HDT  ). We 

plan to work on an automatic templates 

discovery based on frequent patterns and 

untyped elements. Also, we plan to work on 

integrating an inference engine into 

DiploCloud to support a larger set of 

semantic constraints and queries natively. 

Finally, we are currently testing and 

extending our system with several partners 

in order to manage extremely-large scale, 

distributed RDF datasets in the context of 

bioinformatics applications. 
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