

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 731

Design and Implementation of 16-bit Montgomery Modular

Multiplication

 B Roja Pavitra, P.G.STUDENT, Kakinada Institute of Engineering and Technology for Women

 R Sathya Veni, Asst.Prof, Kakinada Institute of Engineering and Technology for Women

Abstract

Modular multiplication is the core operation in public-key cryptographic algorithms such as RSA

and the Diffie-Hellman algorithm. The efficiency of the modular multiplier plays a crucial role in the

performance of these cryptographic methods. In this paper we are designing a 16-bit Montgomery

modular multiplication with PASTA ADDER. In addition, a mechanism that can detect and skip the

unnecessary carry-save addition operations in the PASTA architecture while maintaining the short critical

path delay is developed. Experimental results show that the proposed Montgomery modular multiplier can

achieve higher performance and significant area–time product improvement when compared with

previous designs.

Index terms: low-cost architecture, Montgomery modular multiplier, public-key cryptosystem.

I. INTRODUCTION:

 The multiplication of large integers is

one of the core operations in public key

cryptography. In order to provide the required

cryptographic strength, the operand size has

been growing continuously. During the earlier

days of the RSA algorithm[1], the researchers

believed that 512-bit size was sufficient; a few

years of research in factoring RSA moduli

immediately brought the key size to 1024 bits.

Currently many implementations already

increase their key size to 2048 bit, for example,

the root keys issued for SSL, while NIST [2]

recommends 3072-bit keys for protection

beyond the year 2030. 1 Therefore, using RSA

to provide long term protection, 3072-bit or even

larger integer modular multiplications need to be

performed. Consequently, high performance

long integer modular multiplier is in demand for

practical use of the RSA.

Montgomery Modular Multiplication

(MMM) [3] algorithm is the most popular

algorithm to perform modular multiplications to

date. It has been extensively studied, and several

variants of MMM have been proposed for both

hardware and software platforms[4], [5], [6], [7],

[8], [9], [10], [11]. To compute xy mod n using

the original MMM, three l-bit multiplications

dominate the computation time (l is the bit

length of n) [3]. This indicates the acceleration

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 732

of multiplication will benefit the performance of

MMM significantly. The asymptotic

complexities of multiplication algorithms from

the schoolbook method to the Furer method ¨ are

listed in Table 1. The GMP library [16] provides

efficient software implementations for most of

these algorithms. However, it only focuses on

software. There are many hardware realizations

of these multiplication algorithms: the

schoolbook[4], [5], [9], [10] and Karatsuba

methods [12], [17], [18], but few on Schonhage-

¨ Strassen Algorithm (SSA) [7].

 Montgomery modular multiplication [3]

is an efficient modular algorithm when the

modulus n is without specific form. By adding

constraints on the parameters, Walter [26]

proposed the MMM without conditional

subtraction algorithm and it is given in

Algorithm 1. In MMM, r is typically a power of

2 for the ease of computation.

II. PREVIOUS WORK:

 The Montgomery modular

multiplication algorithm was designed to avoid

division in modular multiplications. Given two

n-bit inputs, X and Y, this algorithm gives Z = X

· Y · R−1 mod M, where R equals to 2n and M

is the n-bit modulo. Algorithm 1 shows the

Radix-2w Montgomery modular multiplication

algorithm in detail. A modified Montgomery

multiplication algorithm was proposed to avoid

the conditional final

 In recent years, the Montgomery

modular multiplication has been widely

implemented in software and hardware. For

example, In [14], it was implemented on an 8-

bit microcontroller. In [6] It was implemented

on an high-end TI DSP (TMS320C6201)

showed that the software implementations on

general purpose CPU can be sped up by

extending the ISA. These software

implementations are highly flexible, whereas the

performance is limited. The hardware

implementations of the Montgomery

multiplication were also widely investigated.

Researchers have deployed various

architectures, such as bipartite multipliers[15]

and systolic arrays [16, 17, 18] to achieve high

throughput. In order to obtain some flexibility,

reconfigurable data path [11] for the

Montgomery modular multiplication was also

explored. However, there is still a gap between

the flexibility and performance. One way to

bridge the gap is using parallel computation with

programmable devices, e.g., dual-mac DSP [6].

III. PROPOSED 16-bit

MONTGOMERY

MULTIPLICATION:

 In this section, we propose a new SCS-

based Montgomery MM algorithm to reduce the

critical path delay of Montgomery multiplier. In

addition, the drawback of more clock cycles for

completing one multiplication is also improved

while maintaining the advantages of short

critical path delay and low hardware complexity.

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 733

Critical Path Delay Reduction:

 The critical path delay of SCS-based

multiplier can be reduced by combining the

advantages of FCS-MM-2 and SCS-MM-2. That

is, we can pre compute D = B + N and reuse the

PASTA architecture to perform B+N and the

format conversion. Fig. 7(a) and (b) shows the

modified SCS-based Montgomery multiplication

(MSCS-MM) algorithm and one possible

hardware architecture, respectively. The Zero_D

circuit in Fig. 7(b) is used to detect whether SC

is equal to zero, which can be accomplished

using one NOR operation. The Q_L circuit

decides the qi value according to step 7 of Fig.

7(a). The carry propagation addition operations

of B + N and the format conversion are

performed by the one-level CSA architecture of

the MSCS-MM multiplier through repeatedly

executing the carry-save addition (SS, SC) = SS

+ SC + 0 until SC = 0. In addition, we also pre

compute Ai and qi in iteration i−1 (this will be

explained more clearly in Section III-C) so that

they can be used to immediately select the

desired input operand from 0, N, B, and D

through the multiplexer M3 in iteration i.

Therefore, the critical path delay of the MSCS-

MM multiplier can be reduced into TMUX4 +

TFA. However, in addition to performing the

three-input carry-save additions [i.e., step 12 of

Fig. 7(a)] k + 2 times, many extra clock cycles

are required to perform B + N and the format

conversion via the PASTA architecture because

they must be performed once in every MM.

Furthermore, the extra clock cycles for

performing B+N and the format conversion

through repeatedly executing the carry-save

addition (SS, SC) = SS +SC +0 are dependent on

the longest carry propagation chain in SS + SC.

If SS = 111…1112 and SC = 000…0012, the

one-level CSA architecture needs k clock cycles

to complete SS + SC.

Clock Cycle Number Reduction:

To decrease the clock cycle number, a

CCSA architecture which can perform one

three-input carry-save addition or two serial

two-input carry-save additions is proposed to

substitute for the one-level CSA architecture in

Fig. 7(b) The general architecture of the adder is

Fig 1. Block Diagram of PASTA

Each state is represented by (Ci+1 Si) pair where

Ci+1, Si represent carry out and sum values

respectively, from the ith bit adder block. During

the initial phase, the circuit merely works as a

combinational HA operating in fundamental

mode. It is apparent that due to the use of HAs.

Let Si
j

and C
 j

i+1 denote the sum and carry,

respectively, for ith bit at the j th iteration. The

initial condition (j = 0) for addition is

formulated as follows:

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 734

S
0
i = ai ⊕ bi

C
0
i+1= ai bi .

The j th iteration for the recursive addition is

formulated by

S
j
i= S i

j−1⊕ C i
 j
−

1
 , 0 ≤ i < n (2)

C i+1
j= S i

j−1 C i
j−1 , 0 ≤ i ≤ n. (3)

The recursion is terminated at kth iteration when

the following condition is met:

C
k
n + C

k
n−1+ ・・ ・+C

k
1= 0, 0 ≤ k ≤ n. (4)

Now, the correctness of the recursive

formulation is inductively proved as follows.

Theorem 1: The recursive formulation

of (1)–(4) will produce correct sum for any

number of bits and will terminate within a finite

time.

Proof: We prove the correctness of the

algorithm by induction on the required number

of iterations for completing the addition

(meeting the terminating condition).

Basis: Consider the operand choices for

which no carry propagation is required, i.e., C
0

i

= 0 for ∀i, i ∈ [0..n]. The proposed

formulation will produce the correct result by a

single-bit computation time and terminate

instantly as (4) is met.

 Induction: Assume that C
k
i+1≠ 0 for

some I th bit at k th iteration.

Let l be such a bit for which C
k
l+1= 1. We show

that it will be successfully transmitted to next

higher bit in the (k + 1)th iteration.

As shown in the state diagram, the kth iteration

of lth bit state(C
k
l+1, S

k
l) and (l + 1)th bit state

(C
k
l+2, S

k
l+1) could be in any of (0, 0), (0, 1), or

(1, 0) states. As C
k
l+1= 1, it implies that S

k
l=0.

Hence, from (3), C
k+1

l+1= 0 for any input

condition between0 to l bits.

We now consider the (l + 1)th bit state

(C
k
l+2,S

k
l+1) for kth iteration. It could also be in

any of (0, 0), (0, 1), or (1, 0) states. In (k+1)th

iteration, the (0, 0) and (1, 0) states from the kth

iteration will correctly produce output of (0, 1)

following (2) and (3). For (0, 1) state, the carry

successfully propagates through this bit level.

We modify the 4 to 1 multiplexer M3 in fig(b)

into a simplified multiplier SM3 as shown in fig.

8(d) because one of its inputs is zero, where

denotes the INVERT operation. Note that M3

has been replaced by SM3 in the proposed

PASTA architecture.

 According to the delay ratio shown in

Table II, TS M3 (i.e., 0.68 × TFA) is

approximate to TMUX3 (i.e., 0.63 × TFA) and

TMUXI2 (i.e., 0.23 × TFA) is smaller than

TXOR2 (i.e., 0.34×TFA). Therefore, the critical

path delay of the proposed PASTA architecture

in Fig. 8(b) is approximate to that of the one-

level CSA architecture in Fig. 8(a). As a result,

steps 3 and 15 of Fig. 7(a) can be replaced with

(SS, SC) = 2H_CSA(SS, SC) and (SS[k + 2],

SC[k + 2]) = 2H_CSA (SS[k + 2], SC[k + 2]) to

reduce the required clock cycles by

approximately a factor of two while maintaining

a short critical path delay.

 In addition, we also skip the

unnecessary operations in the for loop (steps 6 to

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 735

13) of Fig. 7(a) to further decrease the clock

cycles for completing one Montgomery MM.

The crucial computation in the for loop of Fig.

7(a) is performing the following three-to-two

carry-save addition:

(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] + x)/2 (1)

where the variable x may be 0, N, B, or D

depending on the values of Ai and qi . The

computation process of (1) is shown in Fig. 9.

When Ai = 0 and qi = 0, x is equal to 0 and

SS[i]0 must be equal to SC[i]0 because the sum

of SS[i]0 + SC[i]0 + x0 is equal to 0. That is, if

Ai = 0 and qi = 0, then SS[i]0 = SC[i]0. Based

on this observation, we can conclude that the

sum of the carry propagation addition SS[i

+1]k+1:0 + SC[i + 1]k+1:0 is equal to the sum

of the carry propagation addition SS[i]k+1:1 +

SC[i]k+1:1 when Ai = qi = 0 and SS[i]0 =

SC[i]0 = 0. As a result, the computation of (1) in

iteration i can be skipped if we directly right

shift the outputs of one-level CSA architecture

in the (i − 1)th iteration by two bit positions (i.e.,

divided by 4) instead of one bit position (i.e.,

divided by 2) when Ai = qi = 0 and SS[i]0 =

SC[i]0 = 0.

 Accordingly, the signal skipi+1 used in

the ith iteration to indicate whether the carry-

save addition in the (i + 1)th iteration will be

skipped can be expressed as

skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 1]0)

where ∨ represents the OR operation. If skipi+1

 Fig 1. SCS-MM-NEW multiplier

generated in the ith iteration is 0, the carry-save

addition of the (i + 1)th iteration will not be

skipped. In this case, qi+1 and Ai+1 produced in

the ith iteration can be stored in FFs and then

used to fast select the value of x in the (i +1)th

iteration. Otherwise (i.e., skipi+1 = 1), SS[i + 1]

and SC[i + 1] produced in the ith iteration must

be right shifted by two bit positions and the next

clock cycle will go to iteration i + 2 to skip the

carry-save addition of the (i + 1)th iteration. In

this situation, not only qi+1 and Ai+1 but also

qi+2 and Ai+2 must be produced and stored to

FFs in the ith iteration to immediately select the

value of x in the (i + 2)th iteration without

lengthening the critical path. Therefore, the

selection signals (denoted as qˆ and Aˆ) for

choosing the proper value of x in the next clock

cycle must be picked from (qi+1, Ai+1) or

(qi+2, Ai+2) according to the skipi+1 signal

produced in the ith iteration. That is, (qˆ, Aˆ) =

(qi+2, Ai+2) if skipi+1 = 1. Otherwise, (qˆ, Aˆ)

= (qi+1, Ai+1).

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 736

FIG 2: Block diagram of 16-BIT SCS NEW

MULTIPLIER

FIG 3:SIMULATION RESULT OF 16-BIT

SCS NEW MULTIPLIER

IV. CONCLUSION:

 SCS-based multipliers maintain the

input and output operands of the Montgomery

MM in the format to escape from the format

conversion, leading to fewer clock cycles but

larger area than SCS-based multiplier. To

enhance the performance of Montgomery MM

while maintaining the low hardware complexity,

this paper has modified the SCS-based

Montgomery multiplication algorithm and

proposed Design and implementation of 16-bit

Montgomery modular multiplier. The proposed

multiplier used PASTA architecture and skipped

the unnecessary carry-save addition operations

to largely reduce the critical path delay and

required clock cycles for completing one MM

operation. Experimental results showed that the

proposed approaches are indeed capable of

enhancing the performance of radix-2 CSA-

based Montgomery multiplier while maintaining

low hardware complexity

ACKNOWLEDGMENT:

The authors would like to thank the

reviewers for their many constructive comments

and suggestions in improving this paper. They

would also like to thank the contributions of

Taiwan Semiconductor Manufacturing Company

Limited and National Chip Implementation

Center, Taiwan, for their support in technology

data.

REFERENCES:

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and

public-key cryptosystems,” Commun. ACM,

vol. 21, no. 2, pp. 120–126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic curves in

cryptography,” in Advances in Cryptology.

Berlin, Germany: Springer-Verlag, 1986, pp.

417–426.

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 737

[3] N. Koblitz, “Elliptic curve cryptosystems,”

Math. Comput., vol. 48, no. 177, pp. 203–209,

1987.

[4] P. L. Montgomery, “Modular multiplication

without trial division,” Math. Comput., vol. 44,

no. 170, pp. 519–521, Apr. 1985.

[5] Y. S. Kim, W. S. Kang, and J. R. Choi,

“Asynchronous implementation of 1024-bit

modular processor for RSA cryptosystem,” in

Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug.

2000, pp. 187–190.

[6] V. Bunimov, M. Schimmler, and B. Tolg, “A

complexity-effective version of Montgomery’s

algorihm,” in Proc. Workshop Complex.

Effective Designs, May 2002.

[7] H. Zhengbing, R. M. Al Shboul, and V. P.

Shirochin, “An efficient architecture of 1024-

bits cryptoprocessor for RSA cryptosystem

based on modified Montgomery’s algorithm,” in

Proc. 4th IEEE Int. Workshop Intell. Data

Acquisition Adv. Comput. Syst., Sep. 2007, pp.

643–646. [8] Y.-Y. Zhang, Z. Li, L. Yang, and

S.-W. Zhang, “An efficient CSA architecture for

Montgomery modular multiplication,”

Microprocessors Microsyst., vol. 31, no. 7, pp.

456–459, Nov. 2007.

[9] C. McIvor, M. McLoone, and J. V.

McCanny, “Modified Montgomery modular

multiplication and RSA exponentiation

techniques,” IEE Proc.- Comput. Digit. Techn.,

vol. 151, no. 6, pp. 402–408, Nov. 2004.

[10] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and

H.-W. Hsu, “Energy-efficient high-throughput

Montgomery modular multipliers for RSA

cryptosystems,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 11, pp. 1999–

2009, Nov. 2013.

R.Sathya Veni Received the B.Tech. degree from

Pragati Engineering College, Surampalem . She

awarded M.Tech. degree in VLSISD from Sri

Vishnu Engineering College for Women,

Bhimavaram.

B Roja Pavitra pursuing M.Tech. VLSI&ES in

Kakinada Institute of Engineering Technology

for Women, Korangi. She received Bachelor

degree in Department of Electronics and

Communication Engineering from Kakinada

Institute of Technological Sciences..

