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Abstract  

Modular multiplication is the core operation in public-key cryptographic algorithms such as RSA 

and the Diffie-Hellman algorithm. The efficiency of the modular multiplier plays a crucial role in the 

performance of these cryptographic methods. In this paper we are designing a 16-bit Montgomery 

modular multiplication with PASTA ADDER. In addition, a mechanism that can detect and skip the 

unnecessary carry-save addition operations in the PASTA architecture while maintaining the short critical 

path delay is developed. Experimental results show that the proposed Montgomery modular multiplier can 

achieve higher performance and significant area–time product improvement when compared with 

previous designs. 

Index terms: low-cost architecture, Montgomery modular multiplier, public-key cryptosystem. 

 

I. INTRODUCTION: 

 The multiplication of large integers is 

one of the core operations in public key 

cryptography. In order to provide the required 

cryptographic strength, the operand size has 

been growing continuously. During the earlier 

days of the RSA algorithm[1],  the researchers 

believed that 512-bit size was sufficient; a few 

years of research in factoring RSA moduli 

immediately brought the key size to 1024 bits. 

Currently many implementations already 

increase their key size to 2048 bit, for example, 

the root keys issued for SSL, while NIST [2] 

recommends 3072-bit keys for protection 

beyond the year 2030. 1 Therefore, using RSA 

to provide long term protection, 3072-bit or even 

larger integer modular multiplications need to be 

performed. Consequently, high performance 

long integer modular multiplier is in demand for 

practical use of the RSA. 

Montgomery Modular Multiplication 

(MMM) [3] algorithm is the most popular 

algorithm to perform modular multiplications to 

date. It has been extensively studied, and several 

variants of MMM have been proposed for both 

hardware and software platforms[4], [5], [6], [7], 

[8], [9], [10], [11]. To compute xy mod n using 

the original MMM, three l-bit multiplications 

dominate the computation time (l is the bit 

length of n) [3].  This indicates the acceleration 
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of multiplication will benefit the performance of 

MMM significantly. The asymptotic 

complexities of multiplication algorithms from 

the schoolbook method to the Furer method ¨ are 

listed in Table 1. The GMP library [16] provides 

efficient software implementations for most of 

these algorithms. However, it only focuses on 

software. There are many hardware realizations 

of these multiplication algorithms: the 

schoolbook[4], [5], [9], [10]  and Karatsuba 

methods [12], [17], [18], but few on Schonhage- 

¨ Strassen Algorithm (SSA) [7]. 

 Montgomery modular multiplication [3]  

is an efficient modular algorithm when the 

modulus n is without specific form. By adding 

constraints on the parameters, Walter [26]  

proposed the MMM without conditional 

subtraction algorithm and it is given in 

Algorithm 1. In MMM, r is typically a power of 

2 for the ease of computation. 

II. PREVIOUS WORK: 

 The Montgomery modular 

multiplication algorithm was designed to avoid 

division in modular multiplications. Given two 

n-bit inputs, X and Y, this algorithm gives Z = X 

· Y · R−1 mod M, where R equals to 2n and M 

is the n-bit modulo. Algorithm 1 shows the 

Radix-2w Montgomery modular multiplication 

algorithm in detail. A modified Montgomery 

multiplication algorithm was proposed to avoid 

the conditional final 

 In recent years, the Montgomery 

modular multiplication has been widely 

implemented in software and hardware. For 

example, In [14],  it was implemented on an 8-

bit microcontroller. In [6] It was implemented 

on an high-end TI DSP (TMS320C6201) 

showed that the software implementations on 

general purpose CPU can be sped up by 

extending the ISA. These software 

implementations are highly flexible, whereas the 

performance is limited. The hardware 

implementations of the Montgomery 

multiplication were also widely investigated. 

Researchers have deployed various 

architectures, such as bipartite multipliers[15]  

and systolic arrays [16, 17, 18]  to achieve high 

throughput. In order to obtain some flexibility, 

reconfigurable data path [11] for the 

Montgomery modular multiplication was also 

explored. However, there is still a gap between 

the flexibility and performance. One way to 

bridge the gap is using parallel computation with 

programmable devices, e.g., dual-mac DSP [6]. 

III. PROPOSED 16-bit 

MONTGOMERY 

MULTIPLICATION: 

 In this section, we propose a new SCS-

based Montgomery MM algorithm to reduce the 

critical path delay of Montgomery multiplier. In 

addition, the drawback of more clock cycles for 

completing one multiplication is also improved 

while maintaining the advantages of short 

critical path delay and low hardware complexity. 
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Critical Path Delay Reduction: 

 The critical path delay of SCS-based 

multiplier can be reduced by combining the 

advantages of FCS-MM-2 and SCS-MM-2. That 

is, we can pre compute D = B + N and reuse the 

PASTA architecture to perform B+N and the 

format conversion. Fig. 7(a) and (b) shows the 

modified SCS-based Montgomery multiplication 

(MSCS-MM) algorithm and one possible 

hardware architecture, respectively. The Zero_D 

circuit in Fig. 7(b) is used to detect whether SC 

is equal to zero, which can be accomplished 

using one NOR operation. The Q_L circuit 

decides the qi value according to step 7 of Fig. 

7(a). The carry propagation addition operations 

of B + N and the format conversion are 

performed by the one-level CSA architecture of 

the MSCS-MM multiplier through repeatedly 

executing the carry-save addition (SS, SC) = SS 

+ SC + 0 until SC = 0. In addition, we also pre 

compute Ai and qi in iteration i−1 (this will be 

explained more clearly in Section III-C) so that 

they can be used to immediately select the 

desired input operand from 0, N, B, and D 

through the multiplexer M3 in iteration i. 

Therefore, the critical path delay of the MSCS-

MM multiplier can be reduced into TMUX4 + 

TFA. However, in addition to performing the 

three-input carry-save additions [i.e., step 12 of 

Fig. 7(a)] k + 2 times, many extra clock cycles 

are required to perform B + N and the format 

conversion via the PASTA architecture because 

they must be performed once in every MM. 

Furthermore, the extra clock cycles for 

performing B+N and the format conversion 

through repeatedly executing the carry-save 

addition (SS, SC) = SS +SC +0 are dependent on 

the longest carry propagation chain in SS + SC. 

If SS = 111…1112 and SC = 000…0012, the 

one-level CSA architecture needs k clock cycles 

to complete SS + SC. 

Clock Cycle Number Reduction: 

To decrease the clock cycle number, a 

CCSA architecture which can perform one 

three-input carry-save addition or two serial 

two-input carry-save additions is proposed to 

substitute for the one-level CSA architecture in 

Fig. 7(b) The general architecture of the adder is 

 

Fig 1. Block Diagram of PASTA 

Each state is represented by (Ci+1 Si) pair where 

Ci+1, Si represent carry out and sum values 

respectively, from the ith bit adder block. During 

the initial phase, the circuit merely works as a 

combinational HA operating in fundamental 

mode. It is apparent that due to the use of HAs. 

Let Si
j 

and C
 j

i+1 denote the sum and carry, 

respectively, for ith bit at the j th iteration. The 

initial condition ( j = 0) for addition is 

formulated as follows: 
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S
0
i = ai ⊕ bi 

C
0
i+1= ai bi . 

The j th iteration for the recursive addition is 

formulated by 

S
j
i= S i 

j−1⊕ C i 
 j
−

1
 , 0 ≤ i < n    (2) 

C i+1 
j= S i 

j−1 C i 
j−1 , 0 ≤ i ≤ n.   (3) 

The recursion is terminated at kth iteration when 

the following condition is met: 

C
k
n + C

k
n−1+ ・・ ・+C

k
1= 0, 0 ≤ k ≤ n.  (4) 

Now, the correctness of the recursive 

formulation is inductively proved as follows. 

Theorem 1: The recursive formulation 

of (1)–(4) will produce correct sum for any 

number of bits and will terminate within a finite 

time. 

Proof: We prove the correctness of the 

algorithm by induction on the required number 

of iterations for completing the addition 

(meeting the terminating condition). 

Basis: Consider the operand choices for 

which no carry propagation is required, i.e., C
0

i 

= 0 for ∀i, i ∈ [0..n]. The proposed 

formulation will produce the correct result by a 

single-bit computation time and terminate 

instantly as (4) is met.  

  Induction: Assume that C
k
i+1≠ 0 for 

some I th bit at k th iteration. 

Let l be such a bit for which C
k
l+1= 1. We show 

that it will be successfully transmitted to next 

higher bit in the (k + 1)th iteration. 

As shown in the state diagram, the kth iteration 

of lth bit state(C
k
l+1, S

k
l ) and (l + 1)th bit state 

(C
k
l+2, S

k
l+1) could be in any of (0, 0), (0, 1), or 

(1, 0) states. As C
k
l+1= 1, it implies that S

k
l=0. 

Hence, from (3), C
k+1

l+1= 0 for any input 

condition between0 to l bits. 

We now consider the (l + 1)th bit state 

(C
k
l+2,S

k
l+1) for kth iteration. It could also be in 

any of (0, 0), (0, 1), or (1, 0) states. In (k+1)th 

iteration, the (0, 0) and (1, 0) states from the kth 

iteration will correctly produce output of (0, 1) 

following (2) and (3). For (0, 1) state, the carry 

successfully propagates through this bit level. 

We modify the 4 to 1 multiplexer M3 in fig(b) 

into a simplified multiplier SM3 as shown in fig. 

8(d) because one of its inputs is zero, where   

denotes the INVERT operation. Note that M3 

has been replaced by SM3 in the proposed 

PASTA architecture. 

 According to the delay ratio shown in 

Table II, TS M3 (i.e., 0.68 × TFA) is 

approximate to TMUX3 (i.e., 0.63 × TFA) and 

TMUXI2 (i.e., 0.23 × TFA) is smaller than 

TXOR2 (i.e., 0.34×TFA). Therefore, the critical 

path delay of the proposed PASTA architecture 

in Fig. 8(b) is approximate to that of the one-

level CSA architecture in Fig. 8(a). As a result, 

steps 3 and 15 of Fig. 7(a) can be replaced with 

(SS, SC) = 2H_CSA(SS, SC) and (SS[k + 2], 

SC[k + 2]) = 2H_CSA (SS[k + 2], SC[k + 2]) to 

reduce the required clock cycles by 

approximately a factor of two while maintaining 

a short critical path delay. 

 In addition, we also skip the 

unnecessary operations in the for loop (steps 6 to 
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13) of Fig. 7(a) to further decrease the clock 

cycles for completing one Montgomery MM. 

The crucial computation in the for loop of Fig. 

7(a) is performing the following three-to-two 

carry-save addition: 

(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] + x)/2 (1) 

where the variable x may be 0, N, B, or D 

depending on the values of Ai and qi . The 

computation process of (1) is shown in Fig. 9. 

When Ai = 0 and qi = 0, x is equal to 0 and 

SS[i]0 must be equal to SC[i]0 because the sum 

of SS[i]0 + SC[i]0 + x0 is equal to 0. That is, if 

Ai = 0 and qi = 0, then SS[i]0 = SC[i]0. Based 

on this observation, we can conclude that the 

sum of the carry propagation addition SS[i 

+1]k+1:0 + SC[i + 1]k+1:0 is equal to the sum 

of the carry propagation addition SS[i]k+1:1 + 

SC[i]k+1:1 when Ai = qi = 0 and SS[i]0 = 

SC[i]0 = 0. As a result, the computation of (1) in 

iteration i can be skipped if we directly right 

shift the outputs of one-level CSA architecture 

in the (i − 1)th iteration by two bit positions (i.e., 

divided by 4) instead of one bit position (i.e., 

divided by 2) when Ai = qi = 0 and SS[i]0 = 

SC[i]0 = 0. 

 Accordingly, the signal skipi+1 used in 

the ith iteration to indicate whether the carry-

save addition in the (i + 1)th iteration will be 

skipped can be expressed as 

skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 1]0) 

where ∨ represents the OR operation. If skipi+1 

 

    Fig 1. SCS-MM-NEW multiplier  

generated in the ith iteration is 0, the carry-save 

addition of the (i + 1)th iteration will not be 

skipped. In this case, qi+1 and Ai+1 produced in 

the ith iteration can be stored in FFs and then 

used to fast select the value of x in the (i +1)th 

iteration. Otherwise (i.e., skipi+1 = 1), SS[i + 1] 

and SC[i + 1] produced in the ith iteration must 

be right shifted by two bit positions and the next 

clock cycle will go to iteration i + 2 to skip the 

carry-save addition of the (i + 1)th iteration. In 

this  situation, not only qi+1 and Ai+1 but also 

qi+2 and Ai+2 must be produced and stored to 

FFs in the ith iteration to immediately select the 

value of x in the (i + 2)th iteration without 

lengthening the critical path. Therefore, the 

selection signals (denoted as qˆ and Aˆ) for 

choosing the proper value of x in the next clock 

cycle must be picked from (qi+1, Ai+1) or 

(qi+2, Ai+2) according to the skipi+1 signal 

produced in the ith iteration. That is, (qˆ, Aˆ) = 

(qi+2, Ai+2) if skipi+1 = 1. Otherwise, (qˆ, Aˆ) 

= (qi+1, Ai+1). 
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FIG 2: Block diagram of 16-BIT SCS NEW 

MULTIPLIER 

 

FIG 3:SIMULATION RESULT OF 16-BIT 

SCS NEW MULTIPLIER 

IV. CONCLUSION: 

 SCS-based multipliers maintain the 

input and output operands of the Montgomery 

MM in the format to escape from the format 

conversion, leading to fewer clock cycles but 

larger area than SCS-based multiplier. To 

enhance the performance of Montgomery MM 

while maintaining the low hardware complexity, 

this paper has modified the SCS-based 

Montgomery multiplication algorithm and 

proposed Design and implementation of 16-bit 

Montgomery modular multiplier. The proposed 

multiplier used PASTA architecture and skipped 

the unnecessary carry-save addition operations 

to largely reduce the critical path delay and 

required clock cycles for completing one MM 

operation. Experimental results showed that the 

proposed approaches are indeed capable of 

enhancing the performance of radix-2 CSA-

based Montgomery multiplier while maintaining 

low hardware complexity 
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