

## Review Paper on Parameters of Abrasive Water Jet Machining Hira Singh AP, Mechanical Engineering Departmen Gian Jyoti Group of Institutions, Shambhu Kalan E-mail: hira507puri@gmail.com

### ABSTRACT

The development of high performance material such as composites and advanced ceramics has a variety of manufacturing challenges. It is known that many of these materials cannot be effectively machined by conventional machining methods. Apart from economics, the process selection is based on the machined surface integrity. Abrasive water jet machining (AWJM) is a relatively new machining technique. Abrasive Water Jet Machining is extensively used in many industrial applications. AWJM is a non-conventional machining process where material is removed by impact erosion of high pressure high velocity of water and entrained high velocity of grit abrasives on a work piece. There are so many process parameter affect quality of machined surface cut by AWJM. Important process parameters which mainly affect the quality of cutting are traverse speed, hydraulic pressure, stand of distance, abrasive flow rate and types of abrasive. Important quality parameters in AWJM are Material Removal Rate (MRR), Surface Roughness (SR), kerf width, tapering of kerf. This paper reviews the research work carried out so far in the area AWJM.

Keywords: AWJM, Kerf width, MRR, surface roughness, Abrasives.

### Introduction

In conventional machining processes the cutting tool and workpiece are always in physical contact, with a relative motion against each other, which results in friction and a significant *tool wear*. In non-traditional processes, there is no physical contact between the tool and workpiece. Although in some non-traditional processes tool wear exists, it rarely is a significant

problem. Material removal rate of the traditional processes is limited by the mechanical properties of the work material. Non-traditional processes easily deal with such difficult-to-cut materials like ceramics and ceramic based tool materials, fiber reinforced materials, carbides, titaniumbased alloys. In traditional processes, the relative motion between the tool and work piece is typically rotary or reciprocating. Thus, the shape of the work surfaces is



limited to circular or flat shapes. In spite of widely used CNC systems, machining of three-dimensional surfaces is still a difficult task. Most non-traditional processes were developing just to solve this problem. Machining of small cavities, slits, blind or through holes is difficult with traditional processes, whereas it is a simple work for some non-traditional processes. Traditional processes are well established; use relatively simple and inexpensive machinery and readily available cutting tools. Nontraditional processes require expensive equipment and tooling as well as skilled labor, which increases significantly the production cost. In the early 60's O. Imanaka, University of Tokyo applied pure water for industrial machining. In the late 60's R. Franz of University of Michigan, examine the cutting of wood with high velocity jets. The first industrial application manufactured by McCartney Manufacturing Company and installed in Alto Boxboard in 1972. The invention of the abrasive water jet in 1980 and in 1983 the first commercial system with abrasive entrainment in the jet became available. Abrasive water jet machining is very much suitable for cutting soft, brittle and fibrous materials. AWJM is a unconventional machining process without much heat generation and the machined surface is virtually without any heat affected zone. The other advantages of abrasive waterjet machining over other unconventional machining are:

i) Rapid setup of the abrasive water jet cutting, ii) High accuracy of the components and features generated, extreme versatility of the system, iii) No heat generated during the process and above all, minimal kerf is obtained. Therefore, in this paper, a review of the contributions by important researchers on water jet machining using abrasives (AWJM) is presented. The idea of development of a abrasive water jet machining system is followed by identification of relevant processing parameters. The processing parameters, their importance and influence on the abrasive water jet machining system are finally compared and critically summarized to understand the process outputs as a function of input conditions.

The general domain of parameters in entrained type AWJ machining system is given below:

- 1. Orifice Sapphires 0.1 to 0.3 mm
- 2. Focussing Tube WC 0.8 to 2.4 mm
- 3. Pressure 2500 to 4000 bar

4. Abrasive – garnet and olivine (Mg, Fe)<sub>2</sub>SiO<sub>4</sub> - #125 to #60

- 5. Abrasive flow 0.1 to 1.0 Kg/min
- 6. Standoff distance 1 to 2 mm
- 7. Traverse speed– 50mm/min. to 5m/min.



# 8. Depth of Cut – 1 mm to 250 mm **LITERATURE SURVEY**

H. Hocheng and K.R. Chang [3] has carried out work on the kerf formation of a ceramic plate cut by an abrasive water jet. There is a critical combination of hydraulic pressure, abrasive flow rate and traverse speed for through- out cut below which it cannot be achieved for certain thickness. A sufficient supply of hydraulic energy, fine mesh abrasives at moderate speed gives smooth kerf surface. By experiment they find kerf width increases with pressure increase, traverse speed increase, abrasive flow rate increase and abrasive size increase. Taper ratio increases with traverse speed increases and decreases with pressure increases and abrasive size increases. Taper ratio has no effect with increase in abrasive flow rate.

M.A. Azmir, A.K. Ahsan [4] had done a practical for surface roughness and kerf taper ratio of glass/epoxy composite laminate machined by AWJM. They considered six process parameters of different level and use Taguchi method and ANOVA (analysis of variance) for optimization. Parameter used are abrasive types (two-level), hydraulic pressure (threelevel). standoff distance (three-level), abrasive flow rate (three-level), traverse rate (three-level), cutting orientation (threelevel). Kerf taper ratio is the ratio of top kerf width to bottom kerf width. Types of abrasives and traverse rate are insignificant for surface roughness while hydraulic pressure is most significant for that. Standoff distance, cutting orientation and abrasive mass flow rate is equally significant for surface roughness. For kerf taper ratio hydraulic pressure, abrasive mass flow rate and cutting orientation are insignificant. Types of abrasives are most significant for kerf taper ratio while Standoff distance and traverse rate are almost equally significant for that. By increasing the kinetic energy of AWJM process better quality of cut produce.

Ahmet Hascalik, Ulas Aydas, Hakan Gurun [5] has carried out study on effect of traverse speed on abrasive water jet machining of Ti- 6Al-4V alloy. They perform practical by varying traverse speeds of 60, 80, 120, 150, 200, and 250 mm/min by abrasive water jet (AWJ) machining. They studied the effect of traverse speed on the profiles of machined surfaces, kerf geometries and microstructure features of the machined surfaces. The traverse speed of the jet is a significant parameter on the surface morphology. The features of different regions and widths in the cutting surface change with the change in traverse speed. They also found that kerf taper ratio



and surface roughness increase with traverse speed increase in chosen condition. This is because the traverse speed of abrasive water jet allows fewer abrasives to strike on the jet target and hence generates a narrower slot. They identify three different zone in cutting surfaces of samples are (1) an initial damage region (IDR), which is cutting zone at shallow angles of attack; (2) a smooth cutting region (SCR), which is cutting zone at large angles of attack; (3) a rough cutting region (RCR), which is the jet upward deflection zone.

A.A. Khan, M.M. Hague [6] analyse the performance of different abrasive materials during abrasive water jet machining of glass. They make comparative analysis of the performance of garnet, aluminium oxide and silicon carbide abrasive in abrasive water-jet machining of glass. Their hardness of the abrasives was 1350, 2100 and 2500 knoops, respectively. Hardness is an important character of the abrasives that affect the cut geometry. The depth of penetration of the jet increases with the increase in hardness of the abrasives. They compare the effect of different of abrasive on taper of cut by varying cutting parameter standoff distance, work feed rate, pressure. It is found that the garnet abrasives produced the largest taper of cut followed by aluminium oxide silicon carbide and

abrasives. For all kinds of abrasives, the taper of cut increases with SOD. For all the types of abrasives used taper of cut decreases with increase in jet pressure. Taper of cut is smaller for silicon carbide abrasives followed by aluminium oxide and garnet.

John Rozario Jegaraj, N. Ramesh Babu [7] had worked on strategy for efficient and quality cutting of materials with abrasive water jets considering the variation in orifice and focusing nozzle diameter in cutting 6063-T6 aluminium alloy. They found the effect of orifice size and focusing nozzle diameter on depth of material removal cut, rate, cutting efficiency, kerf geometry and surface roughness. The ratio of 3:1 between focusing nozzle diameter to orifice size was suggested as the best suited combination out of several combinations of focusing nozzle to orifice size in order to achieve the maximum depth of cut in cutting they suggest the ratio of 5:1 and beyond cause ineffective entrainment of abrasives in cutting head. It is noticed that with an increase in hydraulic pressure for different combinations of orifice and focusing nozzle size the depth of cut increased. The material removed increased with an increase in the size of focusing nozzle up to 1.2 mm diameter but with further increase it is



reduced. The abrasive flow rate is found to be less significant on kerf width. This study suggests maintaining the orifice size and focusing nozzle size within certain limits say 0.25–0.3 mm and 1.2 mm, respectively, for maintaining less taper on kerf. Any increase in the size of orifice and focusing nozzle is not much effect the surface quality but larger size of orifice produce a better surface finish on cut surface.

Wang, W.C.K. Wong [9] had done study of abrasive water jet cutting of metallic coated sheet steels based on a statistically designed experiment. They discussed relationships between kerf characteristics and process parameters. They produce empirical models for kerf geometry quality for the prediction and and optimization of AWJ cutting performance. They perform three-level four-factor full factorial designed experiment. Process parameters used are water jet pressure, traverse speed, abrasive flow rate and standoff distance. The top and bottom kerf widths increase as the water pressure increase. The top and bottom kerf widths increase as the standoff distance increase but the rate of increase for the bottom kerf width is smaller. The traverse speed produces a negative effect on both the top and bottom kerf widths but the kerf taper increase as the The surface traverse speed increase.

roughness decreases with an increase in the abrasive flow rate. They show the burr height steadily decreases with a decrease in the traverse speed.

Mahabalesh Palleda [10] investigated the effects of the different environments chemical like acetone. acid and phosphoric polymer (polyacrylamide) in the ratio of 30% with 70% of water and standoff distance on the taper angles and material removal rates of drilled holes in the abrasive water jet machining process. Material removal is highest when slurry added with polymer compare to three slurries. MRR increase with increase of standoff distance because momentum of impacting abrasive particles on the work surface creating craters of more depth. Taper holes of drilled holes reduce as the standoff distance increase. Taper holes observed less in case of phosphoric acid combination with slurry than the plain water slurry and the slurry with acetone combination. Taper observed in case of polymer is almost nil. The material removal rate is increasing with increase of chemical concentration of acetone and phosphoric acid in the slurry up to a certain level and then reducing. In case of polymer with the material removal increases slurry in continuously. the taper of the hole is less in phosphoric acid combination compare to



acetone combination. In polymer combination taper of the hole is very less or almost nil.

P K Ray and Dr A K Paul [11] had investigated that the MRR increases with increase of air pressure, grain size and with increase in nozzle diameter. MRR increases with increase in standoff distance (SOD) at a particular pressure. They found after work that initially MRR increases and then it is almost constant for small range and after that MRR decreased as SOD increases. They introduced a material removal factor (MRF). MRF is a non-dimensional parameter and it gives the weight of material removed per gram of abrasive particles. MRF decreases with increase in pressure that means the quantity of material removed per gram of abrasives at a lower pressure is higher than the quantity of material removed per gram of abrasives at a higher pressure. This is happened because at higher air pressure more number of abrasive particles are carried through the nozzle so number of inter particle collisions and hence more loss of energy.

### **Conclusions:**

1.From the literature review compare to all mentioned parameter traverse speed is most effective parameter for MRR. The study also reveals that the kerf taper ratio and surface roughness increases with increases in traverse speed.

2. Abrasive flow rate is also an important parameter for increasing MRR. But beyond some limit with increase in abrasive flow rate the surface roughness decreases.

 The taper of cut increases with increase in the standoff distances because water jet get widen with increase in standoff distance.
 The taper of cut decreases with increase in jet pressure, with increase in pressure the cutting energy of jet increases.

5. The depth of penetration of jet increases with increases in hardness of abrasives.

6. The power required for cutting gets reduced drastically with increase in jet pressure.

### **REFERENCES:**

- M. Ramalu, S. Kunaporn, D. Arola, M. Hashish, J. Hopkins; Waterjet machining and Peening of metals, Transactions of ASME, Vol.122, February 2000.
- Module 9, lesson 37, nonconventional machining, version 2 ME, IIT Kharagpur
- A.A. Khan, M.M. Hague," Performance of different abrasive material during abrasive water jet Machining of glass" Journal of Materials Processing Technology 191 (2007) 404–407



### **International Journal of Research** Available at https://edupediapublications.org/journals

- M.A. Azmir, A.K. Ahsan, "A study of abrasive water jet machining process on glass/epoxy composite laminate "Journal of Materials Processing Technology 209 (2009) 6168–6173
- Ahmet Hascalik, Ulas C aydas, Hakan Guru "Effect of traverse speed on abrasive water jet machining of Ti–6Al–4V alloy, " Materials and Design 28 (2007) 1953–1957
- A.A. Khan, M.M. Hague," Performance of different abrasive material during abrasive water jet Machining of glass" Journal of Materials Processing Technology 191 (2007) 404–407
- J. John Rozario Jegaraj, N. Ramesh Babu "A strategy for efficient and quality cutting of materials with abrasive waterjets considering the variation in orifice and focusing nozzle diameter" International Journal of Machine Tools & Manufacture 45 (2005) 1443–1450
- J. Wang, W.C.K. Wong, "A study of abrasive water jet cutting of metallic coated sheet steels" International Journal of Machine Tools & Manufacture 39 (1999) 855–870
- 9. Mohemed Hashish, "Observations on

cutting with 600-MPa waterjets" Journel of pressure vessel technology, May 2002, Vol. 124.

- Hocheng and K.R. Chang, "Material removal analysis in abrasive water jet cutting of ceramic plates "Journal of Materials Processing Technology, 40(1994) 287-304
- 11. Mahabalesh Palleda, "A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process "Journal of Materials Processing Technology 18 (2007) 292–295
- 12. Studies on Abrasive Jet Machining by P K Ray, Member A K Paul, Fellow Department of Mechanical Engineering Regional Engineering College Rourkela UDC 621.921 page no 27 to 29.
- 13. A. Alberdi, A. Suárez, T. Artaza, G.
  A. Escobar-Palafox, K. Ridgway," Composite Cutting with Abrasive Water Jet," The Manufacturing Engineering Society International Conference, MESIC 2013, Procedia Engineering 63 (2013) 421 – 429
- 14. C. Ma, R.T. Deam, "A correlation for predicting the kerf profile from abrasive water jet cutting," Experimental Thermal and Fluid Science 30 (2006) 337–343



15. M.Chithirai Pon Selvan,
Dr.N.Mohana Sundara Raju,
Dr.R.Rajavel, "Effects of Process
Parameters on Depth of Cut in
Abrasive Waterjet Cutting of Cast
Iron," International Journal of
Scientific & Engineering Research
Volume 2, Issue 9, September-2011