

International Journal of Research Available

a t https ://edupedi a publ i c a ti ons .org/j ourna l s

p-I SSN: 2348 -6848

e-I SSN: 23 48-795X
Vol ume 0 4 I s s ue 07

June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1090

G.Sushma1, A.Kalpana2
1Assistant professor, Dept. of CSE, Ramananda Tirtha Engineering College, Nalgonda,Telangana, India

2 Assistant professor, Dept. of CSE , Ramanandha Tirtha Engineering College, Nalgonda,Telangana, India

Abs t ract : In this paper, we offer a multi-grained

block management strategy to improve the space

utilization of file systems over PCM-based storage

systems. By utilizing the byte-addressability and fast

read/write feature of PCM, a methodology is

suggested to dynamically allocate multiple sizes of

blocks to fit the size of each file, so as to resolve the

space fragmentation issue with minimized space and

management overheads. The space utilization of file

systems is analyzed with consideration of block sizes.

Keywords - Phase-change memory, space utilization,

byte-addressability, file systems

I. INTRODUCTION

Among these, Phase-change memory (PCM) is

seemed as one of the most promising storage media

within the design of subsequent-technology storage

media, because it has higher access performance than

flash memory. However, for the reason that PCM is

nevertheless more luxurious than flash memory, its

capability is restrained because of fee issues. In

addition, current report structures are designed for

block-orientated garage devices and

allocate/manipulate storage space in the unit of a

“block,” that is generally of numerous kilobytes. This

ends in space fragmentation for storing user data and

file information without considering the byte-

addressability of PCM, and thus consequences in

low area usage over PCM-based totally garage

systems. Such observations inspire us to advocate a

new space management strategy to maximize the

distance utilization of record systems over PCM-

based storage systems by way of utilizing the unique

characteristics of PCM. PCM is rapidly evolved as a

promising candidate for subsequent-generation

storage class memory (SCM) due to its non-volatility,

byte-addressability, and high get admission to

performance. In recent years, investigators have

studied a way to use PCM as major memory or

hybrid predominant reminiscence to enhance the

system overall performance and electricity

performance [2], [3], [4]. Although some research

have explored the examine/write asymmetry of PCM

to similarly optimize the performance of PCM [5],

[6], [7], the use of PCM as major memory suffers

from the write staying power trouble. Thus, some

researchers have proposed extraordinary techniques

to beautify the lifetime of PCM via the adoption of

various write discount or wear leveling techniques in

extraordinary layers/additives [8], [9], [10], [11],

[12], [13], [14], [15].

II. RELATED W ORKS

We wanted to determine the report gadget

configuration parameter and function units

appropriate for NVM surroundings below one of a

kind workloads. Based on various homes, we ran our

workloads on seven one-of-a-kind record structures:

PMFS, Ext2, Ext3, Ext4, XFS, NILFS2 and F2FS.

The distinguishing features throughout all the record

systems are:

• Inode facts s ys tems : B-Tree vs. Linear constant

length • Block Size: Fixed vs. Variable-sized extents

• Layout o r rep lace s ty le : In-vicinity replace vs.

Lognestablished vs. Hybrid

• A llocation techn iques : Delayed vs. Instantaneous,

parallel allocation

• Journal modes : None vs. Ordered vs. Writeback vs.

data

• Other features (e.G., atomic updates, XIP) designed

for NVM. We evaluated the above document systems

now not best in their default modes but also using

diverse mount and layout options. Some of the

An Analysis Of Multi-Grained Block Management To
Enhance

The Space Utilization

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research Available

a t https ://edupedi a publ i c a ti ons .org/j ourna l s

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1091

alternatives that we numerous consist of diffrent

journaling modes, allocation rules such as behind

schedule allocation, mechanisms to pass buffer cache

using executein-vicinity (XIP) and some more

alternatives applicable to precise record systems.

Table III compares the distinctive residences of these

seven file systems primarily based at the factors

given above. The remaining row of this table affords

abbreviations of the report machine variations

utilized in our evaluation.

PMFS: PMFS is a lightweight POSIX file machine

that has been explicitly designed for NVM. It is an

in-vicinity update file system that bypasses the buffer

cache and block layer (see Fig. 1). PMFS helps an

essential function, referred to as as executein-location

(XIP) that lets in direct I/O from NVM media. XIP

[21] is a way of executing applications directly from

garage media like ROM or flash memory as opposed

to copying the data into DRAM. As XIP lets in direct

get right of entry to to media bypassing web page or

buffer cache (proven in Fig.1), it appears as an

attractive option for NVM media. PMFS is

characterised via atomic in-region updates to

metadata, high-quality grained undo logging for

consistency, massive page guide, and occasional

overhead scheme of defensive the NVM from stray

writes, referred to as write-protect. We do now not

permit write-shield function on PMFS for honest

contrast throughout PMFS and traditional report

systems on ramdisk, which lack this selection.

Ext2 and Ext3: Ext2 [22] and Ext3 [23] were the

default report machine on Linux for years. There is a

lot of similarity among ext2 and ext3 in phrases of

layout, inode structures, and loose area control. Both

ext2 and ext3 divide the underlying storage (disk or

ramdisk) into constant size block organizations (BG).

Each group manages its personal loose statistics

block bitmaps, and inodes. The document structures

attempt to increase reference locality with the aid of

keeping files contained inside a single figure

directory inside the identical block institution. The

most block group length is limited with the aid of

block length (4K). For our experimental setup, the

mkfs application units the default range of block

agencies to 464, based totally on the ramdisk size and

block length. We file all the numbers for this default

block institution price. Ext3 adds journaling support,

whereas ext2 has no journal. Ext3 helps three

varieties of journaling modes: statistics, ordered and

writeback, with ordered mode being the default. We

evaluate the performance of both ordered and

statistics journal mode of the record system. As XFS

helps writeback magazine mode, through default, we

do now not test writeback mode in ext3.

Fig. 1. Traditional vs. optimized POSIX file systems

We compare the performance of ext2 and ext3 whilst

mounted with XIP characteristic enabled. In Linux,

XIP is carried out by using including support to dam

device operations, and file device operations. A block

device operation named direct_access is used to

retrieve a reference to block on storage. The

reference is supposed to be cpu-addressable bodily

cope with. The XIP-enabled document gadget desires

to put into effect a unique deal with-space operation

named get_xip_mem this is used to retrieve reference

to the page frame number (of the underlying media)

and a kernel cope with (virtual deal with). The file

device additionally implements special examine,

write function and page fault handler that employ

get_xip_mem. Currently, Linux ramdisk block

driving force and ext2 aid XIP. We have delivered

XIP function aid to ext3 document machine (ordered

mode) and used it for our evaluations.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research Available

a t https ://edupedi a publ i c a ti ons .org/j ourna l s

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1092

Note that XIP function in ext2 and ext3 is only

limited to information operations i.E., while

performing reproduction throughout consumer and

kernel information buffers. Unlike PMFS, this option

and atomic updates is no longer relevant to metadata

operations such as updates to inode or journalling in

conventional record systems as it entails greater

adjustments in the record system code.

III. PROPOSED SYSTEM MODEL

MULTI-GRAINED BLOCK MANAGEMENT

By utilizing the byte-addressability of PCM, the

proposed strategy can manage blocks with multiple

granularities to reduce the internal fragmentation of

blocks that store small files or the tail data of files

(see Fig. 2); in other words, smaller blocks are used

for smaller files and larger blocks are allocated for

larger files. Note that PCM is normally designed to

be written in a cache line size, e.g., 64 bytes, because

processors usually include internal/on-chip (SRAM)

cache and access byte-addressable off-chip DRAM or

PCM in the unit of a cache line size as a batch;

although byte updates to PCM are possible, they will

be much less efficient than being updated in the

cache line size.

Fig. 2. Internal fragmentation inside a block

Thus, in this work, the considered block sizes of file

systems are multiples of the cache line size of PCM.

In addition, the proposed strategy dynamically

allocates space for inodes with the support of inode

indirection to reclaim space of inodes efficiently,

such that the space of inodes (or inode tables) and

data blocks can be interchanged adaptively to resolve

the external fragmentation caused by unused inodes

or data blocks (see Fig. 3).

Fig. 3. External fragmentation among blocks

To address the internal fragmentation issue, the Unix

file system, which is an inode-based file system,

proposes to divide a block into multiple fragments,

and uses a fragment as the space allocation unit. For

example, its implementation suggests partitioning a 4

KB block into eight 512 B fragments. Although such

an approach can mitigate the internal fragmentation

issue, it still suffers from a serious space utilization

issue because each fragment is still up to 512 bytes,

which is imposed by the sector size adopted by most

blockoriented storage devices (e.g., hard disk drives).

As the example in Fig. 4 shows, FileA is a small file

stored in fragment 8 and FileB has its last part stored

in fragment 48. Both fragments 8 and 48 have low

space utilization due to the internal fragmentation. At

the same time, the required space to store the block

bitmap is also eight times larger than traditional

inode-based file systems because UFS maintains the

usage status of each fragment, instead of each block.

Fig. 4. Logical view of storage space for UFS.

Large-Space Extens ion

To simplify the management of file accesses, the

multi-grained strategy usually merges the data blocks

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research Available

a t https ://edupedi a publ i c a ti ons .org/j ourna l s

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1093

pointed by the last indirect block into a new larger

data block.

Fig. 5. Overhead comparison

To better explain the concept of the large-space

extension, Fig. 5 is included to show the overhead

comparison between the form conversion and the

large-space extension. In Fig. 5, because of the new

data, the form conversion converts the form type to

the next form by copying the data in the sub-blocks

to a (larger) data block. The copying overhead is the

sum of all the sub-blocks in the second form.

However, while the multi-grained strategy employs

the large-space extension, the overhead is reduced to

the multiplication of the number of entries in an

indirect block by the sub-block size.

Dynamic Inode A llocat ion

In the proposed strategy, dynamic inode allocation is

supported to resolve the external fragmentation issue

caused by the fixed number of inodes in the

traditional inode-based file systems (see Fig. 6). Its

objective is to dynamically adjust the number of

inodes at runtime so that the storage space allocated

for inodes and for file contents can be balanced. This

mode of allocation includes an inode translation table

to manage inodes so that inodes can be distributed

and stored in any block at runtime. Each entry of the

inode translation table points to a block (called inode

block) that stores consecutive inodes. Suppose that

each block can store i inodes. The entry j of this table

points to the block that is used to store inodes from j

x i to (j+1) x i-1. As the example in Fig. 6 shows,

inodes 0-2 are stored in block 10 and inodes 32-34

are distributed to block 22. Similar to the sub-block

table, each entry of the inode translation table also

includes a cnt field to indicate the number of free

inodes and a bitmap field to indicate allocation status

of the inodes in the inode block pointed by the ptr

field.

Fig. 6. Inode translation table.

Block Reclamat ion

In the proposed multi-grained strategy, all data

blocks are reclaimable. While a used space has been

freed/released by the file movement/deletion, the

proposed multi-grained strategy triggers a block

reclamation mechanism. In the block reclamation

mechanism, when a data block is freed by the

movement/deletion of files, the data block can be

directly reclaimed. If the released block is a sub-

block, the multigrained strategy checks whether any

other occupied subblocks exist in the same block.

When the block does not contain any occupied sub-

blocks, the data block is reclaimed as a free block. If

the block contains other occupied sub-blocks, the

proposed strategy maintains the released sub-block as

a free sub-block in the sub-block bitmap.

File Operat ions Management

With the multi-grained strategy, when a request is

received to create a file, the system searches an

unused inode space in inode translation table to store

the file’s metadata. If the system cannot find any

unused inode space, a new inode block will be

created from unused blocks. To maintain the new

indoe block’s information, the system inserts the

information of the inode block into the inode

translation table. When the inode translation tables

have no free space to store the information, a new

inode translation table will be created and linked to

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research Available

a t https ://edupedi a publ i c a ti ons .org/j ourna l s

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1094

an inode translation table list. To avoid the wrong

redirection in the indirection map, the system corrects

the inode point in thedentry that points an inode,

which is redirected to another inode, and removes the

record of the inode point in the indirection map.

Thereupon, a new inode can be created in an inode

block with free space. After the system find a free

space to store inode’s information, the file’s data

content is stored in a stack-formed structure.

A lgorithm 1. File Creation with the Multi-grained

Data: filename, data, size

Res u lt : null

1 Search an unused inode space in ITB.

2 if an unused inode not found then

3 Create a new inode block from unused blocks.

4 if ITB has no any free space then

5 Create a new ITB block from unused blocks.

6 Link the new ITB block to the ITB list.

7 end

8 Insert the new inode block record into ITB.

9 end

10 if the inode number is exist in indirection map

then

11 Correct the inode point in Dentry.

12 Remove the record of the inode in ind. map.

13 end

14 Create a new inode in an inode block.

15 Create a stack-formed structure based on size.

16 Store data into the stack-formed structure.

17 Return

IV. CONCLUSION

In this work, we recommend a multi-grained block

management method to optimize the distance usage

of document structures over PCM-based totally

storage structures with minimized area and control

overheads. By utilising the byte-addressability and

rapid examine/write function of PCM, a sub-block

control with a stack-shaped enlarging shape is

proposed to apply and manipulate a couple of sizes of

blocks for every record and for every inode. Its goal

is to allocate right block sizes for each report so that

it will minimize the internal fragmentation trouble

imposed through current file systems. The strategy

supplied here supports dynamic inode allocation to

dynamically allocate and reclaim inodes, in order that

the outside fragmentation difficulty due to the

existing inode-based document structures may be

similarly resolved.

REFERENCES

[1] Y.-H. Chang, T.-Y. Chen, Y.-J. Chen, H.-W. Wei,

W.-K. Shih, and Z.-R. Lai, “Optimizing space

utilization of file systems on PCMbased storage

devices,” in Proc. IEEE Nonvolatile Memory Syst.

Appl. Symp., 2014, pp. 1–6.

[2] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,

“Architecting phase change memory as a scalable

DRAM alternative,” in Proc. IEEE/ ACM 36th Annu.

Int. Symp. Comput. Archit., 2009, pp. 2–13.

[3] M. K. Qureshi, V. Srinivasan, and J. A. Rivers,

“Scalable high performance main memory system

using phase-change memory technology,” in Proc.

36th Annu. Int. Symp. Comput. Archit., 2009, pp.

24–33.

[4] L. E. Ramos, E. Gorbatov, and R. Bianchini,

“Page placement in hybrid memory systems,” in

Proc. Int. Conf. Supercomput., 2011, pp. 85–95.

[5] M. K. Qureshi, M. Franceschini, A. Jagmohan,

and L. Lastras, “PreSET: Improving read write

performance of phase change memories by exploiting

asymmetry in write times,” in Proc. 39th IEEE/ ACM

Annu. Int. Symp. Comput. Archit., 2012, pp. 380–

391.

[6] J. Yue and Y. Zhu, “Accelerating write by

exploiting PCM asymmetries,” in Proc. IEEE 19th

Int. Symp. High Perform. Comput. Archit., 2013, pp.

282–293.

[7] J. Yue and Y. Zhu, “Exploiting subarrays inside a

bank to improve phase change memory

performance,” in Proc. Des., Autom. Test Eur. Conf.

Exhib., 2013, pp. 386–391.

[8] S. Cho and H. Lee, “Flip-n-write: A simple

deterministic technique to improve pram write

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research Available

a t https ://edupedi a publ i c a ti ons .org/j ourna l s

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1095

performance, energy and endurance,” in Proc. 42nd

Ann. IEEE/ACM Int. Symp. Microarchit, 2009, pp.

347–357.

[9] J. Hu, C. Xue, W.-C. Tseng, Y. He, M. Qiu, and

E.-M. Sha, “Reducing write activities on non-volatile

memories in embedded cmps via data migration and

recomputation,” in Proc. 47th ACM/ IEEE Des.

Autom. Conf., 2010, pp. 350–355.

[10] Y. Park and K. H. Park, “High-performance

scalable flash file system using virtual metadata

storage with phase-change RAM,” IEEE Trans.

Comput., vol. 60, no. 3, pp. 321–334, Mar. 2011.

[11] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A

durable and energy efficient main memory using

phase change memory technology,” in Proc. 36th

Annu. Int. Symp. Comput. Archit., 2009, pp. 14–23.

[12] C.-H. Chen, P.-C. Hsiu, T.-W. Kuo, C.-L. Yang,

and C.-Y. Wang, “Age-based PCM wear leveling

with nearly zero search cost,” in Proc. 49th

ACM/IEEE Annu. Des. Autom. Conf., 2012, pp.

453–458.

[13] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R.

Melhem, and D. Mosse, “Increasing PCM main

memory lifetime,” in Proc. IEEE/ ACM Conf. Des.,

Autom. Test Eur., 2010, pp. 914–919.

[14] M. K. Qureshi, J. Karidis, M. Franceschini, V.

Srinivasan, L. Lastras, and B. Abali, “Enhancing

lifetime and security of PCM based main memory

with Start-gap wear leveling,” in Proc. 42nd Ann.

IEEE/ACM Int. Symp. Microarchit., 2009, pp. 14–

23.

[15] M. K. Qureshi, A. Seznec, L. A. Lastras, and M.

M. Franceschini, “Practical and secure PCM systems

by online detection of malicious write streams,” in

Proc. IEEE 17th Int. Symp. High Perform. Comput.

Archit., 2011, pp. 478–489.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

