

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1120

Data Reduction and Effective Bug Triage in

Software

V. SURESH KUMAR1 & MR. M. DHARANI KUMAR2

1M.TECH, DEPT. OF CSE P.V.K.K INSTITUTE OF TECHNOLOGY,

ANANTHAPURAMU, AFFILIATED TO JNTUA INDIA.

2ASSISTANT PROFESSOR, DEPT. OF CSE P.V.K.K INSTITUTE OF TECHNOLOGY,

ANANTHAPURAMU, AFFILIATED TO JNTUA INDIA.

ABSTRACT

Software companies spend over 45 percent of cost in dealing with software bugs. An inevitable

step of fixing bugs is bug triage, which aims to correctly assign a developer to a new bug. To

decrease the time cost in manual work, text classification techniques are applied to conduct

automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e.,

how to reduce the scale and improve the quality of bug data. We combine instance selection with

feature selection to simultaneously reduce data scale on the bug dimension and the word

dimension. To determine the order of applying instance selection and feature selection, we

extract attributes from historical bug data sets and build a predictive model for a new bug data

set. We empirically investigate the performance of data reduction on totally 600,000 bug reports

of two large open source projects, namely Eclipse and Mozilla. The results show that our data

reduction can effectively reduce the data scale and improve the accuracy of bug triage. Our work

provides an approach to leveraging techniques on data processing to form reduced and high-

quality bug data in software development and maintenance.

Key words: - Bug Triage; Data Reduction; Bug Repositories; Prediction for Reduction Order;

Feature Selection; Instance Selection; Word Dimension; Bug Dimension.

1. INTRODUCTION

MINING software repositories is an

interdisciplinary domain, which aims to

employ data mining to deal with software

engineering quandaries. In modern software

development, software repositories are

immensely colossal-scale databases for

storing the output of software development,

e.g., source code, bugs, emails, and

designations. Traditional software analysis

is not thoroughly opportune for the sizable

voluminous-scale and intricate data in

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1121

software repositories. Data mining has

emerged as a promising denotes to handle

software data. By leveraging data mining

techniques, mining software repositories can

denude fascinating information in software

repositories and solve real-world software

quandaries. A bug repository (a typical

software repository, for storing details of

bugs), plays a paramount role in managing

software bugs. Software bugs are ineluctably

foreordained and fine-tuning bugs is

sumptuous in software development.

Software companies spend over 45 percent

of cost in fine-tuning bugs. Astronomically

immense software projects deploy bug

repositories (additionally called bug tracking

systems) to fortify information amassment

and to avail developers to handle bugs. In a

bug repository, a bug is maintained as a bug

report, which records the textual description

of reproducing the bug and updates

according to the status of bug fine-tuning. A

bug repository provides a data platform to

fortify many types of tasks on bugs, e.g.,

fault presage, bug localization and reopened

bug analysis. In this paper, bug reports in a

bug repository are called bug data.

2. RELEGATED WORK

2.1Existing System

A time-consuming step of handling software

bugs is bug triage, which aims to assign a

correct developer to fine-tune an incipient

bug. In traditional software development,

incipient bugs are manually triaged by an

expert developer, i.e., a human triage. Due

to the astronomically immense number of

daily bugs and the lack of expertise of all the

bugs, manual bug triage is sumptuous in

time cost and low in precision. In manual

bug triage in Eclipse, percent of bugs are

assigned by mistake while the time cost

between opening one bug and its first

triaging is 19.3 days on average. To evade

the extravagant cost of manual bug triage,

subsisting work has proposed an automatic

bug triage approach, which applies text

relegation techniques to prognosticate

developers for bug reports. In this approach,

a bug report is mapped to a document and a

cognate developer is mapped to the label of

the document. Then, bug triage is converted

into a quandary of text relegation and is

automatically solved with mature text

relegation techniques, e.g., Verdant Bayes.

Predicated on the results of text relegation, a

human triager assigns incipient bugs by

incorporating his/her expertise. To

ameliorate the precision of text relegation

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1122

techniques for bug triage, some further

techniques are investigated, e.g., a tossing

graph approach and a collaborative filtering

approach. However, sizably voluminous-

scale and low-quality bug data in bug

repositories block the techniques of

automatic bug triage. .Since software bug

data are a kind of free-form text data

(engendered by developers), it is

compulsory to engender well-processed bug

data to facilitate the application

 In the subsisting system, we address the

quandary of data reduction for bug triage,

i.e., how to reduce the bug data to preserve

the labor cost of developers and amend the

quality to facilitate the process of bug triage.

Data reduction for bug triage aims to build a

minuscule-scale and high-quality set of bug

data by abstracting bug reports and words,

which are redundant or non-informative. In

our work, we amalgamate subsisting

techniques of instance cull and feature cull

to simultaneously reduce the bug dimension

and the word dimension. The reduced bug

data contain fewer bug reports and fewer

words than the pristine bug data and provide

homogeneous information over the pristine

bug data. We evaluate the reduced bug data

according to two criteria: the scale of a data

set and the precision of bug triage. To

eschew the partialness of a single algorithm,

we empirically examine the results of four

instance cull algorithms and four feature cull

algorithm.

2.2Proposed System

In the proposed system, a bug report is

mapped to a document and a cognate

developer is mapped to the label of the

document. Then, bug triage is converted into

a quandary of text relegation and is

automatically solved with mature text

relegation techniques, e.g., Ingenuous

Bayes. Predicated on the results of text

relegation, a human triager assigns incipient

bugs by incorporating his/her expertise. To

amend the precision of text relegation

techniques for bug triage, some further

techniques are investigated, e.g., a tossing

graph approach and a collaborative filtering

approach. However, astronomically

immense-scale and low-quality bug data in

bug repositories block the techniques of

automatic bug triage. Since software bug

data are a kind of free-form text data

(engendered by developers), it is

indispensable to engender well-processed

bug data to facilitate the application.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1123

Since bug triage aims to presage the

developers who can fine-tune the bugs, we

follow the subsisting work to abstract

unfixed bug reports, e.g., the incipient bug

reports or will-not-fine-tune bug reports.

Thus, we only cull bug reports, which are

fine-tuned and duplicate (predicated on the

items status of bug reports). Moreover, in

bug repositories, several developers have

only fine-tuned very few bugs. Such

dormant developers may not provide ample

information for soothsaying correct

developers. In our work, we abstract the

developers, who have fine-tuned less than

10 bugs.

3. IMPLEMENTATION

3.1 Admin:

In this module, the Admin has to login by

using valid user name and password. After

admin login successful he can do some

operations such as add domain, add projects,

assign projects, view all bugs, list all

projects, list all assigned projects, list all

users, view searched history.

3.1.1Add domain:

 In this module, the admin can add the

domain. If the admin want add the domain,

he will enter domain name and click on

submit button. The details will be stored in

the database.

3.1.2 Add projects:

In this module, when the admin wants to add

projects, he clicks on add projects and enter

project name, project description, domain

name, start date, end date and project image

and click on submit button the details will be

stored in the data base.

3.1.3 Assign project:

In this module, when the admin wants to

assign projects, he clicks on assign projects

and select project and select developer and

click on submit button, then he enters the

developer name, project name, project

description, domain start time and end time

the corresponding details will be assigned

successfully.

3.2User

In this module, there are n numbers of users

are present. User should register before

doing some operations. After registration

successful he has to login by using

authorized user name and password. Login

successful he will do some operations like

view my details, view project assigned, view

send bug report, view all bugs, list search

other bugs, list my searched history. If user

clicks on my details button, then the server

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1124

will give response to the user with their tags

such as UID, developer name, project name,

project description, domain, start date, end

date, project image..

3.2.1 Send bug reports:

 In this module when user clicks on send bug

report button, he will select the project and

clicks on submit button, then he will enter

developer name, project name, project

description, domain, start date, end date,

select bug type, enter bug description and

click on assign button, the corresponding

details will be stored.

3.2.2 Feature selection method and

instance selection method and view bugs:

In this module when admin click on feature

selection method he will get different defect

bug type like UI defects, boundary related

defects, error handling defects, calculation

defects, control flow defect, interpreting

data defect, race condition defect and load

balancing defect on the basis of details as

follows bug ID, developer name, project

name, project description, domain, start

date, end date, bug type, bug description and

status. Click on solution provider select bug

ID and enter solution, click on submit button

and fix the bug.

4. EXPERIMENTAL RESULTS

Fig 1 Architecture Diagram

Fig 2 Home Page

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1125

Fig 3 Login Page

Fig 4 Registration Page

Fig 5 Projects Page

Fig 6 Project Assign Page

5. CONCLUSION

Bug triage is a sumptuous step of software

maintenance in both labor cost and time

cost. In this paper, we cumulate feature cull

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1126

with instance cull to reduce the scale of bug

data sets as well as ameliorate the data

quality. To determine the order of applying

instance cull and feature cull for an incipient

bug data set, we extract attributes of each

bug data set and train a predictive model

predicated on historical data sets. We

empirically investigate the data reduction for

bug triage in bug repositories of two

immensely colossal open source projects,

namely Eclipse and Mozilla. Our work

provides an approach to leveraging

techniques on data processing to compose

reduced and high-quality bug data in

software development and maintenance. In

future work, we orchestrate on ameliorating

the results of data reduction in bug triage to

explore how to prepare a high quality bug

data set and tackle a domain-concrete

software task. For soothsaying reduction

orders, we orchestrate to pay efforts to

ascertain the potential relationship between

the attributes of bug data sets and the

reduction orders.

6. REFERENCE

[1] J. Anvik, L. Hiew, and G. C. Murphy,

“Who should fix this bug?” in Proc. 28th Int.

Conf. Softw. Eng., May 2006, pp. 361–370.

[2] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D.

Dig, A. Paradkar, and M. D. Ernst, “Finding

bugs in web applications using dynamic test

generation and explicit-state model

checking,” IEEE Softw., vol. 36, no. 4, pp.

474–494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing

the effort of bug report triage:

Recommenders for development-oriented

decisions,” ACM Trans. Soft. Eng.

Methodol., vol. 20, no. 3, article 10, Aug.

2011.

[4] C. C. Aggarwal and P. Zhao, “Towards

graphical models for text processing,”

Knowl. Inform. Syst., vol. 36, no. 1, pp. 1–

21, 2013.

[5] Bugzilla, (2014). [Online]. Avaialble:

http://bugzilla.org/

[6] K. Balog, L. Azzopardi, and M. de Rijke,

“Formal models for expert finding in

enterprise corpora,” in Proc. 29th Annu. Int.

ACM SIGIR Conf. Res. Develop. Inform.

Retrieval, Aug. 2006, pp. 43–50.

[7] P. S. Bishnu and V. Bhattacherjee,

“Software fault prediction using quad tree-

based k-means clustering algorithm,” IEEE

Trans. Knowl. Data Eng., vol. 24, no. 6, pp.

1146–1150, Jun. 2012.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 07
June 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1127

[8] H. Brighton and C. Mellish, “Advances

in instance selection for instance-based

learning algorithms,” Data Mining Knowl.

Discovery, vol. 6, no. 2, pp. 153–172, Apr.

2002.

[9] S. Breu, R. Premraj, J. Sillito, and T.

Zimmermann, “Information needs in bug

reports: Improving cooperation between

developers and users,” in Proc. ACM Conf.

Comput. Supported Cooperative Work, Feb.

2010, pp. 301–310.

[10] V. Bol_on-Canedo, N. S_anchez-

Maro~no, and A. Alonso-Betanzos, “A

review of feature selection methods on

synthetic data,” Knowl. Inform. Syst., vol.

34, no. 3, pp. 483–519, 2013.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

