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Abstract 

The general assumption concerned with linear regression model is that under ideal conditions the 

ordinary least square performs better than other regression methods. However under some non-

ideal conditions, that is, when the general assumption of normality is violated the ordinary least 

square breaks down. Thus, this study aimed to compare the efficiency of ordinary least squares 

(OLS) and least median squares (LMS) estimators by subjecting both estimators to dataset with 

and without the presence of outliers. We made use of real and simulated data. The simulated data 

were obtained from R program. The data was analyzed with multiple linear regression methods 

(Ordinary Least Square and Least Median Squares). Also, the residual standard error of both 

models and the standard error of the coefficients (intercept and slope) were used to assess and 

compare their performances. The result of the regression analysis shows that the OLS perform 

better when normality of the data is not violated; however, the OLS perform poorly compared to 

LMS when the normality is violated due to the presence of outliers as revealed by its higher 

residual standard errors and parameters standard errors. 
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1. Introduction  

Regression analysis is a statistical tool for investigating the relationship between two or more 

variables, such that one variable can be predicted from the other(s). We use regression to establish 

causal (cause and effect) relationship through a mathematical model which shows how one variable 

depends on the other. In modeling a regression, researchers usually used ordinary least squares 

(OLS) method, due to the simplicity of the idea of minimizing the sum of squared residuals and 

the interpretability of the final model parameter estimates. Cankaya and Abaci (2015), in their 

study they compared some estimation methods, such as; Least square, Least trimmed square, M-

Estimation, MM-Estimation and S-Estimation for estimating the parameters of simple linear 

regression model in the presence of outlier and different sample sizes. Mean square error (MSE) 

and coefficient of determination (𝑅2) values were used as criteria to evaluate the estimator 

performance. They found that LTS estimator is the best models with minimum MSE and maximum 

(𝑅2) values for different size of sample in the presence of outliers. The research conducted by 

Çankaya et al., (2011) identifies that under ideal conditions OLS method achieves optimum results 

when the underlying error distribution is normal, it brings some shortcomings. One of these is that, 

OLS method is sensitive to outliers which can disturb the assumption of normality, one of the most 

important components of statistical analysis. This condition reduces the predictive power of the 

method. Ordinary Least squares perform poorly in terms of robustness because a single, aberrant 

data point, or outlier, can throw the fitted line way off. The smallest percentage of bad data that 

can cause the fitted line to explode is defined as the breakdown point.  Since a single bad data 

point can destroy the least squares line, OLS is said to have a zero breakdown point. Montgomery 

(2012) opined that the application of regression is well appreciated when real life problems and 

results that typically arise when the method is adopted for both theoretical and real life data. Best 

linear unbiased estimates (BLUE) produced by the ordinary least squares (OLS) regression 

technique under the normal error distribution. Birkes and Dodge. (1993). However, many 

researchers have noted that the optimal condition is rarely met in real data analyses. In classical 

multiple regressions, the ordinary least square estimation is the best method if assumptions are met 

to obtain regression weights when analyzing data. Though, if some of these assumptions are not 

satisfied, then sample estimates and results from the data can be misleading. Especially, outliers 

violate the assumption of normally distributed residuals in the least squares regression. The 

problem of outliers, in both directions of the dependent and explanatory variables and to the least 

squares regression is that they can have a strong adverse impact on the estimate and they may 

remain unnoticed. The Least Median Squares estimator is simple to describe and is very robust 

against outliers. Robust regression such as Least Median of Squares is an important method for 

analyzing data that are contaminated with outliers and can be used to detect outlying observations 

and provide resistant results in the presence of dataset with outliers. 
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Other scholars have done similar works related to the impact of outliers in regression, Jianju (1999) 

illustrated several advantages of the least median squares (LMS) regression by adopting a user-

friendly software program, "Program for RObust reGRESSion" (PROGRESS),in his research for 

the comparison between least square and least median square he observed that the LMS technique 

results in a smaller average error of prediction and the LMS also perform better for real data 

without outliers than the simple LS fit. Other similar works are by Zhu and Zhilin (2000); Birkes 

and Dodge (1993); Rousseeuw (1984); Weisberg (1985). 

This paper reports yet another contribution to the nature of research efforts illustrated above; that 

is, research efforts directed towards the study of the performance of least square and least median 

square by subjecting both methods to real, simulated contaminated and skew data using R 

statistical software. 

 

2. Review of Regression and ordinary least square. 

The usual regression model, in matrix notation is  

 Y=X𝛽 + 𝜀          2.01 

The regression coefficients can be estimated by solving: 

 𝛽=(𝑋′𝑋)−1𝑋′𝑌.         2.02 

A regression with n cases and K-1 with X variables can be stated in the following matrices form: 

Y (n x 1), a column vector of Y observed values: 

 Y=  

[
 
 
 
 
 
 
𝑌1

𝑌2

𝑌3

.

.

.
𝑌𝑛]

 
 
 
 
 
 

             𝑌̂ (n x 1), a column vector of Y predicted values: 

            𝑌̂=  

[
 
 
 
 
 
 
 
𝑌̂1

𝑌̂2

𝑌̂3

.

.

.
𝑌̂𝑛]

 
 
 
 
 
 
 

      (k x 1) matrix column vector of the estimated regression coefficients: 
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𝛽=  

[
 
 
 
 
 
 

𝑏1

𝑏2

𝑏3

.

.

.
𝑏𝑘−1]

 
 
 
 
 
 

  (n x 1) column vector of  𝜀 sample residuals for the respective n cases is given below 

: 

𝜀 =  

[
 
 
 
 
 
 
𝑒1

𝑒2

𝑒3

.

.

.
𝑒𝑛]

 
 
 
 
 
 

 

 

The general matrix format for a regression model with any number of variables is given below 

        

[
 
 
 
 
 
 
𝑌1

𝑌2

𝑌3

.

.

.
𝑌𝑛]

 
 
 
 
 
 

 = 

[
 
 
 
 
 
 
1
1
1
.
.
.
1

     

𝑋11

𝑋21

𝑋31

.

.

.
𝑋𝑛1

     

𝑋12

𝑋22

𝑋32

.

.

.
𝑋𝑛2

     

𝑋13……….

𝑋23 ……
𝑋33………

.

.

.
𝑋𝑛3 … . .

  

𝑋1𝐾−1

𝑋2𝐾−1

𝑋3𝐾−1

.

.

.
𝑋𝑛𝐾−1

   

]
 
 
 
 
 
 

[
 
 
 
 
 
 

𝑏1

𝑏2

𝑏3

.

.

.
𝑏𝑘−1]

 
 
 
 
 
 

+ 

[
 
 
 
 
 
 
𝑒1

𝑒2

𝑒3

.

.

.
𝑒𝑛]

 
 
 
 
 
 

   2.03 

       (n x 1)        ( n x k)          (k x 1)     (n x 1) 

 

The elements of 𝜀 are assumed to be independent and identically distributed with V (𝜀 ) = 𝜎2𝐼𝑛 

where In is an n x n identity matrix and  𝜎2 = (>0) is a constant. The ordinary least squares (OLS) 

give better and reliable estimate of 𝛽 when the required data is well behaved, that is, when it is 

free of outliers. 

 

2.1 Estimation of the Regression Coefficients 

The ordinary least square can be used to solve for the coefficients 

The sum of squared residual is given by 

∑𝑒𝑖
2 = 𝜀 ′𝜀 = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)

𝑛

𝑖=1

 

Expanding the RHS of the equation we get: 

= Y’Y -2𝛽′𝑋′𝑌 +  𝛽′𝑋′𝑋𝛽 

Applying partial differentiation with respect to 𝛽 and equating to zero we get 

𝛿 ∑ 𝑒𝑖
2𝑛

𝑖

𝛿𝛽
= -2X’Y + 2X’X𝛽̂=0 
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 2X’X𝛽̂ = 2X’Y 

By simplification we get: 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌 

By solving the above equation, gives the estimates of the regression coefficients assuming X is 

full rank. We now obtain the expectation and the variance of 𝛽̂. 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌 

The matrix model, Y=X𝛽 + 𝜀 is substituted in 𝛽̂ 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌= (𝑋′𝑋)−1𝑋′(X𝛽 + 𝜀) = (𝑋′𝑋)−1𝑋′X𝛽 + (𝑋′𝑋)−1𝑋′𝜀 

    = 
1

𝑋′𝑋
 𝑋′X𝛽 + (𝑋′𝑋)−1𝑋′𝜀 = 𝛽 + (𝑋′𝑋)−1𝑋′𝜀      2.11 

The expectation becomes, 

E(𝛽̂) = E{𝛽 + (𝑋′𝑋)−1𝑋′𝜀}= E(𝛽)+ (𝑋′𝑋)−1𝑋′𝐸(𝜀)= 𝛽 

From equation 4.21 

𝛽̂ −  𝛽 = (𝑋′𝑋)−1𝑋′𝜀          2.12 

The variance of 𝛽̂ becomes 

Var(𝛽̂) = E[(𝛽̂ − 𝛽)( 𝛽̂ −  𝛽)′] = E[(𝑋′𝑋)−1𝑋′ 𝜀 (𝑋′𝑋)−1𝑋 𝜀′] 

 = (𝑋′𝑋)−1𝑋′(𝑋′𝑋)−1𝑋 E(𝜀 𝜀′) 

           = (𝑋′𝑋)−1𝑋′𝜎2 𝐼𝑛(𝑋′𝑋)−1𝑋 =𝜎2 (𝑋′𝑋)−1            2.13                   

 = 𝜎2 (𝑋′𝑋)−1 which is the variance-covariance matrix of 𝛽̂ 

 

3. Review of the Least Median Square 

Least Median Square is one of method of creating resistance line, procedure that is resistant to 

some percentage of arbitrarily large outliers is a resistance statistics, and robustness means the 

procedure is not greatly affected by slight deviations in the assumptions. There are various ways 

to create a resistant regression line; the mean and standard deviation of the regression line is very 

sensitive to outliers. The median which is less sensitive to outliers replaces the mean in the 

estimation of the parameters. 

 

3.1 Least median square Estimation 

 

The Least Median of Squares fit is determined by solving the following optimization problem: 

 

min
𝑏0,𝑏1

min
𝑖

𝑆𝑅𝑖 = Median {𝑌1 − (𝑏0 + 𝑏1𝑋1)
2, (𝑌2 − (𝑏0 + 𝑏1𝑋2)

2, … . (𝑌𝑛 − (𝑏0 + 𝑏1𝑋𝑛)2} 

 

Since Least Square is based on minimizing the sample mean and means are sensitive to extreme 

values, it makes sense that least median square (LMS), replaces the mean by the median which is 

less sensitive to outliers and will generate a more robust estimator. 

 

3.2 Breakdown Point 
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Let T be a functional defined on some subfamily 𝑃𝑇 of the family P of all distributions on a sample 

space (X, B(X)) which takes its values in some metric space (𝜃, D) with 

 

 𝑆𝑢𝑝𝜃1,𝜃2∈𝜃 
𝐷(𝜃1, 𝜃2)=∞        3.21 

 

The finite sample breakdown point of T at a sample 𝑥𝑛 = (𝑥1,,… . . , 𝑥𝑛𝑁), 𝑥𝑖∈ X, 

i=1, ..., n, is defined as 

  

fsbp (T, 𝑥𝑛 , 𝐷) = 
1

𝑛
 min{𝑘 ∈(1,… , 𝑛): D[𝑇(𝑃𝑛), 𝑇(𝑄𝑛,𝑘)]=∞}   3.22 

 

Where 𝑃𝑛= ∑ 𝛿𝑥𝑖
𝑛
𝑖=1 /n and 𝑄𝑛,𝑘 and is the empirical distribution of a replacement sample with at 

least n−k points from the original sample 𝑥𝑛 

 

50% is the highest likely breakdown point of an estimator, which indicates that as many as half 

the observations could be discounted. A breakdown point higher than 0.5 is undesirable because it 

would mean that the estimate could be pertains to less than half of the data. Andersen (2012). 

 

4. Application 

 4.1 Description of Data 

The data in table 4.1 consists of 20 New York river basins which were originally collected by 

Haith (1976) to explore the relationship between nonpoint source water pollution (nitrogen 

concentration) and various types of land use (% land in agriculture,% land forest,% land urban). 

See (Hamilton, 1992). 

 

Table 4.1 

 Basin % Land in 

Agriculture 

% Land  

Forest 

% Land  

Urban 

Nitrogen 

(mg/1) 

1 Olean 26 63 1.49 1.10 

2 Cassadaga   29 57 0.79 1.01 

3 Oatka  54 26 2.38 1.90 

4 Neversink  2 84 3.88 1.00 

5 Hackensack 3 27 32.51 1.99 

6 Wappinger  19 61 3.96 1.42 

7 Fishkill  16 60 6.71 2.04 

8 Honenye  40 43 1.54 1.65 

9 Susquehanna  28 62 1.25 1.01 

10 Chenango  26 60 1.13 1.21 

11 Tioughnioga  26 53 1.08 1.33 

12 West Canada 15 75 0.86 0.75 
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13 East Canada 6 84 0.62 0.73 

14 Saranac  3 81 1.15 0.80 

15 Ausable  2 89 1.05 0.76 

16 Black  6 82 0.65 0.87 

17 Schohaire  22 70 1.12 0.80 

18 Raquette  4 75 0.58 0.87 

19 Oswegatchie 21 56 0.63 0.66 

20 Cohocton   40 49 1.23 1.25 

 

𝑋1 = % Land in Agriculture, 𝑋2 = % Land Forest, 𝑋3 =% Land Urban, Y= Nitrogen 

Concentration in river water (mg/1) 

 

4.2 Regression Model for the Data 

The following regression model is proposed for the data: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + ……… . 𝛽𝐾−1𝑋𝑖,𝐾−1 + 𝜀𝑖  4.21 

      i=1, 2…………, 20. 

Where: 𝑋𝑖1= the ith value of the variable    𝑌𝑖 = Dependent variable 

𝛽0 = The intercept coefficient   𝛽1, 𝛽2𝑎𝑛𝑑𝛽3= the slopes of the regression coefficients 

𝜀 Is random error in Y assumed to have zero mean with constant variance, that is, V (𝜀) = 𝜎2 

For inferential purposes, it is required to assume that~ 𝑁(0, 𝜎2) 

Table 4.2 Regression Estimates for the real data of table 4.1 and their Corresponding Standard 

Errors in Brackets. 

                                  Estimates 

Methods of Estimation Residual 

Standard 

error 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 

Ordinary Least Square  0.2802 1.428598 

(1.292693) 

0.008503   

(0.015816

) 

-0.008449   

(0.014468

) 

0.029401   

(0.027638) 

Least Median Square 0.1692 2.2110 

(0.9077) 

-0.0005 

(0.0111) 

-0.0173 

(0.0102) 

0.0105 

(0.0194) 
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Table 4.3 Regression Estimates for simulated normal distribution data and their Corresponding 

Standard Errors in Brackets. rnorm (35,170, 15) 

                                  Estimates 

Methods of Estimation Residual 

Standard 

error 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 

Ordinary Least Square  17.21 70.5016    

(59.7509) 

 0.1852     

(0.2134) 

0.2581     

(0.2343) 

0.1275     

(0.1768) 

Least Median Square 20.44 64.1108 

(61.9322) 

0.1784  

(0.2212) 

0.2930  

(0.2429) 

0.1358  

(0.1832) 

 

Table 4.4 Regression Estimates for simulated contaminated normal distribution data and their 

Corresponding Standard Errors in Brackets. rnorm(35, 0, (1+2*rpois(35, 3))) 

                                  Estimates 

Methods of Estimation Residual 

Standard 

error 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 

Ordinary Least Square  6.88 -0.3195     

(1.2020) 

 -0.1406     

(0.1276) 

-0.2344     

(0.1684) 

-0.3640     

(0.1897) 

Least Median Square 5.367 -0.4870  

(1.2205) 

-0.1300  

(0.1296) 

-0.1687  

(0.1710) 

-0.3728  

(0.1927) 

 

Table 4.5 Regression Estimates for simulated exponential distribution data and their 

Corresponding Standard Errors in Brackets. rexp(35,rate=8) 

                                  Estimates 

Methods of Estimation Residual 

Standard 

error 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 

Ordinary Least Square  0.1116 0.14283    

(0.03857) 

  -0.09891    

(0.20549) 

-0.03173    

(0.24224) 

-0.06130    

(0.10292) 

Least Median Square 0.07293 0.1088  

(0.0271) 

-0.0369  

(0.1443) 

  0.0012  

(0.1702) 

-0.0458  

(0.0723) 

 

5. Discussion of Results 

The regression estimates entries in the table 4.2 and 4.5 shows that estimates of regression from 

the robust regression fitting method (Least Median Square) have uniformly smaller residual and 
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standard errors than those from the regression estimates of the ordinary least squares. This is so 

because the real data comprises of outliers that makes the OLS to break down, the result is an 

indication that can serve as an instrument for boosting the efficiency of robust regression, which 

in essence is the main aim of this paper.  

 

The relevant entries in table 4.3 shows that estimate of regression from the robust regression fitting 

method (Least Median Square) have uniformly higher residual and standard errors than those from 

the regression estimates of the ordinary least squares. This is an indication that ordinary least 

squares provides optimum estimates when the data set is free from outlier and is normally 

distributed, this is supported by Gauss who introduced the normal (or Gaussian) distribution as the 

error distribution for which ordinary least squares is optimal (see the citations in Huber 1972 and 

Le Cam 1986). 

 

 

6. Conclusion 

This study aimed to compare the performance of ordinary least squares (OLS) and least median 

squares (LMS) estimators by subjecting both estimators to dataset with and without the presence 

of outliers. The results show that the least median squares (LMS) estimator is robust method, that 

is, it is resistance to the presence of outliers compared to the ordinary least squares (OLS) 

estimator. The study shows that OLSE performed poorly against the robust regression method 

(least median squares).the OLS returns the poorest result in all the criteria, that is, residual standard 

error of the model and standard error of slope and intercept. 

Therefore, the robust regression method (least median squares) will be more efficient in 

performing test of hypothesis and prediction than the ordinary least squares estimator when outliers 

are present in dataset. 
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