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ABSTRACT: 

To study the Points at which a function f(z) is not analytic are called singular 

points or singularities of f(z). To study the different types of singularity of a complex 

function f(z) are discussed and the definition of a residue at a pole is given. The residue 

theorem is used to evaluate contour integrals where the only singularities of f(z) inside 

the contour are poles. The function f(z) has a singularity at z = z0 and in a neighbourhood 

of z0 (i.e. a region of the complex plane which contains z0) there are no other singularities 

then z0 is an isolated singularity of f(z). 

To analyse the singularities are extremely important in complex analysis, where 

they characterize the possible behaviors of analytic functions. Complex singularities are 

points  in the domain of a function where fails to be analytic. To analyze Isolated 

singularities may be classified as poles, essential singularities, logarithmic singularities, 

or removable singularities. Non-isolated singularities may arise as natural boundaries or 

branch cuts. 

INTRODUCTION: 

Singularity, also called singular point, of a function of the complex variable z is a 

point at which it is not analytic (that is, the function cannot be expressed as an infinite 

series in powers of z) although, at points arbitrarily close to the singularity, the function 

may be analytic, in which case it is called an isolated singularity. In general, because a 

function behaves in an anomalous manner at singular points, singularities must be treated 

separately when analyzing the function, or mathematical model, in which they appear. 

For example, the function f (z) = ez/z is analytic throughout the complex plane—

for all values of z—except at the point z = 0, where the series expansion is not defined 

because it contains the term 1/z. The series is 1/z + 1 + z/2 + z2/6 +⋯+ zn/(n+1)! +⋯where 

the factorial symbol (k!) indicates the product of the integers from k down to 1. When the 

function is bounded in a neighbourhood around a singularity, the function can be 
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redefined at the point to remove it; hence it is known as a removable singularity. In 

contrast, the above function tends to infinity as z approaches 0; thus, it is not bounded and 

the singularity is not removable (in this case, it is known as a simple pole). A singularity 

is in general a point at which a given mathematical object is not defined, or a point of an 

exceptional set where it fails to be well-behaved in some particular way, such as 

differentiability. See Singularity theory for general discussion of the geometric theory, 

which only covers some aspects. 

For example, the function  

f(x) = 1/x 

On the real line has a singularity at x = 0, where it seems to "explode" to ±∞ and is not 

defined. The function g(x) = |x| (see absolute value) also has a singularity at x = 0, since it 

is not differentiable there. Similarly, the graph defined by y2 = x also has a singularity at 

(0,0), this time because it has a "corner" (vertical tangent) at that point. 

The algebraic set defined by {(x,y):|x|=|y|}in the (x, y) coordinate system has a singularity 

(singular point) at (0, 0) because it does not admit a tangent there. Here  has singularity at 

z=0 

; ; Rez; Im z; zRe z are nowhere analytic. That does not mean that every point of C is a 

singularity. 

Analytic Functions: 

In mathematics, an analytic function is a function that is locally given by a convergent 

power series. There exist both real analytic functions and complex analytic functions, 

categories that are similar in some ways, but different in others. Functions of each type 

are infinitely differentiable, but complex analytic functions exhibit properties that do not 

hold generally for real analytic functions. A function is analytic if and only if its Taylor 

series about x0 converges to the function in some neighborhood for every x0 in its 

domain. 

"Analytic functions" are functions that are locally representable as a power series. They 

behave quite differently in the real and complex case. The answer given by Anon 

describes the real case, but the modified zeta function you mention in your answer is 

actually a complex function. 

Complex analytic functions are the heart and soul of complex analysis. They are defined, 

quite simply, as complex functions of a complex variable which possess a derivative, at 

least in a certain region of the complex plane. The incredible insight is that "having a 

derivative" in the complex context is a rare and unique property with far-reaching 
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consequences. There's a lot you can say about a function when you know it's analytic, 

since there are "relatively few" analytic functions. They are very special. 

For example, if you know the value of an analytic function along any closed curve, you 

also know its value at any point inside the area enclosed by the curve. This should seem 

quite shocking: if you consider the real case, for example a real-valued function of two 

real variables, there's absolutely nothing you can say about the values inside a region 

given the values on the boundary of that region - not even if the function is continuous, 

differentiable once or differentiable a million times. Functions that pop up "naturally" in 

the course of mathematical investigations, for example in number theory, are sometimes 

analytic in a certain region, but not necessarily throughout the complex plane. In those 

cases, it was discovered that it is immensely fruitful to "complete" the function by 

piecing together extensions of it that are defined, and are analytic, in larger and larger 

regions. 

This again may seem strange: if I give you a very smooth and well-behaved real function 

of a real variable define in some interval, there's any number of ways to "extend it" to a 

still-smooth function on a larger interval. But analytic functions, you see, are extremely 

rigid and special; if there's any way at all to push the boundary of definition beyond the 

original domain, there's just one way of doing it. Number theorists like to encode 

number-theoretic data in a single function, such as a generating function or a Dirichlet 

series. This is a very clever idea: you take infinitely many numbers that have some useful 

meaning (like primes, or squares, or the number of objects of certain kind) and pack them 

into a single function. It then seems reasonable to believe that understanding the function 

will teach us something new about our original problem. 

This happened many times, and is believed to happen in many cases where it's not yet 

actually proven. Few things excite a number theorist more that finding an analytic 

continuation, and a corresponding functional equation, for the function they are 

investigating. In a way, enormous parts of modern number theory can be seen as 

instances of this general idea. Riemann's original memoir on prime numbers and the zeta 

function was of this nature, and it opened up the entire world of analyti number theory. 

Subsequent discoveries by Dirichlet, Hasse, Hecke, Weil and many others pushed those 

ideas further and further into some of the deepest and most beautiful areas of modem 

mathematics. 

 Definition 1.1 (Analytic Function).  The complex function    is analytic at the 

point    provided there 

is some    such that    exists for all  .   In other words,    must 

be differentiable not only at  ,  but also at all points in some -neighborhood of  . 
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         If    is analytic at each point in the region  ,  then we say that    is an 

analytic function on  .  Again, we have a special term if    is analytic on the whole 

complex plane.  

Definition 1.2 (Entire Function).  If    is analytic on the whole complex plane 

then    is said to be an entire function. Points of non-analyticity for a function are 

called singular points. They are important for applications in physics and 

engineering.  Our definition of the derivative for complex functions is formally the same 

as for real functions and is the natural extension from real variables to complex 

variables.  The basic differentiation formulas are identical to those for real functions, and 

we obtain the same rules for differentiating powers, sums, products, quotients, and 

compositions of functions.  We can easily establish the proof of the differentiation 

formulas by using the limit theorems. 

 Theorem 1.1.  If    is differentiable at    then    is continuous at  .   

Proof:  From Equation (3-1), we obtain   

                    .   

Using the multiplicative property of limits given in Theorem 1.3, we get 

                       

This result implies that    ,  which in turn implies that 

                     .   

Therefore,    is continuous at . 

Proof. 

 The Derivative of   
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        We can establish Equation (1-8)  

from Theorem 1.1.   

Letting      and using Definition 1.1, we write    

                    .   

If we subtract and add the term    in the numerator, we get 

   

Using the definition of the derivative given by Equation (3-1) and the continuity 

of  ,  we obtain   

                    ,   

which is what we wanted to establish. We leave the proofs of the other differentiation 

rules as exercises. The rule for differentiating polynomials carries over to the complex 

case as well.   

If we let    be a polynomial of degree , so that     

                    ,   

then mathematical induction, along with Equations (3-5) and (3-7), gives   

                    .   

Again, we leave the details of this proof for the reader to finish, as an exercise. We shall 

use the differentiation rules as aids in determining when functions are analytic.  For 

example, Equation (1-9) tells us that if    are polynomials, then their 

quotient    is analytic at all points where  .  This condition implies that the 

function      is analytic for all  .  The square root function is more 

complicated.   If   ,   then    is analytic at all points 

except    (because is undefined)  and at points that lie along the negative -
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axis.  Therefore the function  ,  is not continuous at points that lie along the 

negative -axis. 

SINGULARITIES, ZEROS, AND POLES: 

    Recall that the point is called a singular point, or  singularity of the complex 

function f(z) if  f  is not analytic at  ,  but every neighborhood    contains 

at least one point at which f(z) is analytic.  For example, the function    is 

not analytic at  ,  but is analytic for all other values of z.  Thus the point    is a 

singular point of f(z).  As another example,  consider  .  We saw in 

Section 5.2 that g(z) is  analytic for all z except at the origin and at all points on the 

negative real-axis.  Thus, the origin and each point on the negative real axis is a 

singularity of  . 

    The point is called a isolated singularity of the complex function f(z) if  f  is not 

analytic at  ,  but there exists a real number    such that f(z) is analytic 

everywhere in the punctured disk  .  The function    has an isolated 

singularity at  .   

    The function  ,  however, the singularity at    (or at any point of 

the negative real axis) that is not isolated, because any neighborhood of  contains points 

on the negative real axis, and    is not analytic at those points.  Functions 

with isolated singularities have a Laurent series because the punctured disk     is 

the same as the annulus  .  The logarithm function    does not 

have a Laurent series at any point    on the negative real-axis.  We now look at this 

special case of Laurent's theorem in order to classify three types of isolated singularities. 

 Definition (Removable Singularity, Pole of order k, Essential Singularity). Let f(z) 

have an isolated singularity at    with Laurent series expansion   

                valid for    .   

Then we distinguish the following types of singularities at  .   

(i)      If  ,  then we say that f(z) has a removable singularity 

at  .   
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(ii)      If k is a positive integer such that    but 

,  then we say that f(z) has a pole of order k at  

(iii)      If for infinitely many negative integers n, then we say that f(z) has an 

essential singularity at  .   

    Let's investigate some examples of these three cases. 

(i).  If f(z) has a removable singularity at , then it has a Laurent series   

            valid for    .   

    Theorem 4.17 (see Section 4.4) implies that the power series for f(z) defines an 

analytic function in the disk  .   

    If we use this series to define  ,  then the function f(z) becomes analytic at 

, removing the singularity.    

    For example, consider the function  .  It is undefined at and has 

an isolated singularity at , as the Laurent series for f(z) is   

               

valid for .   

We can remove this singularity if we define  ,  for then f(z) will be analytic at 

in accordance. Another example is  ,  which has an isolated 

singularity at the point , as the Laurent series for g(z) is 

             

valid for .  If we define  ,  then g(z) will be analytic for all z. 

(ii).  If f(z) has a pole of order k at , the Laurent series for f(z) 

is             valid for    .  where  .   
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Extra Example: The following example will help this concept.  Consider the 

function  .  The leading term in the Laurent series 

expansion  S(z)  is    and  S(z)  goes to in the same manner as  

.             

 

  If f(z) has a pole of order 1 at , we say that f(z) has a simple pole at .    

    For example,   

              

has a simple pole at  .   

Theorem 7.10 A function f analytic in DR (α) has a zero of order k at the point α if f its 

Taylor series given by   has c0 = c1 = …. = ck−1 = 0, but ck = 0. 

Proof The conclusion follows immediately from Definition 7.6, because we have  

cn = f(n)(α) /n! according to Taylor’s theorem. 

APPLICATIONS OF RESIDUES 

Recall the definition of improper integrals in calculus: 
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The Cauchy Principal Value (P.V.) is given by 

 

The Cauchy principal value of an improper integral is not necessarily the same as the 

improper integral. For example, 

 

is undefined. In general, if  <∞ then R.V<∞, but the converse need not be true. Suppose 

that f(x) is an even function. Then 

 

Let us consider an even function f(x) of the form f(x)=p(x)/q(x), where p(x), q(x) are 

polynomials with real coefficients no factors in common. Furthermore, we assume that 

q(z) has no real zeros but has at least one zero above the real axis. Let us consider a 

positively oriented upper semicircle CR whose radius R is large enough to contain all the 

zeros above the real axis as shown in the figure below. 
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CR together with the interval [−R,R] form a positively oriented simple closed contour. 

Then by Cauchy’s Residue Theorem we have 

 
If then 

 
If in addition f(x) is even, 

 

 
Theorem 3.1: 

A function analytic in has a zero of order k at the point   iff its Taylor 

series given by has 

.   

The conclusion follows immediately from Definition 7.6, because we have 

 According to Taylor’s theorem. 
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Theorem 3.2: Suppose f(z) is analytic in .  Then f(z) has a zero of order k at the 

point if and only if it can be expressed in the form 

, 

Where g(z) is analytic at .   

Proof Suppose that f has a zero of order k at the point α and that 

 

Theorem 3.1 assures us that cn = 0 for 0 ≤ n ≤ k − 1 and that ck = 0, so that we can write f 

as  

 

 

 

where ck ≠ 0. The series on the right side of Equation (3.1) defines a function, which we 

denote by g. That is, 

 

By Theorem 3.1, g is analytic in DR (α), and g (α) = ck ≠ 0. 

Conversely, suppose that f has the form given by Equation(3.1). Since g is analytic at α, it 

has the power series representation 

where g (α) = b0 ≠ 0 by assumption. If we multiply both sides of the expression defining 

g (z) by (z − α)k, we get 

 

By Theorem 3.1, f has a zero of order k at the point α, and our proof is complete. 

Conclusion: 

The study concludes the complex function in singular point z0 is called an 

isolated singular point of an analytic function f(z) if there exists a deleted ε-spherical 

neighborhood of z0 that contains no singularity. If no such neighborhood can be found, z0 

is called a non-isolated singular point. Thus an isolated singular point is a singular point 

that stands completely by itself, embedded in regular points. Where z1, z2 and z3 are 
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isolated singular points. Most singular points are isolated singular points. A non-isolated 

singular point is a singular point such that every deleted ε-spherical neighborhood of it 

contains singular points. See Fig. 1b where z0 is the limit point of a set of singular points. 

Isolated singular points include poles, removable singularities, essential singularities and 

branch points. 

The study a analysis of analytic functions and complex analytic functions, 

categories that are similar in some ways, but different in others. Functions of each type 

are infinitely differentiable, but complex analytic functions exhibit properties that do not 

hold generally for real analytic functions. The relationship of the residue theorem to 

Stokes' theorem is given by the Jordan curve theorem. evaluate the residue of a function 

ƒ(z) with one singular point in a contour using Laurent series expansion. However, how 

do we proceed when encloses more than one isolated singular points? In such a situation, 

we have to extend the concept of residue developed so far to more than one singularity. 

The theorem of residues deals with such a general case and we discuss it in the following 

section. 
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