

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

SOFTWARE QUALITY ASSURANCE Rupa Kumari, Preeti Chhabra & Radhika Gogia

P a g e | 12

Software Quality Assurance

Rupa Kumari, Preeti Chhabra & Radhika Gogia

Department of computer science & Engineering, Dronacharya College of Engineering

 Khentawas, Farrukhnagar, Gurgaon-123506, India

Email : 1. Rupasingh252@gmail.com, 2. Chhabra.preeti28@gmail.com, 3. Goiga.radhika13@gmail.com

ABSTRACT

Software Quality Assurance (SQA) involves the

entire software development process -

monitoring and improving the process. it make

sure that any agreed-upon standards and

procedures are followed, and ensuring that

problems are found and dealt with. It’s aimed

towards prevention and if followed will result in

the production of quality software. This paper

emphasizes the importance of a quality process

and also discusses about the ways in which it

could be achieved.

INTRODUCTION

Though billions of dollars are spent trying to

develop quality software, software bugs are

very common. For most computer systems, the

cost of software constitutes a major part of the

cost of the system. Since software is so

important and valuable, if software

development process lacks quality, then the

software that’s developed will surely lack

quality. “Software Quality Assurance (SQA)

involves the entire software development

PROCESS - monitoring and improving the

process, making sure that any agreed-upon

standards and procedures are followed, and

ensuring that problems are found and dealt

with. It is oriented towards prevention”.

Software Quality Assurance is aimed at

developing a sound software development

methodology that will produce quality software.

IMPORTANCE OF SQA

There is an increasing use of software, in all

walks of life. From electronic devices like

watches, and cell phones to applications like

ecommerce, banking, medical and what not?

Computer Systems are omnipresent and all

computers run some software. So, software is

omnipresent. Due to the widespread

acceptance, and use of software systems, in

various areas, software bugs are proving to be

costly, and sometimes fatal. The Sustainable

Computing Consortium, a collaboration of major

corporate IT users, university researchers and

government agencies, estimates that buggy or

flawed software cost businesses $175 billion

worldwide in 2001 . Interested readers are

referred to a list of some of the recent, major

computer system failures, caused by software

bugs, and its consequences. Bugs have affected

banking systems, stock exchanges, medical

institutions, educational institutions and even

the Social Security Administration. Most bugs,

encountered during software development, can

be avoided, by adopting a sound software

development process, and having strict

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

SOFTWARE QUALITY ASSURANCE Rupa Kumari, Preeti Chhabra & Radhika Gogia

P a g e | 13

software quality control using Software Quality

Assurance. The process of SQA is comparable to

Software Testing.

SOFTWARE QUALITY ASSURANCE VS

SOFTWARE TESTING

Software Testing involves operating a system,

or an application, under controlled conditions,

and evaluating the results. In most cases,

software testing will involve the development

of a test bed, which tests the given software,

upon a set of test cases. The test bed will feed

the test input to the software system, get the

result that’s generated by the software system,

and compares the generated result with the

expected result. If the generated result is same

as the expected result, then the software is bug

free else, it has bugs that need to be fixed.

Software testing is normally carried out under

controlled conditions. The controlled conditions

should include both normal and abnormal

conditions. The aim of testing is to try to break

the software, and find the bugs in it. Successful

testing will discover all the bugs in the software.

Developing automated test tools to perform

testing is an active area of research. Testing is

oriented towards 'detection' of bugs in the

software (An interesting article that discusses

about how extensive testing should be can be

found in). On the other hand, SQA is aimed at

avoiding bugs.

Software Quality Assurance is oriented towards

‘prevention’ of bugs in the software, by

following a software development

methodology. SQA is more concerned with

developing a quality process for software

development, which will prevent the generation

of bugs, and will result in the production of

quality software. SQA, when practiced, makes

sure that all the standards are followed, and

that all the problems that arise during

development are detected and are dealt with.

Both SQA and Software testing are non- trivial

tasks.

Software Quality Assurance is more challenging

than Software Testing because, solving

problems is a high-visibility process; preventing

problems is a low-visibility process. During

Software Testing, we know what the problem is,

and we are trying to fix the problem, which is

easier than, preventing the problem before it

occurred, or even showed signs of occurrence.

REASON FOR SOFTWARE BUGS

Microsoft Chief Executive, Steve Ballmer said

that any code of significant scope and power

will have bugs in it. And only 1% of bugs in MS

Software is causing half of all reported errors.

Find and fix 1% of your software bugs, and 90%

of your system problems go away, say experts.

The term “Software Crisis” is used in the

software industry to emphasize the complexity

in developing quality software. There are five

common problems in the software

development process. They are

miscommunication, software complexity,

programming errors, changing requirements

and unrealistic schedule .

• Miscommunication: There is

widespread miscommunication of

information during all the phases of

software development, because

humans tend to assume and

misinterpret a lot of things when

communicating.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

SOFTWARE QUALITY ASSURANCE Rupa Kumari, Preeti Chhabra & Radhika Gogia

P a g e | 14

• Software Complexity: Any software,

that’s developed to serve some useful

purpose, is enormously complex and no

single person can fully understand it.

• Programming Errors: Software is

created by people, and people are

inherently prone to making errors. So,

software bugs are also created due to

programming errors.

• Changing requirements: Software

functionality changes, when the

requirements change. When we have a

system with rapidly changing

requirements, additional functionality

that’s added to the system, can affect

the already existing modules in

unforeseen ways. High level of

interdependencies between the

modules, makes the system error

prone.

• Time pressure and deadlines: The

software development industry is

highly competitive, and schedule

slippages are not acceptable. Some

projects have unrealistic schedules,

which make the development

methodology far from perfect and

the developed software lacks quality.

Given these problems, it’s apparent that

software bugs are very common. One is surely

left wondering, “Did anyone do anything to

reduce software bugs?” and make software

more reliable. The answer is “yes”. The next

section discusses one such successful attempt.

CAPABILITY MATURITY MODEL

(CMM)

The 'Software Engineering Institute' (SEI) at

Carnegie-Mellon University, was initiated by the

U.S. Defense Department, to help improve the

software development processes. The SEI came

up with a model with five levels. These levels

are used to gauge the maturity of a software

development organization. The CMM model

was mainly aimed at making sure that

organizations, which bid for contracts with the

US Department of Defense (DOD), followed a

good process, and developed quality software.

Organizations receive CMM rankings, by

undergoing assessment by qualified auditors.

Any organization, that does a contract for the

DOD, must reach at least level 3 in the CMM

model .

The five levels quantify the software

development methodology, followed by the

organization. following subsection will discuss

on what ratings at each level mean.

 Level 1 - Initial or chaotic

Level 1 means that the software development

methodology, followed by an organization is in

its novice stage, and is filled with chaos, and

periodic panics. Due to lack of any

methodology, heroic effort is required by

individuals, to successfully complete projects.

No software process is in place, and even if the

organization meets with success in a project,

successes may not be repeatable in other

projects.

Level 2 – Repeatable

Level 2 in the CMM model means that, some

software development process is in place, and is

being followed. Software project tracking,

requirements management, realistic planning,

and configuration management are part of the

process in place. The success achieved by the

organization in a project is repeatable in other

projects.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

SOFTWARE QUALITY ASSURANCE Rupa Kumari, Preeti Chhabra & Radhika Gogia

P a g e | 15

Level3 - Defined

Level 3 in the model signifies that standard

software development, and maintenance

processes are integrated throughout an

organization. It also means that, a Software

Engineering Process Group is in place, to

oversee software processes, and training

programs are used to ensure understanding,

and compliance. Any organization that does

contracts for the US Department of defense,

must reach this level.

Level 4 – Managed

If an organization reaches level 4 in the CMM

model, then it means that metrics are used, to

track productivity, processes, and products.

Project performance is predictable, and quality

is consistently high.

Level 5 – Optimized

At level 5 of the CMM model, the focus is on

continuous process improvement. The impact

of new processes, and technologies, can be

predicted, and effectively implemented when

required. Moreover, as and when required, the

software development methodology that’s

practiced is optimized to suit the changing

needs.

Organizations which comply with the CMM

process (Level 3 and higher); will surely produce

quality software, when compared to

organizations at lower levels of the model.

Software developed by organizations, that have

attained level 3, or higher, is less likely to be

error prone. Despite its advantages, CMM also

has some disadvantages.

CMM describes what an organization should

have, does not say how to get there. Also, a

clearly defined process is not equal to a good

process. For a discussion on the drawbacks of

CMM refer .

CMM is not the only methodology, that’s in

place to improve the software development

process. There are also other approaches

suggested by IEEE, ANSI and the ISO. But the

CMM model is the most popular, and is an

industry standard, with wide spread use and

acceptance.

CONCLUSION

Software development is complex, and is error

prone. Many problems that are faced during

software development can be tackled, by

adopting a good software development

process. From our discussion, it’s apparent that

good processes are essential. The software

industry is still learning, about good processes

for software development. CMM was

developed, to assess, and to give organizations,

a framework to improve. Despite some flaws,

CMM is a significant contribution to the

software industry. The second version of CMM

(CMMv2) is currently in progress at the

Software Engineering Institute at the Carnegie

Mellon University.

REFERENCES

[1] Kitchenham, B. A. (1989). Software
quality assurance. Microprocessors
and microsystems, 13(6), 373-381.

[2] Buckley, F. J., & Poston, R. (1984).
Software quality assurance. IEEE
Transactions on Software
Engineering, 10(1), 36-41.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

SOFTWARE QUALITY ASSURANCE Rupa Kumari, Preeti Chhabra & Radhika Gogia

P a g e | 16

[3] Schulmeyer, G., & McManus, J. I.
(1987). Handbook of software
quality assurance. Van Nostrand
Reinhold Co..

[4] Fowler, B., & Friesen, O. (2009).
Software Quality Assurance.

[5] Birolini, A. (1994). Software Quality
Assurance. In Quality and Reliability
of Technical Systems (pp. 148-158).
Springer Berlin Heidelberg.

