Impact of Silica Fume on Steel Slag Concrete

N. SOUNDHARYA¹, M.Tech (Structural Engineering) 
Kasireddy Narayan Reddy College of Engineering & Research

K. SHALINI 2 
Asst. Professor
Kasireddy Narayan Reddy College of Engineering & Research

ABSTRACT: Concrete is the most versatile construction material because it can be designed to withstand the harshest environments while taking on the most inspirational forms. Engineers are continually pushing the limits to improve its performance with the help of innovative chemical admixtures and supplementary cementitious materials. Nowadays, most concrete mixture contains supplementary cementations material which forms part of the cementitious component. These materials are majority byproducts from other processes. The main benefits of SCMs are their ability to replace certain amount of cement and still able to display cementitious property, thus reducing the cost of using Portland cement. The fast growth in instnalisation has resulted in tons and tons of byproduct or waste materials, which can be used as SCMs such as fly ash, silica fume, ground granulated blast furnace slag, steel slag etc. The use of these byproducts not only helps to utilize these waste materials but also enhance the properties of concrete in fresh and hydrated states. Slag cement and fly ash are the two most common SCMs used in concrete. Most concrete produced today includes one or both of these materials. For this reason their properties are frequently compared to each other by mix designers seeking to optimize concrete mixtures. Perhaps the most successful SCM is silica fume because it improves both strength and durability of concrete to such extent that modern design rules call for the addition of silica fume for design of high strength concrete. To design high strength concrete good quality aggregates is also required. Steel slag is an industrial byproduct obtained from the steel manufacturing industry. This can be used as aggregate in concrete. It is currently used as aggregate in hot mix asphalt surface applications, but there is a need for some additional work to determine the feasibility of utilizing this industrial byproduct more wisely as a replacement for both fine and coarse aggregates in a conventional concrete mixture. Replacing all or some portion of natural aggregates with steel slag would lead to considerable environmental benefits. Steel slag aggregate generally exhibit a propensity to expand because of the presence of free lime and magnesium oxides hence steel slag aggregates are not used in concrete making. Proper weathering treatment and use of pozzolanic materials like silica fume with steel slag is reported to reduce the expansion of the concrete. However, all these materials have certain shortfalls but a proper combination of them can compensate each other's drawbacks matrix product with enhance overall quality. In the present work a series of tests were carried out to make comparative studies of various mechanical properties of concrete mixes prepared by using ACC brand Slag cement.

Fly ash cement and their blend (in 1:1 proportion). These binder mixes are modified by 10% and 20% of silica fume in replacement. The fine aggregate used is natural sand comply to zone II as per IS 383-1982. The coarse aggregate used is steel making slag of 20 mm down size. The ingredients are mixed in 1: 1.5: 3 proportions. The properties studied are 7days, 28days and 56 days compressive strengths, flexural strength, porosity, capillary absorption. The main conclusions drawn are inclusion of silica fume increases the water requirement of binder mixes to make paste of normal consistency. Water requirement increase with increasing dose of silica fume. Water requirement is more with fly ash cement than slag cement. The same trend is obtained for water binder ratio while making concrete to achieve a target slump of 50-70 mm. The mortar strength (1:3) increases with increasing percentage of silica fume. Comparatively higher early strength gain (7-days) is obtained with fly ash cement while later age strength (28 days) gain is obtained with slag cement. Their blended mix shows comparatively moderate strength gain at both early and later ages. Mixing of silica fume had made concrete sticky ie more plastic specifically with fly ash cement. The porosity and capillary absorption tests conducted on mortar mixes show decrease in capillary absorption and porosity with increase in silica fume percentage with both types of cements. The decrease is more with fly ash cement than slag cement. But the reverse pattern is obtained for concrete i.e. the results show decrease in 7days,28 days and 56 days compressive strength of concrete.
due to inclusion of silica fume in the matrix. The increasing dose of silica fume show further decrease in strength at every stage. Almost same trend is obtained for flexural strength also. The specimens without silica fume had fine cracks which are more visible in concrete made with slag cement than fly ash cement.

I. INTRODUCTION
Concrete is a mixture of cement, sand, coarse aggregate and water. Its success lies in its versatility as can be designed to withstand harshest environments while taking on the most inspirational forms. Engineers and scientists are further trying to increase its limits with the help of innovative chemical admixtures and various supplementary cementitious materials SCMs. Early SCMs consisted of natural, readily available materials like volcanic ash or diatomaceous earth. The engineering marvels like Roman aqueducts, the Coliseum are examples of this technique used by Greeks and Romans. Nowadays, most concrete mixture contains SCMs which are mainly byproducts or waste materials from other industrial processes.

Supplementary Cementitious Material
More recently, strict environmental pollution controls and regulations have produced an increase in the industrial wastes and sub graded byproducts which can be used as SCMs such as fly ash, silica fume, ground granulated blast furnace slag etc. The use of SCMs in concrete constructions not only prevents these materials to check the pollution but also to enhance the properties of concrete in fresh and hydrated states. The SCMs can be divided in two categories based on their type of reaction: hydraulic and pozzolanic. Hydraulic materials react directly with water to form cementitious compound like GGBS. Pozzolanic materials do not have any cementitious property but when used with cement or lime react with calcium hydroxide to form products possessing cementitious prosperities.

Ground granulated blast furnace Slag: It is hydraulic type of SCM.
Ground granulated blast furnace slag (GGBS or GGBFS) is obtained by quenching molten iron slag, a by-product of iron and steel making from a blast furnace in water or steam, to produce a glassy, granular product that is then dried and ground into a fine powder. Ground granulated blast furnace slag (GGBFS) has been utilized for many years as an additional cementitious material in Portland cement concretes, either as a mineral admixture or as a component of blended cement. Granulated blast furnace slag typically replaces 35–65% Portland cement in concrete. The use of GGBFS as a partial replacement of ordinary Portland cement improves strength and durability of concrete by creating a denser matrix and thereby increasing the service life of concrete structures. It has a higher proportion of the strength-enhancing calcium silicate hydrates (CSH) than concrete made with Portland cement only, and a reduced content of free lime, which does not contribute to concrete strength.

Fly ash: It is pozzolanic SC material.
Fly ash is one of the residues generated in the combustion of coal. Fly ash is generally captured from the chimneys of coal-fired power plants, and is one of two types of ash that jointly are known as coal ash; the other, bottom ash, is removed from the bottom of coal furnaces. Depending upon the source and makeup of the coal being burned, the components of fly ash vary considerably, but all fly ash includes substantial amounts of silicon dioxide (SiO2) (both amorphous and crystalline) and calcium oxide (CaO). Fly ash is classified as Class F and Class C types.

The replacement of Portland cement with fly ash is considered to reduce the greenhouse gas "footprint" of concrete, as the production of one ton of Portland cement produces approximately one ton of CO2 as compared to zero CO2 being produced using existing fly ash. New fly ash production, i.e., the burning of coal, produces approximately twenty to thirty tons of CO2 per ton of fly ash. Since the worldwide production of Portland cement is expected to reach nearly 2 billion tons by 2010, replacement of any large portion of this cement by fly ash could significantly reduce carbon emissions associated with construction.

It has been used successfully to replace Portland cement up to 30% by mass, without adversely affecting the strength and durability of concrete. Several laboratory and field investigations involving concrete containing fly ash had reported to exhibit excellent mechanical and durability properties. However, the pozzolanic reaction of fly ash being a slow process, its contribution towards the strength development occurs only at later ages. Due to the spherical shape of fly ash particles, it can also
increase workability of cement while reducing water demand

II. MATERIALS

Silica Fume
Silica fume is a byproduct in the reduction of high-purity quartz with coke in electric arc furnaces in the production of silicon and ferrosilicon alloys. Silica fume consists of fine particles with a surface area on the order of 215,280 ft²/lb (20,000 m²/kg) when measured by nitrogen adsorption techniques, with particles approximately one hundredth the size of the average cement. Because of its extreme fineness and high silica content, silica fume is a very effective pozzolanic material. Silica fume is added to Portland cement concrete to improve its properties, in particular its compressive strength, bond strength, and abrasion resistance. These improvements stem from both the mechanical improvements resulting from addition of a very fine powder to the cement paste mix as well as from the pozzolanic reactions between the silica fume and free calcium hydroxide in the paste. Addition of silica fume also reduces the permeability of concrete to chloride ions, which protects the reinforcing steel of concrete from corrosion, especially in chloride-rich environments such as coastal regions. When silica fume is incorporated, the rate of cement hydration increases at the early hours due to the release of OH⁻ ions and alkalis into the pore fluid. The increased rate of hydration may be attributable to the ability of silica fume to provide nucleating sites to precipitating hydration products like lime, C₂S±H, and ettringite. It has been reported that the pozzolanic reaction of silica fume is very significant and the non-evaporable water content decreases between 90 and 550 days at low water/binder ratios with the addition of silica fume.

Steel Slag
Steel slag is the residue of steel production process and composed of silicates and oxides of unwanted elements in steel chemical composition. Fifty million tons per year of LD slag were produced as a residue from Basic Oxygen Process (BOP) in the world. In order to use these slags in cement, its hydraulic properties should be known. Chemical composition is one of the important parameters determining the hydraulic properties of the slags. In general, it is assumed that the higher the alkalinity, the higher the hydraulic properties. If alkalinity is > 1.8, it should be considered as cementitious material. Investigations were carried out also on the usability of steel slag as construction material under laboratory and practical conditions. For this application, the required properties are high compression strength, wear strength and resistance to climatic conditions. The most important criterion is volume stability, in which free CaO and MgO contents of the slag play an important role. Both oxides can go into reaction with water. Hydration causes volume expansion and affects stability of volume. This is one reason why steel slag aggregate are not suitable for use in Portland cement concrete. But at the moment, most steel slag being used as unbound aggregate for asphalt concrete pavement in many countries.

Fig. XRD Analysis of Steel Slag

Fly Ash Cement
Fly ash, which is largely made up of silicon dioxide and calcium oxide, can be used as a substitute for Portland cement, or as a supplement to it. The materials which make up fly ash are pozzolanic, meaning that they can be used to bind cement materials together. Pozzolanic materials, including fly ash cement, add durability and strength to concrete. Fly ash cement is also known as green concrete. It binds the toxic chemicals that are present in the fly ash in a way that should prevent them from contaminating natural resources. Using fly ash cement in place of or in addition to Portland cement uses less energy, requires less invasive mining, and reduces both resource consumption and CO₂ emissions.

SAND
Sand is a naturally occurring granular material composed of finely divided rock and mineral particles. The most common constituent of sand, in inland continental settings and non-tropical coastal settings, is silica(silicon dioxide, or SiO₂), usually in the form of quartz which, because of its chemical...
inertness and considerable hardness, is the most common mineral resistant to weathering. It is used as fine aggregate in concrete.

III. METHODOLOGY
Test Procedure
The Experimental programme was carried out in two stages Stage 1: Experimental work was conducted on mortar mixes by using different binder mix modified with different percentages of silica fume.

Stage 2: Experimental works were conducted on steel slag concrete mixes by using different binder mix modified with different percentages of silica fume.

Stage 1: This experimental investigation was carried out for three different combinations of slag cement and fly ash cement. In each combination three different proportion of silica fume had been added along with the controlled mix without silica fume. Binders being used were different combinations of slag cement, fly ash cement in the proportions 1:0, 0:1 and 1:1 hence total three combinations. Further in each type of combination of binder mix 0%, 10% and 20% percentage of silica fume had been added. Hence total 12 sets of mortar of 1:3 proportion were prepared by mixing one part of binder mix and three parts of naturally available sand.

IV. CONCLUSION
From the present study the following conclusions are drawn: Inclusion of silica fume improves the strength of different types of binder mix by making them more denser.

Addition of silica fume improves the early strength gain of fly ash cement whereas it increases the later age strength of slag cement.

The equal blend of slag and fly ash cements improves overall strength development at any stage.

Addition of silica fume to any binder mix reduces capillary absorption and porosity because fine particles of silica fume reacts with lime present in cement and form hydrates dancer and crystalline in composition.

The capillary absorption and porosity decreases with increase dose up to 20% replacement of silica fume for mortar.

Addition of silica fume to the concrete containing steel slag as coarse aggregate reduces the strength of concrete at any age.

This is due to the formation of voids during mixing and compacting the concrete mix in vibration table because silica fume make the mixture sticky or more cohesive which do not allow the entrapped air to escape. The use of needle vibrator may help to minimize this problem.

The most important reason of reduction in strength is due to alkali aggregate reaction between binder matrix and the steel slag used as coarse aggregate. By nature cement paste is alkaline. The presence of alkalis Na2O, K2O in the steel slag make the concrete more alkaline. When silica fume is added to the concrete, silica present in the silica fume react with the alkalis and lime and form a gel which harm the bond between aggregate and the binder matrix. This decrease is more prominent with higher dose of silica fume.

Combination of fly ash cement and silica fume makes the concrete more cohesive or sticky than the concrete containing slag cement and silica fume causing formation of more voids with fly ash cement. Therefore the concrete mixes containing fly ash and silica fume show higher capillary absorption and porosity than concrete mixes containing slag cement and silica fume.

The total replacement of natural coarse aggregate by steel slag is not recommended in concrete. A partial replacement with fly ash cement may help to produce high strength concrete with properly treated steel slag.

The steel slag should be properly treated by stock piling it in open for at least one year to allow the free CaO & MgO to hydrate and thereby to reduce the expansion in later age.

A thorough chemical analysis of the steel slag is recommended to find out the presence of alkalis which may adversely affect to the bond between binder matrix and the aggregate.

REFERENCES
774.


