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Abstract 
In the fields of scientific applications 

because of dynamic representation 

capabilities and large spectrum of 

numbers can be represented with limited 

number of bits, floating-point numbers are 

being widely adapted. A floating-point 

arithmetic unit is specifically designed to 

carry out on floating-point numbers and in 

the area of binary applications it is one of 

the most common parts of any computing 

system. In signal processing and 

embedded platforms the critically 

important components are floating-point 

adders and Floating-point additions which 

are the most frequent floating-point 

operations. The survey of related works of 

different algorithms/techniques which are 

important for implementation of double 

precision floating point adder with 

reduced delay based on FPGAs are 

presented in this paper. In this paper, by 

approximately designing of an exponent 

subtractor and mantissa adder, an area 

and delay efficient floating-point adder is 

proposed. Related operations such as 

normalization and rounding are also dealt 

with in terms of inexact computing.   

Keywords: Double Precision, floating-

point adders, area Efficient. 

 

1. Introduction 

 

Lot of research has been done to get the 

accurate answers from the past two 

decades in many numerical computations. 

This work is dedicated to get a maximum 

of accuracy which is developed on FPGA. 

Of course many numerical applications 

utilized double precision format. Several 

research works are already done in floating  

Point operations. For better accuracy and 

precision, the highest precision is to be 

taken but even then in the double precision 

format also will show the error. So in 

floating point arithmetic operations 

maintaining the accuracy is difficult in 

previous adders. Many serial components 

like right shifter or left shifter and the 

floating point addition (FPA) have been 

taken a longer latency. The Floating point 

(FP) adder required to have to be speedy in 

order to match with the increasing clock 

rate demand. In general the conventional 

floating point adders perform the 

computation in a single clock cycle. For 

that cause clock rates would be lower and 

lower. Thus in order to perform a 

sequential summations or sequential 

computations the conventional adder is 

incompetent. So pipelining is the 

technique is necessary to overcome this 

limitation on clock frequency. Pipelining 

means the instructions are executed 
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sequentially, finally, the last output will 

come one by one. The speed of the 

operation will achieve by increasing the 

pipelines. The Pipelining techniques are 

applied in FPA in order to speed up the 

numerical arithmetic operation and to 

increase the through put. Now- a -days 

everybody try to increase the clock speed 

this means that according to, Moore's Law 

feature size scaling is increasing 

exponentially in transistor per integrated 

chip. So the industry is now might be 

reaches that end point, the focus is now 

transfer to enhances with parallelism in 

computations more willingly than clock 

speed.  

Each IEEE-754 standard floating-point 

number system has a specific precision 

like single precision or double precision 

and quadruple precision which is 

comprises of sign bit, exponent and 

significant or fractional bits. But the bits 

will vary depending on the precision. In 

single precision one sign bit, 8-exponent 

bits, 23-significand bits with implied one. 

In case of double precision, one sign bit, 

11-exponent bits, 53- significand bits 

including one hidden bit by the standard. 

Exponent must be greater than zero and 

less than 1023.In this paper, we focus on 

the problem of summing two double-

precision FP values, but when we 

rearrange the order of numbers sum would 

produce a miscellaneous result. This is an 

alternative to be deprived of parallelism in 

order to increase the clock speed.  

The sequential summation operation will 

always give the similar result, but it may 

still be an erroneous one in case of 

shuffled order. In this case parallelizations 

and accuracy may get failed. When we 

know the error we have a freedom to 

correct the answer. Based on for FP 

addition using pipelining technique we 

made an effort still guaranteeing an ideal 

result and of course acceptably rounded 

deterministic result in this paper. The 

design of the accurate floating point unit or 

FPA unit to speed up the computations for 

many scientific applications is thus of 

interest in this domain. In residue 

preserving addition most of the algorithms 

such as [2]– [4] rely on the similar basic 

building block that is studied in detail by 

Kornerup et al. 

2. Background  

The FP format typically contains a sign 

bit, the exponent and the mantissa fields 

(commonly represented as a string from 

left to right). It offers a higher dynamic 

range than a fixed-point format to 

represent real numbers. However, the FP 

hardware is both more complex and 

consumes significant power. The most 

commonly used standard for the FP format 

is the IEEE 754-2008. There are basic and 

extended types that are supported by this 

standard: half precision (16 bits), single 

precision (32 bits), double precision (64 

bits), extended precision (80 bits) and quad 

precision (128 bits). A general IEEE FP 

format is shown in Fig. 1. The exponent 

part has a bias of 2E-1-1, where E is the 

number of exponent bits. The single 

precision and double precision formats are 

mostly used in today’s computers. 

 

Fig. 1 General IEEE 754 FP format 
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3. Existing Floating-Point Adder 

Architecture  

A generic FP adder architecture includes 

hardware blocks for exponent comparison, 

mantissa alignment, mantissa addition, 

normalization and rounding of the 

mantissa (shown in Fig. 2 and detailed in 

[7]). Two operands are first unpacked from 

the FP format, and each mantissa is added 

to the hidden '1' bit. The addition of FP 

numbers involves comparing the two 

exponents and adding the two mantissas; 

the exponents are first evaluated to find the 

larger number. The mantissas are then 

swapped according to the exponent 

comparison; they are then aligned to have 

an equal exponent prior to the addition in 

the mantissa adder. Following the addition, 

normalization shifts are required to restore 

the result to the IEEE standard format. The 

normalization is completed by left shifting 

with a number of leading zeros; therefore, 

leading zero detection is a key step for 

normalization. Rounding the normalized 

result is the last step before storing back 

the result; special cases (such as overflow, 

underflow, and not a number) are also 

detected and represented by flags. 

 

Fig. 2 The accurate FP adder architecture 

4. Design of Inexact Floating-Point 

Adders  

The inexact design of an FP adder 

originates at an architectural level (Fig. 2). 

It consists of designing both the mantissa 

adder and exponent subtractor by using 

approximate fixed-point adders. At the 

same time, related logic including the 

normalizer and the rounder should also be 

considered according to the inexact 

mantissa and exponent parts. The circuit 

level inexact designs are discussed in 

detail in the following subsections. 3.1 

Exponent Subtractor The exponent 

subtractor is used for exponent comparison 

and can be implemented as an adder. An 

inexact fixed-point adder has been 

extensively studied and can be used in the 

exponent adder; inexact adders such as 

lower-part-OR adders (LOA) [8], 

approximate mirror adders [9], 

approximate XOR/XNOR-based adders 

[10], and equal segmentation adders [11] 

[12] can be found in the literature. For a 

fast FP adder, a revised LOA adder is 
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used, because it significantly reduces the 

critical path by ignoring the lower carry 

bits. 

A k-bit LOA consists of two parts, i.e., an 

m-bit exact adder and an n-bit inexact 

adder (Fig. 3). The m-bit adder is used for 

the m most significant bits of the sum, 

while the n-bit adder consists of OR gates 

to compute the addition of the least 

significant n bits (i.e., the lower n-bit adder 

is an array of n 2-input OR gates).  

 

Fig. 3 The revised LOA adder structure 

In the original LOA design, an additional 

AND gate is used for generating the most 

significant carry bit of the n-bit adder; in 

this work, all carry bits in the n-bit inexact 

adder are ignored to further reduce the 

critical path. 

The exponent is dominant in the FP 

format, because it determines the dynamic 

range. The approximate design of the 

exponent subtractor must be carefully 

considered due to its importance in the 

number format. The results of the addition 

are significantly affected by applying an 

approximate design to only a few of the 

least significant bits of the exponent 

subtractor under a small data range. 

4.1 Mantissa Adder  

The revised LOA adder can also be used in 

the mantissa adder for an inexact design. 

Compared to an exponent subtractor, the 

mantissa adder offers a larger design space 

for inexact design, because the number of 

bits inthe mantissa adder is significantly 

larger than the exponent subtractor. As 

shown in Table I, the number of mantissa 

bits is larger than the number of exponent 

bits. For the IEEE single precision format, 

the exponent subtractor is an 8-bit adder, 

while the mantissa adder is a 25-bit adder 

(for two 24-bit significances).  

Table I NO. Of Exponent and Mantissa Bits 

for the IEEE 754 Basic and Extended FP 

Types. 

 

Furthermore, the inexact design in the 

mantissa adder has a lower impact on the 

error than its exponent counterpart in the 

lower data range, because the mantissa 

part is less significant than the exponent 

part. 

4.2 Normalizer  

Normalization is required to ensure that 

the addition results fall in the correct 

range; the sum or difference may be too 

small and a multi-bit left shift process may 

be required. A reduction of the exponent is 

also necessary. The normalization is 

performed by a leading zeros counter that 

determines the required number of left 
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shifts. As the mantissa adder is already not 

exact for the n least significant bits, the 

detection of the leading zeros can also be 

simplified in the inexact design, i.e., 

approximate leading zero counting logic 

can be used. 

4.3 Rounder  

A rounding mode is required to 

accommodate the inexact number that an 

FP format can represent. A proper 

rounding maintains three extra bits (i.e., 

guard bit, round bit and sticky bit). The 

adder may require a further normalization 

and exponent adjustment after the 

rounding step, therefore the hardware for 

rounding is significant. 

However, it does not affect the results of 

the inexact addition as the lower 

significant n bits are already inexact. 

Therefore, rounding can be ignored in the 

inexact design of an FP adder. 

4.4 Overall Inexact FP Adder 

Architecture  

Based on the previous discussion, an 

inexact FP adder can be designed by using 

approximate adders in the exponent 

subtractor and mantissa adders, an 

approximate leading zero counter in the 

normalizer and by ignoring the rounder. 

The inexact FP adder architecture is shown 

in Fig. 4. 

 

Fig. 4 The Inexact FP adder architecture 

5. Results 

5.1 RTL Schematic Diagram 

 

Fig 5 RTL Schematic of Inexact Double 

Precision Floating Point Adder 

 

5.2 Comparison Table 
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Table II Comparison of Delay and area 

for Conventional and Proposed Double 

Precision Floating Point adder units 

 

Architectu

re 

 

LUT’

s 

 

Area 

(Kb) 

 

Delay 

(ns) 

 

 

Existing   

 

 

140 

 

 

19344

8 

 

 

54.69

6 

 

 

Proposed 

 

 

108 

 

 

19325

6 

 

 

31.23

6 

  

Conclusion 
 

This project presents the implementation 

of double precision inexact floating point 

adder. The whole design was captured in 

Verilog HDL, tested in simulation using 

Model Tech’s Modelsim, placed and 

routed on a Spartern 3E FPGA from Xilinx 

13.2. Two extreme cases for the inexact 

design of FP adders have been studied. 

The first design uses an all-bit inexact 

mantissa adder; the second design uses an 

inexact LSB in the exponent subtraction. 

Thesecond designtakes a small area and 

less delay and offer higher performance 

than the firstdesign. As such thisis suitable 

for high dynamic image applications. It 

has been shown that the exponent part is a 

dominant part in the FP number format; 

however it has a smaller design space for 

an inexact design compared to the 

mantissa adder. 
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