

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

PROTECTION AGAINST CLIENT-SIDE CROSS SIDE SCRIPTING (XSS/CSS) Utkarsh Kumar & Sujeet Kumar

P a g e | 214

Protection against Client-Side Cross Side

Scripting (XSS/CSS)
Utkarsh Kumar & Sujeet Kumar

Final year Students, Information Technology, Dronacharya College of Engineering, Gurgaon,

Maharshi Dayanand University, Rohtak, Haryana, India.

Email: utkarsh.kumar10@gmail.com , sujeetkumar0110@gmail.com

Abstract:

Cross Side Scripting are the most popular
security problems nowadays. These Attacks make
use of vulnerabilities in the code of web-
applications, which result in serious
consequences, such as theft of cookies, passwords
and other personal credentials. Cross-Site
scripting (XSS) Attacks occur when accessing
information in intermediate trusted sites. Client
side solution acts as a web proxy to mitigate
Cross Site Scripting Attacks which manually
generated rules to mitigate Cross Site Scripting
attempts. Client side solution effectively protects
against information leakage from the user's
environment. Cross Site Scripting (XSS) Attacks
are easy to execute, but difficult to detect and
prevent. This paper provides client-side solution
to moderate cross-site scripting Attacks. The
existing client-side solutions degrade the
performance of client's system resulting in a poor
web surfing experience. But, this paper provides
a solution to XSS, which will not degrade the
browsing quality and will facilitate the user with
a good surfing experience and at the very same
time provide security against XSS.

Keywords: Cross Site Scripting; web proxy;
Software Protection; Code Injection Attacks;
Security Policies.

1. Introduction

Cross-Site Scripting, commonly known as XSS,
is a type of attack that gathers malicious
information about a user; typically in the form of

a specially crafted hyperlink that will save the
users credentials. Cross-site scripting, or XSS is
a web security vulnerability where the attacker
injects malicious client-side script into a web
page. When a user visits a web page, the script
code is downloaded and transparently run by the
web browser. The malicious script inherits the
user’s rights, authentication, and so on. XSS
represents the majority of web based security
vulnerabilities.

One reason for the popularity of XSS
vulnerabilities is that developers of web-based
applications often have little or no security
background. The result is that poorly developed
code, riddled with security flaws, is deployed and
made accessible to the whole Internet. Currently,
XSS attacks are dealt with by fixing the server-
side vulnerability, which is usually the result of
improper input validation routines.

XSS protection can be configured for multiple
types of request and response data – URL query
parameters – URL encoded input (“POST data”)
– HTTP headers – Cookies.

Unfortunately, any time one adds complexity to a
system, you increase the potential for security
issues -- and adding JavaScript to a Web page is
no exception. Among the problems introduced by
JavaScript are:

• A malicious Web site might employ

JavaScript to make changes to the local
system, such as copying or deleting files.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

PROTECTION AGAINST CLIENT-SIDE CROSS SIDE SCRIPTING (XSS/CSS) Utkarsh Kumar & Sujeet Kumar

P a g e | 215

• A malicious Web site might employ
JavaScript to monitor activity on the
local system, such as with keystroke
logging.

• A malicious Web site might employ
JavaScript to interact with other Web
sites the user has open in other browser
windows or tabs.

Fig 1: An Overview of XSS

2. Types of XSS

There are three types of XSS:

- Reflected Cross-Site Scripting attacks
- Stored Cross-Site Scripting attacks
- DOM based Cross-Site Scripting attacks

• Reflected CSS: This is the most
common kind of CSS. It targets
vulnerabilities that occur in some Web
sites when data submitted by the client is
immediately processed by the server to
generate results that are then sent back to
the browser on the client system. The
most common way to make use of this
exploit probably involves a link using a
malformed URL, such that a variable
passed in a URL to be displayed on the
page contains malicious code. Something
as simple as another URL used by the
server-side code to produce links on the
page, or even a user's name to be
included in the text page so that the user
can be greeted by name, can become a
vulnerability employed in a reflected
cross-site scripting exploit.

• Stored CSS: This kind of CSS is also
known as HTML injection attack. These
are scripting exploits where some data
sent to the server is stored (typically in a
database) to be used in the creation of
pages that will be served to other users

later. This form of cross-site scripting
exploit can affect any visitor to the Web
site, if the site is subject to a stored cross-
site scripting vulnerability. The classic
example of this sort of vulnerability is
content management software such as
forums and bulletin boards where users
are allowed to use raw HTML and
XHTML to format their posts.

• DOM based CSS: It is a special
variant of reflected XSS, where logic
errors in legitimate JavaScript and
careless usage of client-side data result in
XSS conditions. Developers and site
maintainers need to familiarize
themselves with techniques to detect
DOM Based XSS. vulnerabilities, as well
as with techniques to defend against
them.

3. The Model we Propose

We assume the following:

Attacker Abilities: We assume the attacker has
the following abilities:

• The attacker owns and operates a
web site.

• The user visits the attacker's web
site.

• The target web site lets the attacker
inject an arbitrary sequence of bytes
into the entity-body of one of its
HTTP responses.

Vulnerability Coverage: Ideally, a client-side
XSS would prevent all attacks against all
vulnerabilities. However, implementation is
infeasible. Instead, we focus our attention on a
narrower threat model that covers a certain class
of vulnerabilities. For example, we consider only
rejected XSS vulnerabilities, where the byte
sequence chosen by the attacker appears in the
HTTP request that retrieved the resource.

Attacker Goals: We assume the attacker's goal is
to run arbitrary script in the user's browser with
the privileges of the target web site. Typically, an
attacker will run script as a stepping stone to

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

PROTECTION AGAINST CLIENT-SIDE CROSS SIDE SCRIPTING (XSS/CSS) Utkarsh Kumar & Sujeet Kumar

P a g e | 216

disrupting the confidentiality or integrity of the
user's session with the target web site. In the limit,
the attacker can always inject script into a web
site if the attacker can induce the user into taking

arbitrary actions. In this paper, we consider
attackers who seek to achieve their goals with
zero interaction or a single-click interaction with
the user.

 Fig 2: Proposed Solution, A three step process to detect CSS

 Fig 3: Block Diagram to detect CSS

4. Performance and Security

Evaluation

The proposed solution has been tested with many
malicious inputs, non-vulnerable input with white
listed tags and vulnerable websites. The Figure 4

shows the comparison of the proposed browser
with Firefox without security implemented,
Microsoft’s Internet Explorer, Apple’s Safari
Web Browser and other available web browsers
on same platform and environment.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

PROTECTION AGAINST CLIENT-SIDE CROSS SIDE SCRIPTING (XSS/CSS) Utkarsh Kumar & Sujeet Kumar

P a g e | 217

Fig 4: Security Evaluation of the proposed Web
Browser

The proposed solution has been tested with many
malicious inputs, non-vulnerable input with white
listed tags and vulnerable websites. Figure 5
shows how the attacker can inject the malicious
script code into a trusted website with the help of
Control flow graph.

Fig 5: Security Evaluation of the proposed Web Browser\

5. Conclusions

The proposed solution is found to be very
effective by the experimental results. The
solution is platform independent so we block
suspected attacks by preventing the injected
script from being passed to the JavaScript engine
rather than performing risky transformations on
the HTML. Cross-site scripting attacks are
among the most common classes of web security
vulnerabilities. Every browser should include a
client-side XSS to help mitigate unpatched XSS
vulnerabilities. Cross-site scripting is a Web-

based attack technique used to gain information
from a victim machine or leverage other
vulnerabilities for additional attacks. These
practices employ policy, people, and technology
countermeasures to protect against XSS and other
Web attacks.

In general, the system successfully prohibits and
removes a variety of XSS attacks, maximizing the
protection of web applications.

6. References

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

PROTECTION AGAINST CLIENT-SIDE CROSS SIDE SCRIPTING (XSS/CSS) Utkarsh Kumar & Sujeet Kumar

P a g e | 218

[1] Engin Kirda, Christopher Kruegel,
Giovanni Vigna, and Nenad Jovanovic.
Noxes: A client-side solution for
mitigating cross site scripting attacks. In
Proceedings of the 21st ACM
Symposium on Applied Computing
(SAC), 2006.

[2] CERT. Advisory CA-2000-02: malicious
HTML tags embedded in client web
requests,
http://www.cert.org/advisories/CA-
2000-02.html>; 2000.

[3] CERT. Understanding malicious content
mitigation for web developers,
http://www.cert.org/tech_tips/malicious
_code_mitigation.html>; 2005

[4] D. Scott and R. Sharp. Abstracting
Application-Level Web Security. In
Proceedings of the 11th International
World Wide Web Conference May 2002.

[5] Open Web Application Security Project,
“The ten most critical web application
security
vulnerabilities”,2007,ww.owasp.org/ind
ex.php/OWASP_Top_Ten_Project .

[6] K. Fernandez and D. Pagkalos.
Xssed.com - xss (cross-site scripting)
information and vulnerabile websites
archive. [online], http://xssed.com
(03/20/08).

[7] IJCSI International Journal of Computer
Science Issues, Vol. 8, Issue 4, No 1, July
2011 ISSN (Online): 1694-0814
www.IJCSI.org 654.

[8] Prevention of Cross-Site Scripting
Attacks (XSS) on Web Applications in
The Client Side, S.Shalini Usha, S.Usha,
Department of Computer and
Communication, Sri Sairam Engineering
College, Chennai- 44, Tamilnadu, India.
Department of Information Technology,
Sri Sairam Engineering College,

Chennai- 44, Tamilnadu, India, IJCSI
International Journal of Computer
Science Issues, Vol. 8, Issue 4, No 1, July
2011 ISSN (Online): 1694-0814,
www.IJCSI.org

[9] P. Bisht, and V.N. Venkatakrishnan,
“XSS-GUARD: Precise dynamic
prevention of Cross-Site Scripting
Attacks,” In Proceeding of 5th
Conference on Detection of Intrusions
and Malware & Vulnerability
Assessment, LNCS 5137, 2008, pp. 23-
43.

