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ABSTRACT 
 
Now a days, FLASH memories plays leading 
role in non-volatile memories. In general, these 
are used in storage devices such as memory 
cards, USB flash drives, and solid-state drives 
etc. NAND Flash memories have lower erase 
times, less chip area per cell which allows 
greater storage density.  Multi-level cell (MLC) 
Flash memories store two or more bits per cell 
by supporting four or more voltage states and 
provide greater storage density. For loss less 
transmission, error detection and correction 
scheme is used which enables reliable delivery 
of digital data over unreliable communication 
channels. Generally errors are caused by noise 
or other impairments during transmission. Here, 
error correction scheme is implemented by 
completely removing of redundancy bits by 
encoding technique and retrieving those at the 
other end using decoding method. For this error 
correction, merge scheme is used which often an 
advantageous of both column and row action in 
the same algorithm. Hence the power 
consumption required will reduces drastically. 
For this implementation, VHDL Code is used. 

 
Key words- error correction codes (ECCs), 
multi-level cell, , flash memories, merge scheme. 
 

1. INTRODUCTION 

In present days, FLASH memories have 
become the dominant technology for non-
volatile memories. Basic applications may 

include in memory cards, USB flash drives, and 
solid-state drives in application platforms such 
as personal digital assistants, laptop computers, 
digital audio players, digital cameras and mobile 
phones. In this paper, NAND Flash memories 
are taken in to consideration due to lower erase 
times, less chip area per cell which allows 
greater storage density, and lower cost per bit 
than NOR Flash memories [2]. Specifically, 
focus towards on multi-level cell (MLC) Flash 
memories which store two or more bits per cell 
by supporting four or more voltage states.  

Electronic space provided by silicon chips 
(semiconductor memory chips) or 
magnetic/optical media as temporary or 
permanent storage for data and/or instructions to 
control a computer or execute one or more 
programs. Two main types of computer memory 
are: (1) Read only memory (ROM), which is 
smaller part of a computer's silicon (solid state) 
memory that is fixed in size and permanently 
stores manufacturer's instructions to run the 
computer when it is switched on. (2) Random 
access memory (RAM), which is larger part of a 
computer's memory comprising of hard disk, 
CD, DVD, floppies etc., (together called 
secondary storage) and employed in running 
programs and in archiving of data. Memory 
chips provide access to stored data or 
instructions that is hundreds of times faster than 
that provided by secondary storage. Memory 
errors are of two types, namely hard and soft.  
• Hard errors are caused due to fabrication 
defects in the memory chip and cannot be 
corrected once they start appearing.  
• Soft errors on the other hand are caused 
predominantly by electrical disturbances 
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2. ERROR CONTROL CODING 

Error detection and correction or error 
control coding are techniques that enable 
reliable delivery of digital data over unreliable 
communication channels (or storage medium). 

Error detection is the detection of errors 
caused by noise or other impairments during 
transmission from the transmitter to the receiver. 
Error correction is the detection of errors and 
reconstruction of the original, error-free data. 
The goal of error control coding is to encode 
information in such a way that even if the 
channel (or storage medium) introduces errors, 
the receiver can correct the errors and recover 
the original transmitted information.  

ECC stands for "Error Correction Codes" is 
a method used to detect and correct errors 
introduced during storage or transmission of 
data. Certain kinds of RAM chips inside a 
computer implement this technique to correct 
data errors and are known as ECC Memory. 
      An error-correcting code (ECC) or forward 
error correction (FEC) code is a system of 
adding redundant data, or parity data, to a 
message, such that it can be recovered by a 
receiver even when a number of errors (up to the 
capability of the code being used) were 
introduced, either during the process of 
transmission, or on storage. Since the receiver 
does not have to ask the sender for 
retransmission of the data, a back-channel is not 
required in forward error correction, and it is 
therefore suitable for simplex communication 
such as broadcasting 
      Error-correcting codes are usually 
distinguished between convolutional codes and 
block codes: 
Convolutional codes: These are processed on a 
bit-by-bit basis. They are particularly suitable 
for implementation in hardware, and the Viterbi 
decoder allows optimal decoding. 
Block codes: These are processed on a block-by-
block basis. Examples of block codes are 
repetition codes, Hamming codes and 
multidimensional parity-check codes. They were 
followed by a number of efficient codes, Reed-
Solomon codes being the most notable due to 
their current widespread use. Turbo codes and 

low-density parity-check codes (LDPC) are 
relatively new constructions that can provide 
almost optimal efficiency. 

Shannon's theorem is an important theorem 
in forward error correction, describes the 
maximum information rate at which reliable 
communication is possible over a channel that 
has a certain error probability or signal-to-noise 
ratio (SNR). This strict upper limit is expressed 
in terms of the channel capacity. More 
specifically, the theorem says that there exist 
codes such that with increasing encoding length 
the probability of error on a discrete memory 
less channel can be made arbitrarily small, 
provided that the code rate is smaller than the 
channel capacity. The code rate is defined as the 
fraction k/n of k source symbols and n encoded 
symbols. Some simple codes can detect but not 
correct errors; others can detect and correct one 
or more errors. 

2.1 Parity Checking 

Parity checking is the simple way to 
detect errors, but this simple check does have 
two limitations: it only detects errors, without 
being able to correct them; and it can’t detect 
errors that invert an even number of bits. 

2.2 Hamming Codes 

     Hamming codes are an extension of parity 
checking method that can be used to detect and 
correct a larger set of errors. Hamming’s 
development is a very direct construction of a 
code that permits correcting single-bit errors.  

Let us assume that the data to be transmitted 
consists of a certain number of information bits 
u and added them to a number of check bits p 
such that if a block is received that has at most 
one bit in error, then p identifies the bit that is in 
error (which may be one of the check bits). 
Specifically, in Hamming’s code p is interpreted 
as an integer which is 0 if no error occurred, and 
otherwise is the 1-origined index of the bit that 
is in error. Let k be the number of information 
bits, and m the number of check bits used. 
Because the m check bits must check themselves 
as well as the information bits. Because m bits 
can distinguish cases, we must have 
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12 ++≥ kmm         (1) 

      Equation (1) applies to any single error 
correcting (SEC) binary FEC block code in 
which all of the transmitted bits must be 
checked. The check bits will be interspersed 
among the information bits in a manner 
described below. Because p indexes the bit (if 
any) that is in error, the least significant bit of p 
must be 1 if the erroneous bit is in an odd 
position, and 0 if it is in an even position or if 
there is no error. A simple way to achieve this is 
to let the least significant bit of p, be an even 
parity checks on the odd positions of the block, 
and to put   in an odd position. The receiver then 
checks the parity of the odd positions. If the 
result is 1, an error has occurred in an odd 
position, and if the result is 0, either no error 
occurred or an error occurred in an even 
position. This satisfies the condition that p 
should be the index of the erroneous bit, or be 0 
if no error occurred. 

 Similarly, let the next from least significant 
bit of p, be an even parity check of positions 2, 
3, 6, 7, 10, 11, … (in binary, 10, 11, 110, 111, 
1010, 1011, …), and put   in one of these 
positions. Those positions have a 1 in their 
second from least significant binary position 
number. The receiver checks the parity of these 
positions. If the result is 1, an error occurred in 
one of those positions, and if the result is 0, 
either no error occurred or an error occurred in 
some other position. Continuing, the third from 
least significant check bit,  , is made an even 
parity check on those positions that have a 1 in 
their third from least significant position 
number, namely positions 4, 5, 6, 7, 12, 13, 14, 
15, 20, …, and   is put in one of those positions. 

 Putting the check bits in power-of-two 
positions (1, 2, 4, 8 …) has the advantage that 
they are independent. That is, the sender can 
compute independently and more generally, it 
can compute each check bit independently of the 
others. 

This code is called the (7, 4) Hamming code, 
which signifies that the code length is 7 and the 
number of information bits is 4. The positions of 
the check bits and the information bits   are 
shown below. 

            1      2      3      4     5       6     7 

2.3 Reed-Solomon Codes 

Reed-Solomon codes were developed in 
1960 by Irving S. Reed and Gustavo Solomon, 
who were then members of MIT Lincoln 
Laboratory. Their seminal article was entitled 
"Polynomial Codes over Certain Finite Fields." 
(Reed & Solomon 1960) When the article was 
written, an efficient decoding algorithm was not 
known Reedsolomn code [17, 18]. A solution for 
the latter was found in 1969 by Elwy Berlekamp 
and James Massey, and is since known as the 
Berlekamp-Massey decoding algorithm. In 
1977, RS codes were notably implemented in 
the Voyager program in the form of 
concatenated codes. The first commercial 
application in mass-produced consumer products 
appeared in 1982 with the compact disc, where 
two interleaved RS codes are used. The 
parameters of a Reed-Solomon code are: 

m = the number of bits per symbol 
n = the block length in symbols 
k = the uncoded message length in symbols 
(n-k) = the parity check symbols (check bytes) 
t = the number of correctable symbol errors 
(n-k)=2t (for n-k even) 
(n-k)-1 = 2t (for n-k odd) 
Therefore, an RS code may be described as an 
(n, k) code for any RS code.   

Consider the RS (255,235) code, the encoder 
groups the message into 235 8-bit symbols and 
adds 20 8-bit symbols of redundancy to give a 
total block length of 255 8-bit symbols. In this 
case, 8% of the transmitted message is 
redundant data. In general, due to decoder 
constraints, the block length cannot be arbitrarily 
large.  

The Hamming and Hsiao codes, for example 
have low encoding and decoding complexity, 
but also have relatively low error- correcting 
capacity (e.g., Hamming is single error-
correcting, double error-detecting). To achieve 
higher error- correcting capability, codes like 
Reed Solomon or BCH require more 
sophisticated decoding algorithms. 

2.4 LDPC Codes 
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 Low-density parity-check (LDPC) 
codes were first discovered by Gallagher in the 
early 1960s and have recently been rediscovered 
and generalized .It has been shown that these 
codes achieve a remarkable performance with 
iterative decoding that is very close to the 
Shannon limit. Consequently, these codes have 
become strong competitors to turbo codes for 
error control in many communication systems 
and digital systems where high reliability is 
required.  

LDPC codes can be constructed using 
random or deterministic approaches. In this 
report, we focus on a class of LDPC codes 
known as Euclidean Geometric (EG) LDPC 
codes, which are constructed deterministically 
using the points and lines of a Euclidean 
geometry [1, 16]. The EG LDPC codes that we 
consider are cyclic and consequently their 
encoding can be efficiently implemented with 
linear shift registers. Minimum distances for EG 
codes are also reasonably good and can be 
derived analytically. Iteratively decoded EG 
LDPC codes also seem to not have the serious 
error- floors that plague randomly-constructed 
LDPC codes; this fact can be explained by the 
observation made in that EG LDPC codes do not 
have pseudo-code words of weight smaller than 
their minimum distance. For these reasons, EG 
LDPC codes are good candidates for use in 
applications like optical communications that 
require very fast encoders and decoders and very 
low bit error-rates. 

 However combinational logic has already 
started showing susceptibility to soft errors, and 
therefore the encoder and decoder (corrector) 
units will no longer be immune from the 
transient faults. Therefore, protecting the 
memory system support logic implementation is 
more important. Here we proposed a lossless 
system which detect the errors and correct the 
errors on 32bit input at a time to maintain the 32 
bit processor with error free. Generally the 
errors occur in the memory is due to redundancy 
information .So if we remove the redundancy 
obviously the error prone will be reduced. In this 
project based on the proposed technique error 
free data oriented architecture is developed to 
encode and to decode the information. 

With the increase in silicon densities, it is 
becoming feasible for multiple compression 
systems to be implemented in parallel onto a 
single chip. A 32-BITsystem with distributed 
memory architecture is based on having multiple 
data compression and decompression engines 
working independently on different data at the 
same time. This data is stored in memory 
distributed to each processor.  The objective 
of the project is to design a lossless parallel data 
compression system which operates in high-
speed to achieve high compression rate. By 
using Parallel architecture of compressors, the 
data compression rates are significantly 
improved. Also inherent scalability of parallel 
architecture is possible.  The main parts of the 
system are the two Xmatchpro based data 
compressors in parallel and the control blocks 
providing control signals for the Data 
compressors, allowing appropriate control of the 
routing of data into the system.  

 Each Data compressor can process four 
bytes of data into and from a block of data every 
clock cycle. The data entering the system needs 
to be clocked in at a rate of 4n bytes every clock 
cycle, where n is the number of compressors in 
the system. This is to ensure that adequate data 
is present for all compressors to process rather 
than being in an idle state. 

3. METHODOLOGY 

A second Lempel-Ziv method used a 
content addressable memory (CAM) capable 
of performing a complete dictionary search 
in one clock cycle. The search for the most 
common string in the dictionary (normally, 
the most computationally expensive 
operation in the Lempel-Ziv algorithm) can 
be performed by the CAM in a single clock 
cycle, while the systolic array method uses a 
much slower deep pipelining technique to 
implement its dictionary search. However, 
compared to the CAM solution, the systolic 
array method has advantages in terms of 
reduced hardware costs and lower power 
consumption, which may be more important 
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criteria in some situations than having faster 
dictionary searching.  In the authors show 
that hardware main memory data 
compression is both feasible and 
worthwhile. The authors also describe the 
design and implementation of a novel 
compression method, the XMatchPro 
algorithm. Its exhibit the substantial impact 
such memory compression has on overall 
system performance.  

The adaptation of compression code for 
parallel implementation is investigated by 
Jiang and Jones. They recommended the use 
of a processing array arranged in a tree-like 
structure. Although compression can be 
implemented in this manner, the 
implementation of the decompressor’s 
search and decode stages in parallel 
hardware would greatly increase the 
complexity of the design and it is likely that 
these aspects would need to be implemented 
sequentially. Although little research has 
been performed on architectures involving 
several independent compression units 
working in a concurrent cooperative manner, 
IBM has introduced the MXT chip, which 
has four independent compression engines 
operating on a shared memory area. The 
four Lempel-Ziv compression engines are 
used to provide data throughput sufficient 
for memory compression in computer 
servers.  

Adaptation of software compression 
algorithms to make use of multiple CPU 
systems was demonstrated by research of 
Penhorn and Simpson and Sabharwal. 
Penhorn used two CPUs to compress data 
using a technique based on the Lempel-Ziv 
algorithm and showed that useful 
compression rate improvements can be 
achieved, but only at the cost of increasing 
the learning time for the dictionary. Simpson 
and Sabharwal described the software 
implementation of compression system for a 
multiprocessor system based on the parallel 

architecture developed by Gonzalez and 
Smith and Store.    

3.1 Statistical Methods  

  Statistical Modeling of lossless data 
compression system is based on assigning values 
to events depending on their probability. The 
higher the value, the higher the probability. The 
accuracy with which this frequency distribution 
reflects reality determines the efficiency of the 
model. In Markov modeling, predictions are 
done based on the symbols that precede the 
current symbol. 

3.2 Dictionary Methods 

Dictionary Methods try to replace a symbol 
or group of symbols by a dictionary location 
code. Some dictionary-based techniques use 
simple uniform binary codes to process the 
information supplied. Both software and 
hardware based dictionary models achieve good 
throughput and competitive compression. The 
UNIX utility ‘compress’ uses Lempel-Ziv-2 
(LZ2) algorithm and the data compression 
Lempel-Ziv (DCLZ) family of compressors 
initially invented by Hewlett- Packard[16] and 
currently being developed by AHA[17],[18] . It 
uses a tag attached to each dictionary location to 
identify which node should be eliminated once 
the dictionary becomes full.  

3.3. XMATCHPRO Based System 

The Lossless data compression system is 
derivative of the XMatchPro Algorithm of the 
previous methods are overcome by using the 
XmatchPro algorithm in design. The objective is 
then to obtain better compression ratios and still 
maintain a high throughput so that the 
compression/decompression processes do not 
slow the original system down. The flexibility 
provided by using this technology is of great 
interest since the chip can be adapted to the 
requirements of a particular application easily.  

3.4 Proposed Method 
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In it discusses about the Parallel Algorithm 
that can be implemented for High Speed Data 
Compression. The authors gives the basic idea 
about how the Data Compression is carried out 
using the Lempel-Ziv Algorithm and how it 
could be altered for Parallelism of the algorithm. 
It describes the Lempel-Ziv algorithm as a very 
efficient universal data compression technique, 
based upon an incremental parsing technique, 
which maintains codebooks of parsed phrases at 
the transmitter and at the receiver. An important 
feature of the algorithm is that it is not necessary 
to determine a model of the source. 

4. ALGORITHM 

The Lossless Parallel Data Compression 
system designed uses the XMatchPro Algorithm. 
The XMatchPro algorithm uses a fixed-width 
dictionary of previously seen data and attempts 
to match the current data element with a match 
in the dictionary. It works by taking a 4-byte 
word and trying to match or partially match this 
word with past data. This past data is stored in a 
dictionary, which is constructed from a content 
addressable memory. As each entry is 4 bytes 
wide, several types of matches are possible. If 
all the bytes do not match with any data present 
in the dictionary they are transmitted with an 
additional miss bit. If all the bytes are matched 
then the match location and match type is coded 
and transmitted, this match is then moved to the 
front of the dictionary.  

The dictionary is maintained using a move 
to front strategy whereby a new tuple is placed 
at the front of the dictionary while the rest move 
down one position. When the dictionary 
becomes full the tuple placed in the last position 
is discarded leaving space for a new one. The 
coding function for a match is required to code 
several fields as follows:  
A zero followed by:  
 1) Match location: It uses the binary code 
associated to the matching location.  
 2) Match type: Indicates which bytes of the 
incoming tuple have matched.  
 3) Characters that did not match transmitted in 
literal form.    

With the increase in silicon densities, it is 
becoming feasible for multiple XMatchPros to 

be implemented in parallel onto a single chip. A 
parallel system with distributed memory 
architecture is based on having multiple data 
compression and decompression engines 
working independently on different data at the 
same time.  

A description of the XMatchPro algorithm 
in pseudo-code is given in the below.  
Clear the dictionary;  
Set the next free location (NFL) to 0;  
Do  
{  
read in a tuple T from the data stream;  
search the dictionary for tuple T;  
IF (full or partial hit)  
{  
determine the best match location ML and match 
type MT;  
output ‘0’;  
output any required literal characters of T;  
}  
ELSE  
{ output ‘1’;  
 output tuple T;  
}  
IF (full hit)  
{  
move dictionary entries 0 to ML -1 down by one 
location;  
}  
ELSE  
{  
move all dictionary entries down by one 
location;  
increment NFL (if dictionary is not full);  
}  
copy tuple T to dictionary location 0;  
}  
WHILE (more data is to be compressed); 
 

This data is stored in memory distributed to 
each processor. There are several approaches in 
which data can be routed to and from the 
compressors that will affect the speed, 
compression and complexity of the system. 
Lossless compression removes redundant 
information from the data while they are 
transmitted or before they are stored in memory. 
Lossless decompression reintroduces the 
redundant information to recover fully the 
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original data. There are two important 
contributions made by the current parallel 
compression & decompression work, namely, 
improved compression rates and the inherent 
scalability.  

Significant improvements in data 
compression rates have been achieved by 
sharing the computational requirement between 
compressors without significantly compromising 
the contribution made by individual 
compressors. The scalability feature permits 
future bandwidth or storage demands to be met 
by adding additional compression engines.  

 

4.1. XMATCHPRO Based Compression 
System 

The Research on the lossless XMatchPro 
data compressor has been on optimizing and 
implementing the XMatchPro algorithm for 
speed, complexity and compression in hardware. 
The XMatchPro algorithm uses a fixed width 
dictionary of previously seen data and attempts 
to match the current data element with a match 
in the dictionary. It works by taking a 4-byte 
word and trying to match this word with past 
data. This past data is stored in a dictionary, 
which is constructed from a content addressable 
memory.

 

Fig.1 Conceptual view of CAM 

Initially all the entries in the dictionary are 
empty & 4-bytes are added to the front of the 
dictionary, while the rest move one position 
down if a full match has not occurred. The larger 

the dictionary, the greater the number of address 
bits needed to identify each memory location, 
reducing compression performance. Since the 
number of bits needed to code each location 
address is a function of the dictionary size 
greater compression is obtained in comparison 
to the case where a fixed size dictionary uses 
fixed address codes for a partially full 
dictionary. In the parallel XMatchPro system, 
the data stream to be compressed enters the 
compression system, which is then partitioned 
and routed to the compressors. 

For parallel compression systems, it is 
important to ensure all compressors are supplied 
with sufficient data by managing the supply so 
that neither stall conditions nor data overflow 
occurs.  

4.2.   Content Addressable Memory 

Dictionary based schemes copy repetitive or 
redundant data into a lookup table (such as 
CAM) and output the dictionary address as a 
code to replace the data. The compression 
architecture is based around a block of CAM to 
realize the dictionary. This is necessary since the 
search operation must be done in parallel in all 
the entries in the dictionary to allow high and 
data-independent throughput.  

The number of bits in a CAM word is 
usually large, with existing implementations 
ranging from 36 to 144 bits. A typical CAM 
employs a table size ranging between a few 
hundred entries to 32K entries, corresponding to 
an address space ranging from 7 bits to 15 bits. 
The length of the CAM varies with three 
possible values of 16, 32 or 64 tuples trading 
complexity for compression. The no. of tuples 
present in the dictionary has an important effect 
on compression.  

In principle, the larger the dictionary the 
higher the probability of having a match and 
improving compression. On the other hand, a 
bigger dictionary uses more bits to code its 
locations degrading compression when 
processing small data blocks that only use a 
fraction of the dictionary length available. The 
width of the CAM is fixed with 4bytes/word 
Content Addressable Memory (CAM) compares 
input search data against a table of stored data, 
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and returns the address of the matching data. 
CAMs have a single clock cycle throughput 
making them faster than other hardware and 
software-based search systems. The input to the 
system is the search word that is broadcast onto 
the search lines to the table of stored data. Each 
stored word has a match line that indicates 
whether the search word and stored word are 
identical (the match case) or are different (a 
mismatch case, or match).  

The match lines are fed to an encoder that 
generates a binary match location corresponding 
to the match line that is in the match state. An 
encoder is used in systems where only a single 
match is expected. The overall function of a 
CAM is to take a search word and return the 
matching memory location.  

4.3. Implementation of XMATCHPRO based 
compressor  

The block diagram gives the details about 
the components of a single 32 bit Compressor. 
There are three components namely, 
COMPARATOR, Array, Content Addressable 
Memory COMPARATOR. The comparator is 
used to compare two 32-bit data and to set or 
reset the output bit as 1 for equal and 0 for 
unequal. The CAM COMPARATOR searches 
the CAM dictionary entries for a full match of 
the input data given. The reason for choosing a 
full match is to get a prototype of the high 
throughout Xmatchpro compressor with reduced 
complexity and high performance. If a full 
match occurs, the match-hit signal is generated 
and the corresponding match location is given as 
output by the CAM Comparator. If no full match 
occurs, the corresponding data that is given as 
input at the given time is given as output.  

 

Fig.2 Diagram of 32-bit Compression 

4.4. Description of Language used in source 
code 

Array is of length of 64X32 bit locations. 
This is used to store the unmatched incoming 
data and when a new data comes, the incoming 
data is compared with all the data stored in this 
array. If a match occurs, the corresponding 
match location is sent as output else the 
incoming data is stored in next free location of 
the array & is sent as output. The last component 
is the cam comparator and is used to send the 
match location of the CAM dictionary as output 
if a match has occurred. This is done by getting 
match information as input from the comparator. 

Suppose the output of the comparator goes 
high for any input, the match is found and the 
corresponding address is retrieved and sent as 
output along with one bit to indicate that match 
is found. At the same time, suppose no match 
occurs, or no matched data is found, the 
incoming data is stored in the array and it is sent 
as the output. These are the functions of the 
three components of the Compressor. The 
hardware descriptions of these modules are done 
using VHDL Language. VHDL is an acronym 
for Very high-speed integrated circuits 
Hardware Description Language. It can be used 
to model a digital system at many levels of the 
abstraction, ranging from the algorithmic level 
to gate level.  

The VHDL language can be regarded as an 
integrated amalgamation of the following 
languages:  

Sequential language  

Concurrent language  

Net-list language  

Timing specifications  

Waveform generation language.  

So the language has constructs that enable 
you to express the concurrent or sequential 
behavior of a digital system with or without 
timing. It also allows modeling the system as an 
inter-connection of components.  
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5. DESIGN   OF    COMPRESSOR /   
DECOMPRESSOR: 

The block diagram gives the details about 
the components of a single 32- bit compressor / 
decompressor. The Same design approach is 
used for designing a 64-bit 
Compression/Decompression system which is 
essentially used for comparison of increased 
compression rates given by the 64-bit Lossless 
Parallel High-Speed Data Compression System. 
There are three components namely: 

 

compressor 

decompressor  

control.  

The compressor has the following components  

comparator 

array  

cam comparator.  

The comparator is used to compare two 32-
bit data and to set or reset the output bit as 1 for 
equal and 0 for unequal. Array is of length of 
64X32bit locations. This is used to store the 
unmatched in coming data and when the next 
new data comes, that data is compared with all 
the data stored in this array. If the incoming data 
matches with any of the data stored in array, the 
Comparator generates a match signal and sends 
it to Cam Comparator.  

Fig.3   Block   Diagram  of 32 bit Compressor/ 
Decompressor 

The last component is the CAM comparator 
and is used to send the incoming data and all the 
stored data in array one by one to the 
comparator. Suppose output of comparator goes 
high for any input, then the match is found and 
the corresponding address (match based 
compressor).  

At the same time, suppose no match is 
found, then the incoming data stored in the array 
is sent as output. These are the functions of 
Array, so it stores the data in the Array and if the 
match hit data is 1, it indicates the data is present 
in the Array, then it instructs to find the data 
from the Array with the help of the address input 
and sends as output to the data out location is 
retrieved and sent as output along with the three 
components of the XMatchPro. 

The decompressor has the following 
components – Array and Processing Unit. Array 
has the same function as that of the array unit 
used in the Compressor. It is also of the same 
length. Processing unit checks the incoming 
match hit data and if it is 0, it indicates that the 
data is not present in the one bit to indicate the 
match is found. The Control has the input bit 
called C / D i.e., Compression / Decompression 
indicates whether compression or 
decompression has to be done. If it has the value 
0 then compressor is stared when the value is 1 
decompression is done.  
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6. SIMULATION RESULTS 

The design coded in VHDL is simulated 
using Xilinx  

The obtained waveforms are as follows  
 
6.1. Comparator 
 

     Fig.4 Comparator output waveform 
 
 
 
6.2. CAM Comparator 
 

       Fig.5 CAM Comparator output waveform 

6.3. Data Compression 

 

Fig.6 32-bit Single Compression output 

waveform 

6.4. De-Compression 

 Fig.7    32  Bit  Data decompression output 
waveform 

7. CONCLUSION 
  

    In this paper we presented a method to 
implement lossless data compression system 
which operates at high-speed to achieve high 
compression rate. By using architecture of 
compressors, the data compression rates are 
significantly improved and also inherent 
scalability of parallel architecture is possible.  
       The algorithm “XMATCHPRO merge” 
used in this project is efficient at compressing 
and the flexibility provided by using this 
technology is of great interest, since the chip can 
be adapted to the requirements of a particular 
application easily.So by this the error prone in 
the memory is reduced drastically. 
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