

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 435

Lossless Implementation of NAND Flash

Memory Architecture Using MERGE Scheme
Kota N V Tulasi Kumari1, Y. Phani Kumar2

1(PG Scholar, Department of ECE, ASIST, Vijayawada, AP, India)

Email: tulasikumari@rocketmail.com

2 (Assistant Professor, Department of ECE, ASIST, Vijayawada, AP, India)

ABSTRACT

Now a days, FLASH memories plays leading
role in non-volatile memories. In general, these
are used in storage devices such as memory
cards, USB flash drives, and solid-state drives
etc. NAND Flash memories have lower erase
times, less chip area per cell which allows
greater storage density. Multi-level cell (MLC)
Flash memories store two or more bits per cell
by supporting four or more voltage states and
provide greater storage density. For loss less
transmission, error detection and correction
scheme is used which enables reliable delivery
of digital data over unreliable communication
channels. Generally errors are caused by noise
or other impairments during transmission. Here,
error correction scheme is implemented by
completely removing of redundancy bits by
encoding technique and retrieving those at the
other end using decoding method. For this error
correction, merge scheme is used which often an
advantageous of both column and row action in
the same algorithm. Hence the power
consumption required will reduces drastically.
For this implementation, VHDL Code is used.

Key words- error correction codes (ECCs),
multi-level cell, , flash memories, merge scheme.

1. INTRODUCTION

In present days, FLASH memories have
become the dominant technology for non-
volatile memories. Basic applications may

include in memory cards, USB flash drives, and
solid-state drives in application platforms such
as personal digital assistants, laptop computers,
digital audio players, digital cameras and mobile
phones. In this paper, NAND Flash memories
are taken in to consideration due to lower erase
times, less chip area per cell which allows
greater storage density, and lower cost per bit
than NOR Flash memories [2]. Specifically,
focus towards on multi-level cell (MLC) Flash
memories which store two or more bits per cell
by supporting four or more voltage states.

Electronic space provided by silicon chips
(semiconductor memory chips) or
magnetic/optical media as temporary or
permanent storage for data and/or instructions to
control a computer or execute one or more
programs. Two main types of computer memory
are: (1) Read only memory (ROM), which is
smaller part of a computer's silicon (solid state)
memory that is fixed in size and permanently
stores manufacturer's instructions to run the
computer when it is switched on. (2) Random
access memory (RAM), which is larger part of a
computer's memory comprising of hard disk,
CD, DVD, floppies etc., (together called
secondary storage) and employed in running
programs and in archiving of data. Memory
chips provide access to stored data or
instructions that is hundreds of times faster than
that provided by secondary storage. Memory
errors are of two types, namely hard and soft.
• Hard errors are caused due to fabrication
defects in the memory chip and cannot be
corrected once they start appearing.
• Soft errors on the other hand are caused
predominantly by electrical disturbances

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 436

2. ERROR CONTROL CODING

Error detection and correction or error
control coding are techniques that enable
reliable delivery of digital data over unreliable
communication channels (or storage medium).

Error detection is the detection of errors
caused by noise or other impairments during
transmission from the transmitter to the receiver.
Error correction is the detection of errors and
reconstruction of the original, error-free data.
The goal of error control coding is to encode
information in such a way that even if the
channel (or storage medium) introduces errors,
the receiver can correct the errors and recover
the original transmitted information.

ECC stands for "Error Correction Codes" is
a method used to detect and correct errors
introduced during storage or transmission of
data. Certain kinds of RAM chips inside a
computer implement this technique to correct
data errors and are known as ECC Memory.
 An error-correcting code (ECC) or forward
error correction (FEC) code is a system of
adding redundant data, or parity data, to a
message, such that it can be recovered by a
receiver even when a number of errors (up to the
capability of the code being used) were
introduced, either during the process of
transmission, or on storage. Since the receiver
does not have to ask the sender for
retransmission of the data, a back-channel is not
required in forward error correction, and it is
therefore suitable for simplex communication
such as broadcasting
 Error-correcting codes are usually
distinguished between convolutional codes and
block codes:
Convolutional codes: These are processed on a
bit-by-bit basis. They are particularly suitable
for implementation in hardware, and the Viterbi
decoder allows optimal decoding.
Block codes: These are processed on a block-by-
block basis. Examples of block codes are
repetition codes, Hamming codes and
multidimensional parity-check codes. They were
followed by a number of efficient codes, Reed-
Solomon codes being the most notable due to
their current widespread use. Turbo codes and

low-density parity-check codes (LDPC) are
relatively new constructions that can provide
almost optimal efficiency.

Shannon's theorem is an important theorem
in forward error correction, describes the
maximum information rate at which reliable
communication is possible over a channel that
has a certain error probability or signal-to-noise
ratio (SNR). This strict upper limit is expressed
in terms of the channel capacity. More
specifically, the theorem says that there exist
codes such that with increasing encoding length
the probability of error on a discrete memory
less channel can be made arbitrarily small,
provided that the code rate is smaller than the
channel capacity. The code rate is defined as the
fraction k/n of k source symbols and n encoded
symbols. Some simple codes can detect but not
correct errors; others can detect and correct one
or more errors.

2.1 Parity Checking

Parity checking is the simple way to
detect errors, but this simple check does have
two limitations: it only detects errors, without
being able to correct them; and it can’t detect
errors that invert an even number of bits.

2.2 Hamming Codes

 Hamming codes are an extension of parity
checking method that can be used to detect and
correct a larger set of errors. Hamming’s
development is a very direct construction of a
code that permits correcting single-bit errors.

Let us assume that the data to be transmitted
consists of a certain number of information bits
u and added them to a number of check bits p
such that if a block is received that has at most
one bit in error, then p identifies the bit that is in
error (which may be one of the check bits).
Specifically, in Hamming’s code p is interpreted
as an integer which is 0 if no error occurred, and
otherwise is the 1-origined index of the bit that
is in error. Let k be the number of information
bits, and m the number of check bits used.
Because the m check bits must check themselves
as well as the information bits. Because m bits
can distinguish cases, we must have

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 437

12 ++≥ kmm (1)

 Equation (1) applies to any single error
correcting (SEC) binary FEC block code in
which all of the transmitted bits must be
checked. The check bits will be interspersed
among the information bits in a manner
described below. Because p indexes the bit (if
any) that is in error, the least significant bit of p
must be 1 if the erroneous bit is in an odd
position, and 0 if it is in an even position or if
there is no error. A simple way to achieve this is
to let the least significant bit of p, be an even
parity checks on the odd positions of the block,
and to put in an odd position. The receiver then
checks the parity of the odd positions. If the
result is 1, an error has occurred in an odd
position, and if the result is 0, either no error
occurred or an error occurred in an even
position. This satisfies the condition that p
should be the index of the erroneous bit, or be 0
if no error occurred.

 Similarly, let the next from least significant
bit of p, be an even parity check of positions 2,
3, 6, 7, 10, 11, … (in binary, 10, 11, 110, 111,
1010, 1011, …), and put in one of these
positions. Those positions have a 1 in their
second from least significant binary position
number. The receiver checks the parity of these
positions. If the result is 1, an error occurred in
one of those positions, and if the result is 0,
either no error occurred or an error occurred in
some other position. Continuing, the third from
least significant check bit, , is made an even
parity check on those positions that have a 1 in
their third from least significant position
number, namely positions 4, 5, 6, 7, 12, 13, 14,
15, 20, …, and is put in one of those positions.

 Putting the check bits in power-of-two
positions (1, 2, 4, 8 …) has the advantage that
they are independent. That is, the sender can
compute independently and more generally, it
can compute each check bit independently of the
others.

This code is called the (7, 4) Hamming code,
which signifies that the code length is 7 and the
number of information bits is 4. The positions of
the check bits and the information bits are
shown below.

 1 2 3 4 5 6 7

2.3 Reed-Solomon Codes

Reed-Solomon codes were developed in
1960 by Irving S. Reed and Gustavo Solomon,
who were then members of MIT Lincoln
Laboratory. Their seminal article was entitled
"Polynomial Codes over Certain Finite Fields."
(Reed & Solomon 1960) When the article was
written, an efficient decoding algorithm was not
known Reedsolomn code [17, 18]. A solution for
the latter was found in 1969 by Elwy Berlekamp
and James Massey, and is since known as the
Berlekamp-Massey decoding algorithm. In
1977, RS codes were notably implemented in
the Voyager program in the form of
concatenated codes. The first commercial
application in mass-produced consumer products
appeared in 1982 with the compact disc, where
two interleaved RS codes are used. The
parameters of a Reed-Solomon code are:

m = the number of bits per symbol
n = the block length in symbols
k = the uncoded message length in symbols
(n-k) = the parity check symbols (check bytes)
t = the number of correctable symbol errors
(n-k)=2t (for n-k even)
(n-k)-1 = 2t (for n-k odd)
Therefore, an RS code may be described as an
(n, k) code for any RS code.

Consider the RS (255,235) code, the encoder
groups the message into 235 8-bit symbols and
adds 20 8-bit symbols of redundancy to give a
total block length of 255 8-bit symbols. In this
case, 8% of the transmitted message is
redundant data. In general, due to decoder
constraints, the block length cannot be arbitrarily
large.

The Hamming and Hsiao codes, for example
have low encoding and decoding complexity,
but also have relatively low error- correcting
capacity (e.g., Hamming is single error-
correcting, double error-detecting). To achieve
higher error- correcting capability, codes like
Reed Solomon or BCH require more
sophisticated decoding algorithms.

2.4 LDPC Codes

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 438

 Low-density parity-check (LDPC)
codes were first discovered by Gallagher in the
early 1960s and have recently been rediscovered
and generalized .It has been shown that these
codes achieve a remarkable performance with
iterative decoding that is very close to the
Shannon limit. Consequently, these codes have
become strong competitors to turbo codes for
error control in many communication systems
and digital systems where high reliability is
required.

LDPC codes can be constructed using
random or deterministic approaches. In this
report, we focus on a class of LDPC codes
known as Euclidean Geometric (EG) LDPC
codes, which are constructed deterministically
using the points and lines of a Euclidean
geometry [1, 16]. The EG LDPC codes that we
consider are cyclic and consequently their
encoding can be efficiently implemented with
linear shift registers. Minimum distances for EG
codes are also reasonably good and can be
derived analytically. Iteratively decoded EG
LDPC codes also seem to not have the serious
error- floors that plague randomly-constructed
LDPC codes; this fact can be explained by the
observation made in that EG LDPC codes do not
have pseudo-code words of weight smaller than
their minimum distance. For these reasons, EG
LDPC codes are good candidates for use in
applications like optical communications that
require very fast encoders and decoders and very
low bit error-rates.

 However combinational logic has already
started showing susceptibility to soft errors, and
therefore the encoder and decoder (corrector)
units will no longer be immune from the
transient faults. Therefore, protecting the
memory system support logic implementation is
more important. Here we proposed a lossless
system which detect the errors and correct the
errors on 32bit input at a time to maintain the 32
bit processor with error free. Generally the
errors occur in the memory is due to redundancy
information .So if we remove the redundancy
obviously the error prone will be reduced. In this
project based on the proposed technique error
free data oriented architecture is developed to
encode and to decode the information.

With the increase in silicon densities, it is
becoming feasible for multiple compression
systems to be implemented in parallel onto a
single chip. A 32-BITsystem with distributed
memory architecture is based on having multiple
data compression and decompression engines
working independently on different data at the
same time. This data is stored in memory
distributed to each processor. The objective
of the project is to design a lossless parallel data
compression system which operates in high-
speed to achieve high compression rate. By
using Parallel architecture of compressors, the
data compression rates are significantly
improved. Also inherent scalability of parallel
architecture is possible. The main parts of the
system are the two Xmatchpro based data
compressors in parallel and the control blocks
providing control signals for the Data
compressors, allowing appropriate control of the
routing of data into the system.

 Each Data compressor can process four
bytes of data into and from a block of data every
clock cycle. The data entering the system needs
to be clocked in at a rate of 4n bytes every clock
cycle, where n is the number of compressors in
the system. This is to ensure that adequate data
is present for all compressors to process rather
than being in an idle state.

3. METHODOLOGY

A second Lempel-Ziv method used a
content addressable memory (CAM) capable
of performing a complete dictionary search
in one clock cycle. The search for the most
common string in the dictionary (normally,
the most computationally expensive
operation in the Lempel-Ziv algorithm) can
be performed by the CAM in a single clock
cycle, while the systolic array method uses a
much slower deep pipelining technique to
implement its dictionary search. However,
compared to the CAM solution, the systolic
array method has advantages in terms of
reduced hardware costs and lower power
consumption, which may be more important

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 439

criteria in some situations than having faster
dictionary searching. In the authors show
that hardware main memory data
compression is both feasible and
worthwhile. The authors also describe the
design and implementation of a novel
compression method, the XMatchPro
algorithm. Its exhibit the substantial impact
such memory compression has on overall
system performance.

The adaptation of compression code for
parallel implementation is investigated by
Jiang and Jones. They recommended the use
of a processing array arranged in a tree-like
structure. Although compression can be
implemented in this manner, the
implementation of the decompressor’s
search and decode stages in parallel
hardware would greatly increase the
complexity of the design and it is likely that
these aspects would need to be implemented
sequentially. Although little research has
been performed on architectures involving
several independent compression units
working in a concurrent cooperative manner,
IBM has introduced the MXT chip, which
has four independent compression engines
operating on a shared memory area. The
four Lempel-Ziv compression engines are
used to provide data throughput sufficient
for memory compression in computer
servers.

Adaptation of software compression
algorithms to make use of multiple CPU
systems was demonstrated by research of
Penhorn and Simpson and Sabharwal.
Penhorn used two CPUs to compress data
using a technique based on the Lempel-Ziv
algorithm and showed that useful
compression rate improvements can be
achieved, but only at the cost of increasing
the learning time for the dictionary. Simpson
and Sabharwal described the software
implementation of compression system for a
multiprocessor system based on the parallel

architecture developed by Gonzalez and
Smith and Store.

3.1 Statistical Methods

 Statistical Modeling of lossless data
compression system is based on assigning values
to events depending on their probability. The
higher the value, the higher the probability. The
accuracy with which this frequency distribution
reflects reality determines the efficiency of the
model. In Markov modeling, predictions are
done based on the symbols that precede the
current symbol.

3.2 Dictionary Methods

Dictionary Methods try to replace a symbol
or group of symbols by a dictionary location
code. Some dictionary-based techniques use
simple uniform binary codes to process the
information supplied. Both software and
hardware based dictionary models achieve good
throughput and competitive compression. The
UNIX utility ‘compress’ uses Lempel-Ziv-2
(LZ2) algorithm and the data compression
Lempel-Ziv (DCLZ) family of compressors
initially invented by Hewlett- Packard[16] and
currently being developed by AHA[17],[18] . It
uses a tag attached to each dictionary location to
identify which node should be eliminated once
the dictionary becomes full.

3.3. XMATCHPRO Based System

The Lossless data compression system is
derivative of the XMatchPro Algorithm of the
previous methods are overcome by using the
XmatchPro algorithm in design. The objective is
then to obtain better compression ratios and still
maintain a high throughput so that the
compression/decompression processes do not
slow the original system down. The flexibility
provided by using this technology is of great
interest since the chip can be adapted to the
requirements of a particular application easily.

3.4 Proposed Method

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 440

In it discusses about the Parallel Algorithm
that can be implemented for High Speed Data
Compression. The authors gives the basic idea
about how the Data Compression is carried out
using the Lempel-Ziv Algorithm and how it
could be altered for Parallelism of the algorithm.
It describes the Lempel-Ziv algorithm as a very
efficient universal data compression technique,
based upon an incremental parsing technique,
which maintains codebooks of parsed phrases at
the transmitter and at the receiver. An important
feature of the algorithm is that it is not necessary
to determine a model of the source.

4. ALGORITHM

The Lossless Parallel Data Compression
system designed uses the XMatchPro Algorithm.
The XMatchPro algorithm uses a fixed-width
dictionary of previously seen data and attempts
to match the current data element with a match
in the dictionary. It works by taking a 4-byte
word and trying to match or partially match this
word with past data. This past data is stored in a
dictionary, which is constructed from a content
addressable memory. As each entry is 4 bytes
wide, several types of matches are possible. If
all the bytes do not match with any data present
in the dictionary they are transmitted with an
additional miss bit. If all the bytes are matched
then the match location and match type is coded
and transmitted, this match is then moved to the
front of the dictionary.

The dictionary is maintained using a move
to front strategy whereby a new tuple is placed
at the front of the dictionary while the rest move
down one position. When the dictionary
becomes full the tuple placed in the last position
is discarded leaving space for a new one. The
coding function for a match is required to code
several fields as follows:
A zero followed by:
 1) Match location: It uses the binary code
associated to the matching location.
 2) Match type: Indicates which bytes of the
incoming tuple have matched.
 3) Characters that did not match transmitted in
literal form.

With the increase in silicon densities, it is
becoming feasible for multiple XMatchPros to

be implemented in parallel onto a single chip. A
parallel system with distributed memory
architecture is based on having multiple data
compression and decompression engines
working independently on different data at the
same time.

A description of the XMatchPro algorithm
in pseudo-code is given in the below.
Clear the dictionary;
Set the next free location (NFL) to 0;
Do
{
read in a tuple T from the data stream;
search the dictionary for tuple T;
IF (full or partial hit)
{
determine the best match location ML and match
type MT;
output ‘0’;
output any required literal characters of T;
}
ELSE
{ output ‘1’;
 output tuple T;
}
IF (full hit)
{
move dictionary entries 0 to ML -1 down by one
location;
}
ELSE
{
move all dictionary entries down by one
location;
increment NFL (if dictionary is not full);
}
copy tuple T to dictionary location 0;
}
WHILE (more data is to be compressed);

This data is stored in memory distributed to
each processor. There are several approaches in
which data can be routed to and from the
compressors that will affect the speed,
compression and complexity of the system.
Lossless compression removes redundant
information from the data while they are
transmitted or before they are stored in memory.
Lossless decompression reintroduces the
redundant information to recover fully the

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 441

original data. There are two important
contributions made by the current parallel
compression & decompression work, namely,
improved compression rates and the inherent
scalability.

Significant improvements in data
compression rates have been achieved by
sharing the computational requirement between
compressors without significantly compromising
the contribution made by individual
compressors. The scalability feature permits
future bandwidth or storage demands to be met
by adding additional compression engines.

4.1. XMATCHPRO Based Compression
System

The Research on the lossless XMatchPro
data compressor has been on optimizing and
implementing the XMatchPro algorithm for
speed, complexity and compression in hardware.
The XMatchPro algorithm uses a fixed width
dictionary of previously seen data and attempts
to match the current data element with a match
in the dictionary. It works by taking a 4-byte
word and trying to match this word with past
data. This past data is stored in a dictionary,
which is constructed from a content addressable
memory.

Fig.1 Conceptual view of CAM

Initially all the entries in the dictionary are
empty & 4-bytes are added to the front of the
dictionary, while the rest move one position
down if a full match has not occurred. The larger

the dictionary, the greater the number of address
bits needed to identify each memory location,
reducing compression performance. Since the
number of bits needed to code each location
address is a function of the dictionary size
greater compression is obtained in comparison
to the case where a fixed size dictionary uses
fixed address codes for a partially full
dictionary. In the parallel XMatchPro system,
the data stream to be compressed enters the
compression system, which is then partitioned
and routed to the compressors.

For parallel compression systems, it is
important to ensure all compressors are supplied
with sufficient data by managing the supply so
that neither stall conditions nor data overflow
occurs.

4.2. Content Addressable Memory

Dictionary based schemes copy repetitive or
redundant data into a lookup table (such as
CAM) and output the dictionary address as a
code to replace the data. The compression
architecture is based around a block of CAM to
realize the dictionary. This is necessary since the
search operation must be done in parallel in all
the entries in the dictionary to allow high and
data-independent throughput.

The number of bits in a CAM word is
usually large, with existing implementations
ranging from 36 to 144 bits. A typical CAM
employs a table size ranging between a few
hundred entries to 32K entries, corresponding to
an address space ranging from 7 bits to 15 bits.
The length of the CAM varies with three
possible values of 16, 32 or 64 tuples trading
complexity for compression. The no. of tuples
present in the dictionary has an important effect
on compression.

In principle, the larger the dictionary the
higher the probability of having a match and
improving compression. On the other hand, a
bigger dictionary uses more bits to code its
locations degrading compression when
processing small data blocks that only use a
fraction of the dictionary length available. The
width of the CAM is fixed with 4bytes/word
Content Addressable Memory (CAM) compares
input search data against a table of stored data,

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 442

and returns the address of the matching data.
CAMs have a single clock cycle throughput
making them faster than other hardware and
software-based search systems. The input to the
system is the search word that is broadcast onto
the search lines to the table of stored data. Each
stored word has a match line that indicates
whether the search word and stored word are
identical (the match case) or are different (a
mismatch case, or match).

The match lines are fed to an encoder that
generates a binary match location corresponding
to the match line that is in the match state. An
encoder is used in systems where only a single
match is expected. The overall function of a
CAM is to take a search word and return the
matching memory location.

4.3. Implementation of XMATCHPRO based
compressor

The block diagram gives the details about
the components of a single 32 bit Compressor.
There are three components namely,
COMPARATOR, Array, Content Addressable
Memory COMPARATOR. The comparator is
used to compare two 32-bit data and to set or
reset the output bit as 1 for equal and 0 for
unequal. The CAM COMPARATOR searches
the CAM dictionary entries for a full match of
the input data given. The reason for choosing a
full match is to get a prototype of the high
throughout Xmatchpro compressor with reduced
complexity and high performance. If a full
match occurs, the match-hit signal is generated
and the corresponding match location is given as
output by the CAM Comparator. If no full match
occurs, the corresponding data that is given as
input at the given time is given as output.

Fig.2 Diagram of 32-bit Compression

4.4. Description of Language used in source
code

Array is of length of 64X32 bit locations.
This is used to store the unmatched incoming
data and when a new data comes, the incoming
data is compared with all the data stored in this
array. If a match occurs, the corresponding
match location is sent as output else the
incoming data is stored in next free location of
the array & is sent as output. The last component
is the cam comparator and is used to send the
match location of the CAM dictionary as output
if a match has occurred. This is done by getting
match information as input from the comparator.

Suppose the output of the comparator goes
high for any input, the match is found and the
corresponding address is retrieved and sent as
output along with one bit to indicate that match
is found. At the same time, suppose no match
occurs, or no matched data is found, the
incoming data is stored in the array and it is sent
as the output. These are the functions of the
three components of the Compressor. The
hardware descriptions of these modules are done
using VHDL Language. VHDL is an acronym
for Very high-speed integrated circuits
Hardware Description Language. It can be used
to model a digital system at many levels of the
abstraction, ranging from the algorithmic level
to gate level.

The VHDL language can be regarded as an
integrated amalgamation of the following
languages:

Sequential language

Concurrent language

Net-list language

Timing specifications

Waveform generation language.

So the language has constructs that enable
you to express the concurrent or sequential
behavior of a digital system with or without
timing. It also allows modeling the system as an
inter-connection of components.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 443

5. DESIGN OF COMPRESSOR /
DECOMPRESSOR:

The block diagram gives the details about
the components of a single 32- bit compressor /
decompressor. The Same design approach is
used for designing a 64-bit
Compression/Decompression system which is
essentially used for comparison of increased
compression rates given by the 64-bit Lossless
Parallel High-Speed Data Compression System.
There are three components namely:

compressor

decompressor

control.

The compressor has the following components

comparator

array

cam comparator.

The comparator is used to compare two 32-
bit data and to set or reset the output bit as 1 for
equal and 0 for unequal. Array is of length of
64X32bit locations. This is used to store the
unmatched in coming data and when the next
new data comes, that data is compared with all
the data stored in this array. If the incoming data
matches with any of the data stored in array, the
Comparator generates a match signal and sends
it to Cam Comparator.

Fig.3 Block Diagram of 32 bit Compressor/
Decompressor

The last component is the CAM comparator
and is used to send the incoming data and all the
stored data in array one by one to the
comparator. Suppose output of comparator goes
high for any input, then the match is found and
the corresponding address (match based
compressor).

At the same time, suppose no match is
found, then the incoming data stored in the array
is sent as output. These are the functions of
Array, so it stores the data in the Array and if the
match hit data is 1, it indicates the data is present
in the Array, then it instructs to find the data
from the Array with the help of the address input
and sends as output to the data out location is
retrieved and sent as output along with the three
components of the XMatchPro.

The decompressor has the following
components – Array and Processing Unit. Array
has the same function as that of the array unit
used in the Compressor. It is also of the same
length. Processing unit checks the incoming
match hit data and if it is 0, it indicates that the
data is not present in the one bit to indicate the
match is found. The Control has the input bit
called C / D i.e., Compression / Decompression
indicates whether compression or
decompression has to be done. If it has the value
0 then compressor is stared when the value is 1
decompression is done.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 444

6. SIMULATION RESULTS

The design coded in VHDL is simulated
using Xilinx

The obtained waveforms are as follows

6.1. Comparator

 Fig.4 Comparator output waveform

6.2. CAM Comparator

 Fig.5 CAM Comparator output waveform

6.3. Data Compression

Fig.6 32-bit Single Compression output

waveform

6.4. De-Compression

 Fig.7 32 Bit Data decompression output
waveform

7. CONCLUSION

 In this paper we presented a method to
implement lossless data compression system
which operates at high-speed to achieve high
compression rate. By using architecture of
compressors, the data compression rates are
significantly improved and also inherent
scalability of parallel architecture is possible.
 The algorithm “XMATCHPRO merge”
used in this project is efficient at compressing
and the flexibility provided by using this
technology is of great interest, since the chip can
be adapted to the requirements of a particular
application easily.So by this the error prone in
the memory is reduced drastically.
8. REFERENCES

• IEEE transactions on very large scale
integration (vlsi) systems, vol. 20, no.
12, december 2012

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 445

• Navabi, Z., VHDL Analysis and
Modeling of Digital Systems,McGraw
Hill, 1993

• B. Yuan, Z.Wang, L. Li,M. Gao, J. Sha,
and C. Zhang, “Area-efficient Reed-
Solomon decoder design for optical
communications,” IEEE Trans. Circuits
Syst. II, Expr. Briefs, vol. 56, no. 6, pp.
469–474, Jun. 2009.

• Bhasker.J., VHDL PRIMER, Addison
Wesely Longman Singapore Pte.Ltd.
LPE,2000.

• H. Lee, “High-speed VLSI architecture
for parallel Reed-Solomon

decoder,”IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 11, no.2, pp.
288–295, Apr. 2003.

• S. Gregori, A. Cabrini, O. Khouri, and
G. Torelli, “On-chip error correcting
techniques for new-generation flash
memories,” Proc. IEEE, vol. 91, no. 4,
pp. 602–616, Apr. 2003.

• C. Yang, Y. Emre, and C. Chaitali,
“Flexible product code-based ECC
schemes for MLC NAND flash
memories,” in Proc. IEEE Workshop
Signal Process. Syst. (SiPS), 2011.

