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Abstract 

This paper presents non-linear deformation behaviour of compressible spherical shell examined under 

pressure by using Seth’s transition theory. The purpose of the paper   is to present the study of elastic -

plastic stress analysis in a spherical shell under the combined effect of compressibility and temperature. 

The solution of the problem has been obtained by using the concept of generalized strain measures and 

Seth's transition theory. The radial and hoop stresses are calculated under the effect of pressure and 

compressibility factor. Results have been discussed numerically & discussed graphically. 
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1.  INTRODUCTION 

The problem of flow of an absolutely rigid sphere by the viscous incompressible fluid has been 

solved by Stokes in 1851. He used the approximate method of neglecting inertial terms and 

exterior forces in the basic equations of motion. In the books by Kochin et al. (1965) and Landau 

et al. (1987) containing the classical solution of such problem, the surface strains are not 

considered, and the fluid motion is carried out at low Reynolds numbers. Analysis & design of 

shells are very significant for various engineering applications. Due to continuously interest of 

the engineering community in the shells, the elastic - plastic behaviour of shells has been very 

closely studied by various authors. The problem of elastic - plastic transition in transversely 

isotropic shells under uniform pressure has been solved by Hill[5], Johnson [7] et al in the theory 

of plasticity. The elastic solution of the problem has been obtained in the elastic range and then 

derived the stresses at fully plastic state using Tresca' yield condition. In 1963, Seth[8] has 
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discussed the concept of elastic - plastic transition in shells without using adhoc  assumptions 

and explained that the transition takes place is non- linear in nature , where as classical model  

does not explained non -linearity of transition state. B. R. Seth worked on problem of elastic-

plastic transition in shells and tubes under Pressure. Seth obtained elastic‐plastic transition in 

paper with the help of a semi‐empirical yield condition like that of Tresca or Von Mises. The 

stresses are calculated from the elastic solution and then used in the yield condition to get the 

transition surface. The possibility of treating it as a transition or turning point phenomenon in 

finite deformation has not been explored. When the plastic state tends to set in, the stress strain 

relations undergo a change.  Seth has obtained the results for fully plastic state by using the 

theory of finite deformation. S. Hulsurkar (1966) discussed on creep transition theory of 

spherical shell. Seth's transition theory of creep neither uses the creep laws nor the yield criteria 

and the associated flow rules. It has been used to find the creep stresses in shells under uniform 

internal pressure by defining various transition functions when the steady state of creep has been 

achieved. Hulsurkar found that the transition points may be multiple points and these can be used 

to find either plastic or creep stresses depending upon the transition functions. This theory can be 

also applicable to the primary and tertiary stages of creep. 

 Here in this current literature, the elastic plastic transition problem for spherical shells under 

internal pressure is solved using the concept of generalized measures. The  results obtained agree 

with the Seth [8] for n=2. Therefore, the concept of generalized measures has been successfully 

applied to large number of problems [1-5]. Seth [9] has defined the concept of generalized strain 

measures as                

                                          𝑒𝑖𝑖 = ∫ [1 − 2𝑒𝑖𝑖
𝐴 ]

𝑛−2

2 𝑑𝑒𝑖𝑖
𝐴 =

1

𝑛

𝑒𝑖𝑖
𝐴

0
[1 − (1 − 2𝑒𝑖𝑖

𝐴)
𝑛

2 ,  i=1,2,3                     (1)    

where n is the measure & 𝑒𝑖𝑖
𝐴  is the almansi finite strain components.  

In this paper, the analysis of the elastic - plastic transition in shell is done by concept of 

generalized measures and Seth' transition theory. Results have been discussed numerically & 

discussed graphically. 

                                              

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 

International Journal of Research Available 

a t https ://edupedi a publ i c a ti ons .org/j ourna l s  

p-I SSN: 2348 -6848   

e-I SSN: 23 48-795X  
Vol ume 0 4  I s s ue 08   

Jul y 2017 

   
 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 1378   
 

  

    

                                                        2. GOVERNING EQAUTIONS 

We consider a spherical shell of constant thickness under internal pressure. Due to the symmetry 

in the elastic properties, the displacement is purely radial. Therefore, we take the displacements 

in spherical coordinates (𝑟,𝜃, 𝜙) as   

u = r(1−β) , v = 0 , w = 0 where β is function of  r = √𝑥2 + 𝑦2 + 𝑧2                                          (2) 

 The strain components for finite deformation are given as 

𝑒𝑟𝑟
𝐴  = 

1

2
 [ 1−(𝑟 𝛽′ + 𝛽)2]    , 𝑒𝜃𝜃

𝐴  = 𝑒𝜑𝜑
𝐴 =

1

2
(1 − 𝛽2 ) 

𝑒𝑟𝜃   
𝐴 = 𝑒𝜃𝜑  

𝐴 = 𝑒𝑟𝜑 
𝐴 =  0                                                                                                               (3) 

where 𝛽′ =  
𝑑𝛽

𝑑𝑟
 

Substituting equation (3) in equation (1) , the generalized components of the strain are 

𝑒𝑟𝑟= 
1

2
 [ 1−(𝑟 𝛽′ + 𝛽)𝑛]  , 𝑒𝜃𝜃

𝐴  = 𝑒𝜑𝜑
𝐴 =

1

2
(1 − 𝛽𝑛 )                                                                    (4) 

𝑒𝑟𝜃   
𝐴 = 𝑒𝜃𝜑  

𝐴 = 𝑒𝑟𝜑 
𝐴 =  0                                                                                                               

The stress - strain relations for isotropic material are given by[11]  

𝑇𝑖𝑗 = 𝜆𝛿𝑖𝑗𝐼1 + 2𝜇𝑒𝑖𝑗  ,   (𝑖, 𝑗 = 1,2,3)                                                                                         (5) 

where 𝜆 and 𝜇 are lame's constants and 𝐼1 =𝑒𝑘𝑘  is called first strain invariant. 

Using equation (4) in (5), the corresponding stresses are given as 

𝑇𝑟𝑟 =
𝜆+2𝜇

𝑛
[1 − (𝑟 𝛽′ + 𝛽)𝑛] + 

2𝜆

𝑛
 (1 − 𝛽𝑛)  

𝑇𝜃𝜃 = 𝑇𝜑𝜑 = 
𝜆

𝑛
[1 − (𝑟 𝛽′ + 𝛽)𝑛] + 

2𝜆+2𝜇

𝑛
 (1 − 𝛽𝑛)                                                                     (6) 
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𝑇𝑟𝜃 = 𝑇𝜃𝜑 = 𝑇𝑟𝜑 = 0                                                                                                                    

The equations of equilibrium are all satisfied except 

  
𝜕𝜏𝑟𝑟

𝜕𝑟
   +     

2(𝜏𝑟𝑟− 𝜏𝜃𝜃)

𝑟
= 0                                                                                                               (7) 

Using equation (6) in (7) , we get the non - linear differential equation in 𝛽 as 

    
𝜆+2𝜇

𝑛
[1 − (𝑟 𝛽′ + 𝛽)𝑛 ] + 

2𝜆

𝑛
 (1 − 𝛽𝑛) +

4𝜇

𝑛
 ∫

𝛽𝑛 −(𝑟 𝛽′+𝛽)
𝑛

 

𝑟
𝑑𝑟 = k                                           (8)      

where k is constant 

Put  𝑐 =  2𝜇 𝜆 + 2𝜇⁄   =  (1 − 2𝜎) 1 − 𝜎⁄       , r 𝛽′ =  𝛽P          

 and differentiating (8) with respect to r , we get equation as 

𝑑𝛽

𝑑𝑃
[(1 + 𝑃)𝑛 +  2(1 − 𝑐) −

2𝑐(1 − (1 + 𝑃)𝑛)

𝑛𝑃
] +  𝛽 (1 + 𝑃)𝑛−1 = 0                                         (9) 

Turning points of  𝛽 from equation (9)  are 𝑃 → 1 𝑎𝑛𝑑 𝑃 →  ±∞.  

:  The boundary conditions of the problem are given as  

    𝑇𝑟𝑟  =  −𝑝   at r = a and  𝑇𝑟𝑟 = 0    at r = b 
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Figure1: Geometry of spherical shell under internal pressure 

 

3. DETERMINATION OF PLASTIC STRESESS THROUGH THE PRINCIPAL STRESS 

In these types of problems, the solution of the problem depends upon the nature of the problem. 

If the problem is based on elastic-plastic transition then we define the transition function through 

principal stress. If problem deals with the creep behaviour of solid, then we define transition 

function through principal stress difference. In order to find the plastic stress, the transition 

function is defined using the principal stress as taken by Seth [8], Gupta et al. [1-5] at the 

transition point 𝑃 →  ±∞. Define the transition function as  

𝑅 = 1 −
𝑛𝑇𝑟𝑟

3𝜆 + 2𝜇
=  

𝛽𝑛

3 − 2𝑐
[(1 + 𝑃)𝑛 +  2(1 − 𝑐)]                                                                        (10) 

 

Taking the logarithmic differentiation of equation (10) with respect to r and using equation (9), 

we get  

 
𝑑𝑙𝑜𝑔𝑅

𝑑𝑟
=  

2𝑐 [1 − (1 + 𝑃)𝑛]

𝑟[(1 + 𝑃)𝑛 +  2(1 − 𝑐)]
                                                                                                    (11)   
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Taking the asymptotic value of equation (11) at  𝑃 →  ±∞  and integrating, we get 

𝑅 =  𝐴0𝑟−2𝑐                                                                                                                                 (12) 

where  𝐴0 is a constant of integration , which can be determined by boundary condition. From 

equation (10) , we have the transition value of 𝑇𝑟𝑟  is 

𝑇𝑟𝑟 =
2𝜇 (3−2𝑐)

𝑛𝑐
 [1 − 𝐴0 𝑟−2𝑐 ]                                                                                                      (13) 

The value of E in the transition range is given by Seth [10] 

𝑌 =
𝐸

𝑛
=  

2𝜇(1+𝜎)

𝑛
 =

2𝜇  (3−2𝑐)

𝑛(2−𝑐)
                                                                                                      (14)      

Using equation (14) in (13), we have  

              𝑇𝑟𝑟 =
𝑌 (2−𝑐)

𝑐
 [1 − 𝐴0𝑟−2𝑐]                                                                                           (15) 

Applying boundary condition,  𝑇𝑟𝑟 = 0    at r = b and using equation (7) 

                      𝑇𝑟𝑟 =
𝑌 (2−𝑐)

𝑐
 [1 − (

𝑏

𝑟
)2𝑐]     ,     𝑇𝜃𝜃 − 𝑇𝑟𝑟 =  𝑌(2 − 𝑐)(𝑏/𝑟)2𝑐                          (16) 

For initial yielding,   | 𝑇𝜃𝜃 −  𝑇𝑟𝑟  |  is maximum at r = a. Therefore yielding will start at the 

internal surface of the sphere. 

     | 𝑇𝜃𝜃 −  𝑇𝑟𝑟  |r = a  =  𝑌(2 − 𝑐)(𝑏/𝑎)2𝑐                          

By boundary condition  𝑇𝑟𝑟  =  −𝑝   at r = a in equation (16). Therefore pressure required to start 

initial yielding. 

𝑝𝑖 =  
𝑌(2 − 𝑐)

𝑐
 [(

𝑏

𝑎
)

2𝑐

−  1 ]                                                                                                                (17) 

The results obtained are same as given by Seth [8]. 

Fully plastic state:- 
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In order to find fully plastic state, we make c→0 at the external surface r = b and equation (16) 

and (17) become. 

  𝑇𝑟𝑟 = 4𝑌 log 
𝑟

𝑏
 ,   |𝑇𝜃𝜃 −  𝑇𝑟𝑟|  =  2𝑌                                                                                       (18) 

Pressure required for attaining the fully plastic state is given as 

𝑝𝑓 =  4𝑌 log 
𝑏

𝑎
                                                                                                                            (19) 

which is twice the result given by Hill [5]. 

Further we introduce the non-dimensional components as 

R = r/b,  𝑅𝑜  = a/b, 𝜎𝑟 = 𝑇𝑟𝑟/Y,  𝜎𝑟 = 𝑇𝜃𝜃/Y,  𝑝∗ = 𝑝𝑖/Y, 𝑝∗ = 𝑝𝑓 /Y   

Therefore, Elastic-plastic stresses and pressure from equation (16) and (17) is given as 

                 𝜎𝑟 =
2−𝑐

𝑐
[1 − (

𝑏

𝑟
)2𝑐]     ,     𝜎𝜃 − 𝜎𝑟 = (2 − 𝑐)(𝑏/𝑟)2𝑐  

Pressure required for initial yielding is given  𝑝𝑖
∗ =  

(2−𝑐)

𝑐
 [(

𝑏

𝑎
)

2𝑐

−  1 ]                                (20) 

And for fully plastic state, stresses and pressure is given as  

𝜎𝑟  = 4 log 
𝑟

𝑏
 ,     𝜎𝜃 −  𝜎𝑟 =  2 ,      𝑝𝑓

∗ =  4𝑌 log 
𝑏

𝑎
                                                             (21)                                                                                                                                                                                                                                            

Calculation of pressure: 

By using the above results, we can find the pressure required for initial yielding in shells for 

various materials having compressibility and incompressibility. 

Table 1: 

Pressure required for initial yielding with various compressibility factor 

Compressibility C=0 C=0.25 C=0.50 C=0.75 

𝑅𝑜                                                          Pressure 
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            0.1 4.0000 15.1359 27.0000 51.14 

            0.2 2.7958 8.6524 12.0000 17.001 

            0.3 2.0897 5.7801 7.0000 8.478 

            0.4 1.5917 4.0679 4.5000 4.931 

            0.5 1.2041 2.8994 3.0000 3.0534 

   

4.  Results and Discussion 

In Table 1, pressure is calculated along various radii ratios  𝑅𝑜  = a/b for C=0, C=0.25 , C=0.5 , 

C=0.75. It has observed that pressure required for initial yielding at the internal surface is more 

than pressure at external surface. In figure 2, stresses are shown graphically along the radii ratio 

of spherical shell for compressible as well as in compressible materials. It is seen that 

circumferential stresses has maximum value at the internal surface as well as external surface of 

the spherical shell as compared to the radial stresses. It is also observed that the value of radial 

stresses lie between -1 to 0 due to boundary condition of the problem. The effect of pressure is 

seen on the stresses occurred in spherical shell made up of different materials. With increase in 

pressure, the stresses on the internal surface of the shell for compressible materials lead to 

damage of the spherical shell. 

5. Conclusion 

It can be concluded that spherical shell made up of incompressible material is on safer side of 

design as compared to spherical shell made up of compressible material under the effect of 

uniform internal pressure. 
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(b ) 

 

(c) 

Figure 2. Stress distribution in spherical shell on dependence on compressibility and pressure 
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