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ABSTRACT 

The power of vector processors comes from their 

ability to process several elements at once (applying 

the same operations to all elements in a short vector). 

This, combined with the standard processor 

techniques of independent processing units 

(load/store, integer, float, vector) running in parallel, 

and pipelined units processing several instructions 

simultaneously (sequentially up to the instruction 

latency) make it possible to process multiple data 

elements per clock cycle. Achieving this in practice is 

far from easy and requires an in-depth knowledge of 

the processor and a detailed analysis and 

understanding of the algorithm. For large datasets 

memory management is also an issue: a processor 

waiting for data is not producing results. This paper 

deals with history and examples of vector processors 

and also helps to enlighten about the concept of 

VECTOR PROCESSOR. 

1) INTRODUCTION 

A vector processor is a processor that can operate on 

entire vectors with one instruction, i.e. the operands 

of some instructions specify complete vectors. For 

example, consider the following add instruction:  

C = A + B 

In both scalar and vector machines this means ``add 

the contents of A to the contents of B and put the sum 

in C.'' In a scalar machine the operands are numbers, 

but in vector processors the operands are vectors and 

the instruction directs the machine to compute the 

pairwise sum of each pair of vector elements. A 

processor register, usually called the vector length 

register, tells the processor how many individual 

additions to perform when it adds the vectors.  

A vectorizing compiler is a compiler that will try to 

recognize when loops can be transformed into single 

vector instructions. For example, the following loop 

can be executed by a single instruction on a vector 

processor:  

         DO 10 I=1,N 

A(I) = B(I) + C(I) 

10       CONTINUE 

This code would be translated into an instruction that 

would set the vector length to N followed by a vector 

add instruction.  

The use of vector instructions pays off in two 

different ways. First, the machine has to fetch and 

decode far fewer instructions, so the control unit 

overhead is greatly reduced and the memory 

bandwidth necessary to perform this sequence of 

operations is reduced a corresponding amount. The 

second payoff, equally important, is that the 

instruction provides the processor with a regular 

source of data. When the vector instruction is 

initiated, the machine knows it will have to fetch 

pairs of operands which are arranged in a regular 

pattern in memory. Thus the processor can tell the 

memory system to start sending those pairs. With an 

interleaved memory, the pairs will arrive at a rate of 

one per cycle, at which point they can be routed 

directly to a pipelined data unit for processing. 

Without an interleaved memory or some other way of 

providing operands at a high rate the advantages of 

processing an entire vector with a single instruction 

would be greatly reduced.  

A key division of vector processors arises from the 

way the instructions access their operands. In the 

memory to memory organization the operands are 

fetched from memory and routed directly to the 

functional unit. Results are streamed back out to 

memory as the operation proceeds. In the register to 

register organization operands are first loaded into a 

set of vector registers, each of which can hold a 

segment of a register, for example 64 elements. The 

vector operation then proceeds by fetching the 
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operands from the vector registers and returning the 

results to a vector register.  

The advantage of memory to memory machines is the 

ability to process very long vectors, whereas register 

to register machines must break long vectors into 

fixed length segments. Unfortunately, this flexibility 

is offset by a relatively large overhead known as the 

startup time, which is the time between the 

initialization of the instruction and the time the first 

result emerges from the pipeline. The long startup 

time on a memory to memory machine is a function 

of memory latency, which is longer than the time it 

takes to access a value in an internal register. Once 

the pipeline is full, however, a result is produced 

every cycle or perhaps every other cycle. Thus a 

performance model for a vector processor is of the 

form  

 

where is the startup time, is the length of the 

vector and is an instruction dependent constant, 

usually , 1 or 2.  

Examples of this type of architecture include the 

Texas Instruments Inc. Advanced Scientific 

Computer and a family of machines built by Control 

Data Corp. known first as the Cyber 200 series and 

later the ETA-10 when Control Data Corp. founded a 

separate company known as ETA Systems Inc. These 

machines appeared in the mid-1970s after a long 

development cycle that left them with dated 

technology and disappeared in the mid-1980s. For a 

thorough discussion of their characteristics, see 

Hockney and Jesshope. One of the major reasons for 

their demise was the large startup time, which was on 

the order of 100 processor cycles. This meant that 

short vector operations were very inefficient, and 

even for vectors of length 100 the machines were 

delivering only about half their maximum 

performance. In a later section we will see how this 

vector length that yields half of peak performance is 

used to characterize vector computers.  

In the register to register machines the vectors have a 

relatively short length, 64 in the case of the Cray 

family, but the startup time is far less than on the 

memory to memory machines. Thus these machines 

are much more efficient for operations involving 

short vectors, but for long vector operations the 

vector registers must loaded with each segment 

before the operation can continue. Register to register 

machines now dominate the vector computer market, 

with a number of offerings from Cray Research Inc., 

including the Y-MP and the C-90. The approach is 

also the basis for machines from Fujitsu, Hitachi and 

NEC. Clock cycles on modern vector processors 

range from 2.5ns (NEC SX-3) to 4.2ns (Cray C90), 

and single processor performance on LINPACK 

benchmarks is in the range of 1000 to 2000 MFLOPS 

(1 to 2 GFLOPS).  

The basic processor architecture of the Cray 

supercomputers has changed little since the Cray-1 

was introduced in 1976. There are 8 vector registers, 

named V0 through V7, which each hold 64 64-bit 

words. There are also 8 scalar registers, which hold 

single 64-bit words, and 8 address registers (for 

pointers) that have 20-bit words. Instead of a cache, 

these machines have a set of backup registers for the 

scalar and address registers; transfer to and from the 

backup registers is done under program control, 

rather than by lower level hardware using dynamic 

memory referencing patterns.  

The original Cray-1 had 12 pipelined data processing 

units; newer Cray systems have 14. There are 

separate pipelines for addition, multiplication, 

computing reciprocals (to divide by , a Cray 

computes ), and logical operations. 

The cycle time of the data processing pipelines is 

carefully matched to the memory cycle times. The 

memory system delivers one value per clock cycle 

through the use of 4-way interleaved memory.  

An interesting feature introduced in the Cray 

computers is the notion of vector chaining. Consider 

the following two vector instructions:  

          V2 = V0 * V1 

          V4 = V2 + V3 

The output of the first instruction is one of the 

operands of the second instruction. Recall that since 

these are vector instructions, the first instruction will 

route up to 64 pairs of numbers to a pipelined 

multiplier. About midway through the execution of 

this instruction, the machine will be in an interesting 

state: the first few elements of V2 will contain 

recently computed products; the products that will 

eventually go into the next elements of V2 are still in 

the multiplier pipeline; and the remainder of the 

operands are still in V0 and V1, waiting to be fetched 

http://www.phy.ornl.gov/csep/ca/node24.html
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and routed to the pipeline. This situation is shown in 

Figure 16, where the operands from V0 and V1 that 

are currently in the multiplier pipeline are indicated 

by gray cells. At this point, the system is fetching 

V0[k] and V1[k] to route them to the first stage of the 

pipeline and V2[j] is just leaving the pipeline. Vector 

chaining relies on the path marked with an asterisk. 

While V2[j] is being stored in the vector register, it is 

also routed directly to the pipelined adder, where it is 

matched with V3[j]. As the figure shows, the second 

instruction can begin even before the first finished, 

and while both are executing the machine is 

producing two results per cycle (V4[i] and V2[j]) 

instead of just one.  

Without vector chaining, the peak performance of the 

Cray-1 would have been 80 MFLOPS (one full 

pipeline producing a result every 12.5ns, or 

80,000,000 results per second). With three pipelines 

chained together, there is a very short burst of time 

where all three are producing results, for a theoretical 

peak performance of 240 MFLOPS. In principle 

vector chaining could be implemented in a memory-

to-memory vector processor, but it would require 

much higher memory bandwidth to do so. Without 

chaining, three ``channels'' must be used to fetch two 

input operand streams and store one result stream; 

with chaining, five channels would be needed for 

three inputs and two outputs. Thus the ability to chain 

operations together to double performance gave 

register- to-register designs another competitive edge 

over memory-to- memory designs.  

2) HISTORY 

2.1) EARLY WORK 

Vector processing development began in the early 

1960s at Westinghouse in their Solomon project. 

Solomon's goal was to dramatically increase math 

performance by using a large number of simple math 

co-processors under the control of a single master 

CPU. The CPU fed a single common instruction to all 

of the arithmetic logic units (ALUs), one per "cycle", 

but with a different data point for each one to work 

on. This allowed the Solomon machine to apply a 

single algorithm to a large data set, fed in the form of 

an array. 

In 1962, Westinghouse cancelled the project, but the 

effort was restarted at the University of Illinois as the 

ILLIAC IV. Their version of the design originally 

called for a 1 GFLOPS machine with 256 ALUs, but, 

when it was finally delivered in 1972, it had only 64 

ALUs and could reach only 100 to 150 MFLOPS. 

Nevertheless it showed that the basic concept was 

sound, and, when used on data-intensive applications, 

such as computational fluid dynamics, the "failed" 

ILLIAC was the fastest machine in the world. The 

ILLIAC approach of using separate ALUs for each 

data element is not common to later designs, and is 

often referred to under a separate category, massively 

parallel computing. 

2.2)SUPERCOMPUTERS 

The first successful implementation of vector 

processing appears to be the Control Data 

CorporationSTAR-100 and the Texas 

InstrumentsAdvanced Scientific Computer (ASC). 

The basic ASC (i.e., "one pipe") ALU used a pipeline 

architecture that supported both scalar and vector 

computations, with peak performance reaching 

approximately 20 MFLOPS, readily achieved when 

processing long vectors. Expanded ALU 

configurations supported "two pipes" or "four pipes" 

with a corresponding 2X or 4X performance gain. 

Memory bandwidth was sufficient to support these 

expanded modes. The STAR was otherwise slower 

than CDC's own supercomputers like the CDC 7600, 

but at data related tasks they could keep up while 

being much smaller and less expensive. However the 

machine also took considerable time decoding the 

vector instructions and getting ready to run the 

process, so it required very specific data sets to work 

on before it actually sped anything up. 

The vector technique was first fully exploited in 1976 

by the famous Cray-1. Instead of leaving the data in 

memory like the STAR and ASC, the Cray design 

had eight "vector registers," which held sixty-four 64-

bit words each. The vector instructions were applied 

between registers, which is much faster than talking 

to main memory. The Cray design used pipeline 

parallelism to implement vector instructions rather 

than multiple ALUs. In addition the design had 

completely separate pipelines for different 

instructions, for example, addition/subtraction was 

implemented in different hardware than 

multiplication. This allowed a batch of vector 

instructions themselves to be pipelined, a technique 

they called vector chaining. The Cray-1 normally had 

a performance of about 80 MFLOPS, but with up to 

three chains running it could peak at 240 MFLOPS – 

a respectable number even as of 2002. 
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Other examples followed. Control Data Corporation 

tried to re-enter the high-end market again with its 

ETA-10 machine, but it sold poorly and they took 

that as an opportunity to leave the supercomputing 

field entirely. In the early and mid-1980s Japanese 

companies (Fujitsu, Hitachi and Nippon Electric 

Corporation (NEC) introduced register-based vector 

machines similar to the Cray-1, typically being 

slightly faster and much smaller. Oregon-based 

Floating Point Systems (FPS) built add-on array 

processors for minicomputers, later building their 

own mini-supercomputers. However Cray continued 

to be the performance leader, continually beating the 

competition with a series of machines that led to the 

Cray-2, Cray X-MP and Cray Y-MP. Since then, the 

supercomputer market has focused much more on 

massively parallel processing rather than better 

implementations of vector processors. However, 

recognizing the benefits of vector processing IBM 

developed Virtual Vector Architecture for use in 

supercomputers coupling several scalar processors to 

act as a vector processor. 

2.3) SIMD 

Vector processing techniques have since been added 

to almost all modern CPU designs, although they are 

typically referred to as SIMD. In these 

implementations, the vector unit runs beside the main 

scalarCPU, and is fed data from vector instruction 

aware programs. 

3) ARCHITECTURE 

Commonly called supercomputers, the vector 

processors are machines built primarily to handle 

large scientific and engineering calculations. Their 

performance derives from a heavily pipelined 

architecture which operations on vectors and matrices 

can efficiently exploit. 

 

Fig 1) 
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Data is read into the vector registers which are FIFO 

queues capable of holding 50-100 floating point 

values. A machine will be provided with several 

vector registers, Va, Vb, etc. The instruction set will 

contain instruction which:  

 load a vector register from a location in 

memory,  

 perform operations on elements in the vector 

registers and  

 store data back into memory from the vector 

registers.  

4) DESCRIPTION 

In general terms, CPUs are able to manipulate one or 

two pieces of data at a time. For instance, most CPUs 

have an instruction that essentially says "add A to B 

and put the result in C". The data for A, B and C 

could be—in theory at least—encoded directly into 

the instruction. However, in efficient implementation 

things are rarely that simple. The data is rarely sent in 

raw form, and is instead "pointed to" by passing in an 

address to a memory location that holds the data. 

Decoding this address and getting the data out of the 

memory takes some time, during which the CPU 

traditionally would sit idle waiting for the requested 

data to show up. As CPU speeds have increased, this 

memory latency has historically become a large 

impediment to performance; see Memory wall. 

In order to reduce the amount of time consumed by 

these steps, most modern CPUs use a technique 

known as instruction pipelining in which the 

instructions pass through several sub-units in turn. 

The first sub-unit reads the address and decodes it, 

the next "fetches" the values at those addresses, and 

the next does the math itself. With pipelining the 

"trick" is to start decoding the next instruction even 

before the first has left the CPU, in the fashion of an 

assembly line, so the address decoder is constantly in 

use. Any particular instruction takes the same amount 

of time to complete, a time known as the latency, but 

the CPU can process an entire batch of operations 

much faster and more efficiently than if it did so one 

at a time. 

Vector processors take this concept one step further. 

Instead of pipelining just the instructions, they also 

pipeline the data itself. The processor is fed 

instructions that say not just to add A to B, but to add 

all of the numbers "from here to here" to all of the 

numbers "from there to there". Instead of constantly 

having to decode instructions and then fetch the data 

needed to complete them, the processor reads a single 

instruction from memory, and it is simply implied in 

the definition of the instruction itself that the 

instruction will operate again on another item of data, 

at an address one increment larger than the last. This 

allows for significant savings in decoding time. 

5) REAL WORLD EXAMPLE 

Shown below is an actual x86 architecture example 

for vector instruction usage with the SSE instruction 

set. The example multiplies two arrays of single 

precision floating point numbers. It's written in the C 

language with inline assembly code parts for 

compilation with GCC (32bit). 

 

 

Fig 2) 
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SUMMARY 

A vector processor, or array processor, is a central 

processing unit (CPU) that implements an instruction 

set containing instructions that operate on one-

dimensional arrays of data called vectors. This is in 

contrast to a scalar processor, whose instructions 

operate on single data items. Vector processors can 

greatly improve performance on certain workloads, 

notably numerical simulation and similar tasks. 

Vector machines appeared in the early 1970s and 

dominated supercomputer design through the 1970s 

into the 90s, notably the various Cray platforms. The 

rapid fall in the price-to-performance ratio of 

conventional microprocessor designs led to the vector 

supercomputer's demise in the later 1990s. 

Today, most commodity CPUs implement 

architectures that feature instructions for a form of 

vector processing on multiple (vectorized) data sets, 

typically known as SIMD (Single Instruction, 

Multiple Data). Common examples include VIS, 

MMX, SSE, AltiVec and AVX. Vector processing 

techniques are also found in video game console 

hardware and graphics accelerators. In 2000, IBM, 

Toshiba and Sony collaborated to create the Cell 

processor, consisting of one scalar processor and 

eight vector processors, which found use in the Sony 

PlayStation 3 among other applications. 

Other CPU designs may include some multiple 

instructions for vector processing on multiple 

(vectorised) data sets, typically known as MIMD 

(Multiple Instruction, Multiple Data) and realized 

with VLIW. Such designs are usually dedicated to a 

particular application and not commonly marketed 

for general purpose computing. In the FujitsuFR-V 

VLIW/vector processor both technologies are 

combined. 
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SIDE BAR 

Comparison: it is an act of assessment or 

evaluation of things side by side in order to see to 

what extent they are similar or different. It is used to 

bring out similarities or differences between two 

things of same type mostly to discover essential 

features or meaning either scientifically or otherwise. 

Content: The amount of things contained in 

something. Things written or spoken in a book, an 

article, a programme, a speech, etc. 

DEFINITION 

 Latency- it is a time interval between the 

stimulation and response, or, from a more 

general point of view, as a time delay 

between the cause and the effect of some 

physical change in the system being 

observed. 

 Referencing- provide (a book or article) 

with citations of sources of information. 

 Dynamic- characterized by constant change, 

activity, or progress. 

 Dominate- be the most important or 

conspicuous person or thing in. 
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