

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

VECTOR PROCESSOR- A STUDY Achin Pal;Tanya Sharma;Sumit Kumar Das

P a g e | 262

Vector Processor- A Study

Achin Pal ;Tanya Sharma; Sumit Kumar Das
Computer science and engineering department, MDU Rohtak, India

ABSTRACT

The power of vector processors comes from their

ability to process several elements at once (applying

the same operations to all elements in a short vector).

This, combined with the standard processor

techniques of independent processing units

(load/store, integer, float, vector) running in parallel,

and pipelined units processing several instructions

simultaneously (sequentially up to the instruction

latency) make it possible to process multiple data

elements per clock cycle. Achieving this in practice is

far from easy and requires an in-depth knowledge of

the processor and a detailed analysis and

understanding of the algorithm. For large datasets

memory management is also an issue: a processor

waiting for data is not producing results. This paper

deals with history and examples of vector processors

and also helps to enlighten about the concept of

VECTOR PROCESSOR.

1) INTRODUCTION

A vector processor is a processor that can operate on

entire vectors with one instruction, i.e. the operands

of some instructions specify complete vectors. For

example, consider the following add instruction:

C = A + B

In both scalar and vector machines this means ``add

the contents of A to the contents of B and put the sum

in C.'' In a scalar machine the operands are numbers,

but in vector processors the operands are vectors and

the instruction directs the machine to compute the

pairwise sum of each pair of vector elements. A

processor register, usually called the vector length

register, tells the processor how many individual

additions to perform when it adds the vectors.

A vectorizing compiler is a compiler that will try to

recognize when loops can be transformed into single

vector instructions. For example, the following loop

can be executed by a single instruction on a vector

processor:

 DO 10 I=1,N

A(I) = B(I) + C(I)

10 CONTINUE

This code would be translated into an instruction that

would set the vector length to N followed by a vector

add instruction.

The use of vector instructions pays off in two

different ways. First, the machine has to fetch and

decode far fewer instructions, so the control unit

overhead is greatly reduced and the memory

bandwidth necessary to perform this sequence of

operations is reduced a corresponding amount. The

second payoff, equally important, is that the

instruction provides the processor with a regular

source of data. When the vector instruction is

initiated, the machine knows it will have to fetch

pairs of operands which are arranged in a regular

pattern in memory. Thus the processor can tell the

memory system to start sending those pairs. With an

interleaved memory, the pairs will arrive at a rate of

one per cycle, at which point they can be routed

directly to a pipelined data unit for processing.

Without an interleaved memory or some other way of

providing operands at a high rate the advantages of

processing an entire vector with a single instruction

would be greatly reduced.

A key division of vector processors arises from the

way the instructions access their operands. In the

memory to memory organization the operands are

fetched from memory and routed directly to the

functional unit. Results are streamed back out to

memory as the operation proceeds. In the register to

register organization operands are first loaded into a

set of vector registers, each of which can hold a

segment of a register, for example 64 elements. The

vector operation then proceeds by fetching the

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

VECTOR PROCESSOR- A STUDY Achin Pal;Tanya Sharma;Sumit Kumar Das

P a g e | 263

operands from the vector registers and returning the

results to a vector register.

The advantage of memory to memory machines is the

ability to process very long vectors, whereas register

to register machines must break long vectors into

fixed length segments. Unfortunately, this flexibility

is offset by a relatively large overhead known as the

startup time, which is the time between the

initialization of the instruction and the time the first

result emerges from the pipeline. The long startup

time on a memory to memory machine is a function

of memory latency, which is longer than the time it

takes to access a value in an internal register. Once

the pipeline is full, however, a result is produced

every cycle or perhaps every other cycle. Thus a

performance model for a vector processor is of the

form

where is the startup time, is the length of the

vector and is an instruction dependent constant,

usually , 1 or 2.

Examples of this type of architecture include the

Texas Instruments Inc. Advanced Scientific

Computer and a family of machines built by Control

Data Corp. known first as the Cyber 200 series and

later the ETA-10 when Control Data Corp. founded a

separate company known as ETA Systems Inc. These

machines appeared in the mid-1970s after a long

development cycle that left them with dated

technology and disappeared in the mid-1980s. For a

thorough discussion of their characteristics, see

Hockney and Jesshope. One of the major reasons for

their demise was the large startup time, which was on

the order of 100 processor cycles. This meant that

short vector operations were very inefficient, and

even for vectors of length 100 the machines were

delivering only about half their maximum

performance. In a later section we will see how this

vector length that yields half of peak performance is

used to characterize vector computers.

In the register to register machines the vectors have a

relatively short length, 64 in the case of the Cray

family, but the startup time is far less than on the

memory to memory machines. Thus these machines

are much more efficient for operations involving

short vectors, but for long vector operations the

vector registers must loaded with each segment

before the operation can continue. Register to register

machines now dominate the vector computer market,

with a number of offerings from Cray Research Inc.,

including the Y-MP and the C-90. The approach is

also the basis for machines from Fujitsu, Hitachi and

NEC. Clock cycles on modern vector processors

range from 2.5ns (NEC SX-3) to 4.2ns (Cray C90),

and single processor performance on LINPACK

benchmarks is in the range of 1000 to 2000 MFLOPS

(1 to 2 GFLOPS).

The basic processor architecture of the Cray

supercomputers has changed little since the Cray-1

was introduced in 1976. There are 8 vector registers,

named V0 through V7, which each hold 64 64-bit

words. There are also 8 scalar registers, which hold

single 64-bit words, and 8 address registers (for

pointers) that have 20-bit words. Instead of a cache,

these machines have a set of backup registers for the

scalar and address registers; transfer to and from the

backup registers is done under program control,

rather than by lower level hardware using dynamic

memory referencing patterns.

The original Cray-1 had 12 pipelined data processing

units; newer Cray systems have 14. There are

separate pipelines for addition, multiplication,

computing reciprocals (to divide by , a Cray

computes), and logical operations.

The cycle time of the data processing pipelines is

carefully matched to the memory cycle times. The

memory system delivers one value per clock cycle

through the use of 4-way interleaved memory.

An interesting feature introduced in the Cray

computers is the notion of vector chaining. Consider

the following two vector instructions:

 V2 = V0 * V1

 V4 = V2 + V3

The output of the first instruction is one of the

operands of the second instruction. Recall that since

these are vector instructions, the first instruction will

route up to 64 pairs of numbers to a pipelined

multiplier. About midway through the execution of

this instruction, the machine will be in an interesting

state: the first few elements of V2 will contain

recently computed products; the products that will

eventually go into the next elements of V2 are still in

the multiplier pipeline; and the remainder of the

operands are still in V0 and V1, waiting to be fetched

http://www.phy.ornl.gov/csep/ca/node24.html

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

VECTOR PROCESSOR- A STUDY Achin Pal;Tanya Sharma;Sumit Kumar Das

P a g e | 264

and routed to the pipeline. This situation is shown in

Figure 16, where the operands from V0 and V1 that

are currently in the multiplier pipeline are indicated

by gray cells. At this point, the system is fetching

V0[k] and V1[k] to route them to the first stage of the

pipeline and V2[j] is just leaving the pipeline. Vector

chaining relies on the path marked with an asterisk.

While V2[j] is being stored in the vector register, it is

also routed directly to the pipelined adder, where it is

matched with V3[j]. As the figure shows, the second

instruction can begin even before the first finished,

and while both are executing the machine is

producing two results per cycle (V4[i] and V2[j])

instead of just one.

Without vector chaining, the peak performance of the

Cray-1 would have been 80 MFLOPS (one full

pipeline producing a result every 12.5ns, or

80,000,000 results per second). With three pipelines

chained together, there is a very short burst of time

where all three are producing results, for a theoretical

peak performance of 240 MFLOPS. In principle

vector chaining could be implemented in a memory-

to-memory vector processor, but it would require

much higher memory bandwidth to do so. Without

chaining, three ``channels'' must be used to fetch two

input operand streams and store one result stream;

with chaining, five channels would be needed for

three inputs and two outputs. Thus the ability to chain

operations together to double performance gave

register- to-register designs another competitive edge

over memory-to- memory designs.

2) HISTORY

2.1) EARLY WORK

Vector processing development began in the early

1960s at Westinghouse in their Solomon project.

Solomon's goal was to dramatically increase math

performance by using a large number of simple math

co-processors under the control of a single master

CPU. The CPU fed a single common instruction to all

of the arithmetic logic units (ALUs), one per "cycle",

but with a different data point for each one to work

on. This allowed the Solomon machine to apply a

single algorithm to a large data set, fed in the form of

an array.

In 1962, Westinghouse cancelled the project, but the

effort was restarted at the University of Illinois as the

ILLIAC IV. Their version of the design originally

called for a 1 GFLOPS machine with 256 ALUs, but,

when it was finally delivered in 1972, it had only 64

ALUs and could reach only 100 to 150 MFLOPS.

Nevertheless it showed that the basic concept was

sound, and, when used on data-intensive applications,

such as computational fluid dynamics, the "failed"

ILLIAC was the fastest machine in the world. The

ILLIAC approach of using separate ALUs for each

data element is not common to later designs, and is

often referred to under a separate category, massively

parallel computing.

2.2)SUPERCOMPUTERS

The first successful implementation of vector

processing appears to be the Control Data

CorporationSTAR-100 and the Texas

InstrumentsAdvanced Scientific Computer (ASC).

The basic ASC (i.e., "one pipe") ALU used a pipeline

architecture that supported both scalar and vector

computations, with peak performance reaching

approximately 20 MFLOPS, readily achieved when

processing long vectors. Expanded ALU

configurations supported "two pipes" or "four pipes"

with a corresponding 2X or 4X performance gain.

Memory bandwidth was sufficient to support these

expanded modes. The STAR was otherwise slower

than CDC's own supercomputers like the CDC 7600,

but at data related tasks they could keep up while

being much smaller and less expensive. However the

machine also took considerable time decoding the

vector instructions and getting ready to run the

process, so it required very specific data sets to work

on before it actually sped anything up.

The vector technique was first fully exploited in 1976

by the famous Cray-1. Instead of leaving the data in

memory like the STAR and ASC, the Cray design

had eight "vector registers," which held sixty-four 64-

bit words each. The vector instructions were applied

between registers, which is much faster than talking

to main memory. The Cray design used pipeline

parallelism to implement vector instructions rather

than multiple ALUs. In addition the design had

completely separate pipelines for different

instructions, for example, addition/subtraction was

implemented in different hardware than

multiplication. This allowed a batch of vector

instructions themselves to be pipelined, a technique

they called vector chaining. The Cray-1 normally had

a performance of about 80 MFLOPS, but with up to

three chains running it could peak at 240 MFLOPS –

a respectable number even as of 2002.

http://en.wikipedia.org/wiki/Westinghouse_Electric_Corporation
http://en.wikipedia.org/wiki/Coprocessor
http://en.wikipedia.org/wiki/Coprocessor
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana-Champaign
http://en.wikipedia.org/wiki/ILLIAC_IV
http://en.wikipedia.org/wiki/GFLOPS
http://en.wikipedia.org/wiki/Computational_fluid_dynamics
http://en.wikipedia.org/wiki/Massively_parallel
http://en.wikipedia.org/wiki/Massively_parallel
http://en.wikipedia.org/wiki/Control_Data_Corporation
http://en.wikipedia.org/wiki/Control_Data_Corporation
http://en.wikipedia.org/wiki/CDC_STAR-100
http://en.wikipedia.org/wiki/Texas_Instruments
http://en.wikipedia.org/wiki/Texas_Instruments
http://en.wikipedia.org/wiki/Advanced_Scientific_Computer
http://en.wikipedia.org/wiki/CDC_7600
http://en.wikipedia.org/wiki/Cray-1

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

VECTOR PROCESSOR- A STUDY Achin Pal;Tanya Sharma;Sumit Kumar Das

P a g e | 265

Other examples followed. Control Data Corporation

tried to re-enter the high-end market again with its

ETA-10 machine, but it sold poorly and they took

that as an opportunity to leave the supercomputing

field entirely. In the early and mid-1980s Japanese

companies (Fujitsu, Hitachi and Nippon Electric

Corporation (NEC) introduced register-based vector

machines similar to the Cray-1, typically being

slightly faster and much smaller. Oregon-based

Floating Point Systems (FPS) built add-on array

processors for minicomputers, later building their

own mini-supercomputers. However Cray continued

to be the performance leader, continually beating the

competition with a series of machines that led to the

Cray-2, Cray X-MP and Cray Y-MP. Since then, the

supercomputer market has focused much more on

massively parallel processing rather than better

implementations of vector processors. However,

recognizing the benefits of vector processing IBM

developed Virtual Vector Architecture for use in

supercomputers coupling several scalar processors to

act as a vector processor.

2.3) SIMD

Vector processing techniques have since been added

to almost all modern CPU designs, although they are

typically referred to as SIMD. In these

implementations, the vector unit runs beside the main

scalarCPU, and is fed data from vector instruction

aware programs.

3) ARCHITECTURE

Commonly called supercomputers, the vector

processors are machines built primarily to handle

large scientific and engineering calculations. Their

performance derives from a heavily pipelined

architecture which operations on vectors and matrices

can efficiently exploit.

Fig 1)

http://en.wikipedia.org/wiki/Control_Data_Corporation
http://en.wikipedia.org/wiki/ETA-10
http://en.wikipedia.org/wiki/Fujitsu
http://en.wikipedia.org/wiki/Hitachi,_Ltd.
http://en.wikipedia.org/wiki/Nippon_Electric_Corporation
http://en.wikipedia.org/wiki/Nippon_Electric_Corporation
http://en.wikipedia.org/wiki/Oregon
http://en.wikipedia.org/wiki/Floating_Point_Systems
http://en.wikipedia.org/wiki/Minicomputer
http://en.wikipedia.org/wiki/Minisupercomputer
http://en.wikipedia.org/wiki/Cray-2
http://en.wikipedia.org/wiki/Cray_X-MP
http://en.wikipedia.org/wiki/Cray_Y-MP
http://en.wikipedia.org/wiki/Massively_parallel
http://en.wikipedia.org/wiki/IBM_ViVA
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Scalar_%28computing%29
http://en.wikipedia.org/wiki/Scalar_%28computing%29

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

VECTOR PROCESSOR- A STUDY Achin Pal;Tanya Sharma;Sumit Kumar Das

P a g e | 266

Data is read into the vector registers which are FIFO

queues capable of holding 50-100 floating point

values. A machine will be provided with several

vector registers, Va, Vb, etc. The instruction set will

contain instruction which:

 load a vector register from a location in

memory,

 perform operations on elements in the vector

registers and

 store data back into memory from the vector

registers.

4) DESCRIPTION

In general terms, CPUs are able to manipulate one or

two pieces of data at a time. For instance, most CPUs

have an instruction that essentially says "add A to B

and put the result in C". The data for A, B and C

could be—in theory at least—encoded directly into

the instruction. However, in efficient implementation

things are rarely that simple. The data is rarely sent in

raw form, and is instead "pointed to" by passing in an

address to a memory location that holds the data.

Decoding this address and getting the data out of the

memory takes some time, during which the CPU

traditionally would sit idle waiting for the requested

data to show up. As CPU speeds have increased, this

memory latency has historically become a large

impediment to performance; see Memory wall.

In order to reduce the amount of time consumed by

these steps, most modern CPUs use a technique

known as instruction pipelining in which the

instructions pass through several sub-units in turn.

The first sub-unit reads the address and decodes it,

the next "fetches" the values at those addresses, and

the next does the math itself. With pipelining the

"trick" is to start decoding the next instruction even

before the first has left the CPU, in the fashion of an

assembly line, so the address decoder is constantly in

use. Any particular instruction takes the same amount

of time to complete, a time known as the latency, but

the CPU can process an entire batch of operations

much faster and more efficiently than if it did so one

at a time.

Vector processors take this concept one step further.

Instead of pipelining just the instructions, they also

pipeline the data itself. The processor is fed

instructions that say not just to add A to B, but to add

all of the numbers "from here to here" to all of the

numbers "from there to there". Instead of constantly

having to decode instructions and then fetch the data

needed to complete them, the processor reads a single

instruction from memory, and it is simply implied in

the definition of the instruction itself that the

instruction will operate again on another item of data,

at an address one increment larger than the last. This

allows for significant savings in decoding time.

5) REAL WORLD EXAMPLE

Shown below is an actual x86 architecture example

for vector instruction usage with the SSE instruction

set. The example multiplies two arrays of single

precision floating point numbers. It's written in the C

language with inline assembly code parts for

compilation with GCC (32bit).

Fig 2)

http://en.wikipedia.org/wiki/Memory_latency
http://en.wikipedia.org/wiki/Random-access_memory#Memory_wall
http://en.wikipedia.org/wiki/Instruction_pipelining
http://en.wikipedia.org/wiki/Assembly_line
http://en.wikipedia.org/wiki/Address_decoder
http://en.wikipedia.org/wiki/Latency_%28engineering%29
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/GNU_Compiler_Collection

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

VECTOR PROCESSOR- A STUDY Achin Pal;Tanya Sharma;Sumit Kumar Das

P a g e | 267

SUMMARY

A vector processor, or array processor, is a central

processing unit (CPU) that implements an instruction

set containing instructions that operate on one-

dimensional arrays of data called vectors. This is in

contrast to a scalar processor, whose instructions

operate on single data items. Vector processors can

greatly improve performance on certain workloads,

notably numerical simulation and similar tasks.

Vector machines appeared in the early 1970s and

dominated supercomputer design through the 1970s

into the 90s, notably the various Cray platforms. The

rapid fall in the price-to-performance ratio of

conventional microprocessor designs led to the vector

supercomputer's demise in the later 1990s.

Today, most commodity CPUs implement

architectures that feature instructions for a form of

vector processing on multiple (vectorized) data sets,

typically known as SIMD (Single Instruction,

Multiple Data). Common examples include VIS,

MMX, SSE, AltiVec and AVX. Vector processing

techniques are also found in video game console

hardware and graphics accelerators. In 2000, IBM,

Toshiba and Sony collaborated to create the Cell

processor, consisting of one scalar processor and

eight vector processors, which found use in the Sony

PlayStation 3 among other applications.

Other CPU designs may include some multiple

instructions for vector processing on multiple

(vectorised) data sets, typically known as MIMD

(Multiple Instruction, Multiple Data) and realized

with VLIW. Such designs are usually dedicated to a

particular application and not commonly marketed

for general purpose computing. In the FujitsuFR-V

VLIW/vector processor both technologies are

combined.

DISCLOSURE STATEMENT

There is no financial support for this research work

from the funding agency.

ACKNOWLEDGMENTS

We thank our guide for his timely help, giving

outstanding ideas and encouragement to finish this

research work successfully.

SIDE BAR

Comparison: it is an act of assessment or

evaluation of things side by side in order to see to

what extent they are similar or different. It is used to

bring out similarities or differences between two

things of same type mostly to discover essential

features or meaning either scientifically or otherwise.

Content: The amount of things contained in

something. Things written or spoken in a book, an

article, a programme, a speech, etc.

DEFINITION

 Latency- it is a time interval between the

stimulation and response, or, from a more

general point of view, as a time delay

between the cause and the effect of some

physical change in the system being

observed.

 Referencing- provide (a book or article)

with citations of sources of information.

 Dynamic- characterized by constant change,

activity, or progress.

 Dominate- be the most important or

conspicuous person or thing in.

REFERENCES

 http://www.nasoftware.co.uk/home/index.php/ser

vices/vector-processors

 https://www.cs.auckland.ac.nz/~jmor159/363/ht

ml/vector.html

 http://www.phy.ornl.gov/csep/ca/node24.html

 http://en.wikipedia.org/wiki/Vector_processor

REALATED REFERNCES

[1.] Malinovsky, B.N. (1995 (see also here

http://www.sigcis.org/files/SIGCISMC2010_001.pdf
and english version here)). The history of computer

technology in their faces (in Russian). Kiew: Firm

"KIT". ISBN 5-7707-6131-8. Check date values in:
|date= (help)

[2.] Kunzman, D. M.; Kale, L. V. (2011). "Programming
Heterogeneous Systems". "2011 IEEE International

Symposium on Parallel and Distributed Processing

Workshops and Phd Forum". p. 2061.
doi:10.1109/IPDPS.2011.377. ISBN 978-1-61284-425-

1. edit

[3.] John Darlinton, MoustafaGhanem, YikeGuo, Hing
Wing To (1996), Guided Resource Organisation in

Heterogeneous Parallel Computing, Journal of High
Performance Computing4 (1): 13–23

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Cray
http://en.wikipedia.org/wiki/Price-to-performance_ratio
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Visual_Instruction_Set
http://en.wikipedia.org/wiki/MMX_%28instruction_set%29
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/AltiVec
http://en.wikipedia.org/wiki/Advanced_Vector_Extensions
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Graphics_accelerator
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Toshiba
http://en.wikipedia.org/wiki/Sony
http://en.wikipedia.org/wiki/Cell_%28microprocessor%29
http://en.wikipedia.org/wiki/Cell_%28microprocessor%29
http://en.wikipedia.org/wiki/PlayStation_3
http://en.wikipedia.org/wiki/MIMD
http://en.wikipedia.org/wiki/VLIW
http://en.wikipedia.org/wiki/Fujitsu
http://en.wikipedia.org/wiki/Fujitsu
http://www.nasoftware.co.uk/home/index.php/services/vector-processors
http://www.nasoftware.co.uk/home/index.php/services/vector-processors
https://www.cs.auckland.ac.nz/~jmor159/363/html/vector.html
https://www.cs.auckland.ac.nz/~jmor159/363/html/vector.html
http://www.phy.ornl.gov/csep/ca/node24.html
http://en.wikipedia.org/wiki/Vector_processor
http://lib.ru/MEMUARY/MALINOWSKIJ/0.txt
http://lib.ru/MEMUARY/MALINOWSKIJ/0.txt
http://lib.ru/MEMUARY/MALINOWSKIJ/0.txt
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/5-7707-6131-8
http://en.wikipedia.org/wiki/Help:CS1_errors#bad_date
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FIPDPS.2011.377
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-61284-425-1
http://en.wikipedia.org/wiki/Special:BookSources/978-1-61284-425-1
http://en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1109.2FIPDPS.2011.377&action=edit&editintro=Template:Cite_doi/editintro2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4309
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4309

