

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 288

Web Security
Pramod Kumar & Ruchi Yadav

Dept. of Information & Technology, Dronacharya College of Engineering
Farruhknagar, Gurgaon, India

Email: ruchiyadav477@gmail.com

Abstract
Web applications are one of the most
prevalent platforms for information and
services delivery over Internet today. As
they are increasingly used for critical
services, web applications become a
popular and valuable target for security
attacks. Although a large body of
techniques have been developed to
fortify web applications and and mitigate
the attacks toward web applications,
there is little effort devoted to drawing
connections among these techniques
and building a big picture of web
application security research. This paper
surveys the area of web application
security, with the aim of systematizing
the existing techniques into a big picture
that promotes future research. We first
present the unique aspects in the web
application development which bring
inherent challenges for building secure
web applications. Then we identify three
essential security properties that a web
application should preserve: input
validity, state integrity and logic
correctness, and describe the
corresponding vulnerabilities that violate
these properties along with the attack
vectors that exploit these vulnerabilities.
We organize the existing research
works on securing web applications into
three categories based on their design
philosophy: security by construction,

security by verification and security by
protection. Finally, we summarize the
lessons learnt and discuss future
research opportunities in this area.
 I. INTRODUCTION
World Wide Web has evolved from a
system that delivers static pages to a
platform that supports distributed
applications, known as web applications and
become one of the most prevalent
technologies for information and service
delivery over Internet. The increasing
popularity of web application can be
attributed to several factors, including
remote accessibility, cross-platform
compatibility, fast development, etc. The
AJAX (Asynchronous JavaScript and XML)
technology also enhances the user
experiences of web applications with better
interactiveness and responsiveness. As web
applications are increasingly used to deliver
security critical services, they become a
valuable target for security attacks. Many
web applications interact with back-end
database systems, which may store sensitive
information (e.g., financial, health), the
compromise of web applications would
result in breaching an enormous amount of
information, leading to severe economical
losses, ethical and legal consequences. A
breach report from Verizon [1] shows that
web applications now reign supreme in both
the number of breaches and the amount of
data compromised. The Web platform is a

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 289

complex ecosystem composed of a large
number of components and technologies,
including HTTP protocol, web server and
server-side application development
technologies (e.g., CGI, PHP, ASP), web
browser and client-side technologies (e.g.,
JavaScript, Flash). Web application built
and hosted upon such a complex
infrastructure faces inherent challenges
posed by the features of those components
and technologies and the inconsistencies
among them. Current widely-used web
application development and testing
frameworks, on the other hand, offer limited
security support. Thus secure web
application development is an errorprone
process and requires substantial efforts,
which could be unrealistic under time-to-
market pressure and for people with
insufficient security skills or awareness. As
a result, a high percentage of web
applications deployed on the Internet are
exposed to security vulnerabilities.
According to a report by the Web
Application Security Consortium, about
49% of the web applications being reviewed
contain vulnerabilities of high risk level and
more than 13% of the websites can be
compromised completely automatically . A
recent report reveals that over 80% of the
websites on the Internet have had at least
one serious vulnerability. Motivated by the
urgent need for securing web applications, a
substantial amount of research efforts have
been devoted into this problem with a
number of techniques developed for
hardening web applications and mitigating
the attacks. Many of these techniques make
assumptions on the web technologies used in
the application development and only
address one particular type of security flaws;
their prototypes are often implemented and
evaluated on limited platforms. A
practitioner may wonder whether these

techniques are suitable for their scenarios.
And if they can not be directly applied,
whether these techniques can be extended
and/or combined. Thus, it is desirable and
urgent to provide a systematic framework
for exploring the root causes of web
application vulnerabilities, uncovering the
connection between the existing techniques,
and sketching a big picture of current
research frontier in this area. Such a
framework would help both new and
experienced researcher to better understand
web application security challenges and
assess existing defenses, and inspire them
with new ideas and trends. In this paper, we
survey the state of the art in web application
security, with the aim of systematizing the
existing techniques into a big picture that
promotes future research. Based on the
conceptual security framework by Bau and
Mitchell, we organize our survey using three
components for assessing the security of a
web application (or equipped with a defense
mechanism): system model, threat model
and security property. System model
describes how a web application works and
its unique characteristics; threat model.
describes the power and resources attackers
possess; security property defines the aspect
of the web application behavior intended by
the developers. Given a threat model, if one
web application fails to preserve certain
security property under all scenarios, this
application is insecure or vulnerable to
corresponding attacks. This survey covers
the techniques which consider the following
threat model:
1) the web application itself is benign(i.e.,
not hosted or owned for malicious purposes)
and hosted on a trusted and hardened
infrastructure (i.e., the trust computing base,
including OS, web server, interpreter, etc.);

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 290

2) the attacker is able to manipulate either
the contents or the sequence of web requests
sent to the web application, but cannot
directly compromise the infrastructure or
the application code.
We note here that although browser security
([5], [6]) is also an essential component in
end-to-end web application security,
research works on this topic usually have a
different threat model, where web
applications are considered as potentially
malicious. This survey does not include the
research works on browser security so that it
can focus on the problem of building secure
web applications and protecting vulnerable
ones. The contributions of this paper are:
(1) We present three aspects in web
application development, which poses
inherent challenges for building secure web
applications, and identify three levels of
security properties that a secure web
application should hold: input validity, state
integrity and logic correctness. Failure of
web applications to fulfill the above security
properties is the root cause of corresponding
vulnerabilities, which allow for successful
exploits.
(2)We classify existing research works into
three categories: security by construction,
security by verification and security by
protection, based on their design principle
(i.e., constructing vulnerability-free web
applications, identifying and fixing
vulnerabilities, or protecting vulnerable web
applications against exploits at runtime,
respectively) and how security properties
are assured at different phases in the life
cycle of web application. We are not trying
to enumerate all the existing works but have
covered most of the represented works.
(3) We identify several open issues that are
insufficiently addressed in the existing
literature. We also discuss future research
opportunities in the area of web application

security and the new challenges that are
expected ahead. We structure the rest of this
paper as follows. We first describe how a
web application works and its unique
characteristics in Section II. Then, we
illustrate three essential security roperties
that a secure web application should hold, as
well as corresponding vulnerabilities and
attack vectors in Section III. In Section IV,
we categorize and illustrate the state-of-
theart of proposed techniques
systematically. Then, in Section V, we
discuss future directions for web application
security. We conclude our survey paper in
Section VI.

II. UNDERSTAND HOW A WEB
APPLICATION WORKS
Web application is a distributed application
that is executed over the Web platform. It is
an integral part of today’s Web ecosystem
that enables dynamic information and
service delivery. As shown in Fig. 1, a web
application may consist of code on both the
server side and the client side. The
serverside code will generate dynamic
HTML pages either through execution (e.g.,
Java servlet, CGI) or interpretation (e.g.,
PHP, JSP). During the execution of the
server-side code, the web application may
interact with local file system or back-end
database for storing and retrieving data. The
client-side code (e.g., in JavaScript) are
embedded in the HTML pages, which is
executed within the browser. It can
communicate with the server-side code (i.e.,
AJAX) and dynamically updates the HTML
pages. In what follows, we describe three
unique aspects of the web application
development, which differentiate web
applications from traditional applications.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 291

 Fig. 1. Overview of Web
Application

A. Programming Language
Web application development relies on web
programming languages. These languages
include scripting languages that are designed
specifically for web (e.g., PHP, JavaScript)
and extended traditional general-purpose
programming languages (e.g., JSP). A
distinguishing feature of many web
programming languages is their type
systems. For example, some scripting
languages (e.g., PHP) are dynamically typed,
which means that the type of a variable is
determined at runtime, instead of compile
time. Some languages (e.g., JavaScript) are
weakly typed, which means that a statement
or a function can be performed on a variety
of data types via implicit type casting. Such
type systems allow developers to blend
several types of constructs in one file for
runtime interpretation. For instance, a PHP
file may contain both static HTML tags and
PHP functions and a web page may embed
executable JavaScript code. The
representation of application data and code
by an unstructured sequence of bytes is a
unique feature of web application that helps
enhance the development efficiency.
B. State Maintenance
HTTP protocol is stateless, where each web
request is independent of each other.
However, to implement non-trivial
functionalities, “stateful” web applications
need to be built on top of this stateless
infrastructure. Thus, the abstraction of web
session is adopted to help the web

application to identify and correlate a series
of web requests from the same user during a
certain period of time. The state of a web
session records the conditions from the
historical web requests that will affect the
future execution of the web application. The
session state can be maintained either at the
client side (via cookie, hidden form or URL
rewriting) or at the server side. In the latter
case, a unique identifier (session ID) is
defined to index the explicit session
variables stored at the server side and issued
to the client. For example, most of web
programming languages (e.g., PHP, JSP)
offer developers a collection of functions for
managing the web session. For example, in
PHP, session start() can be called to
initialize a web session and a pre-defined
global array $ SESSION is employed to
contain the session state. In either case, the
client plays a vital role in maintaining the
states of a web application.
C. Logic Implementation
The business logic defines the functionality
of a web application, which is specific to
each application. Such a functionality is
manifested as an intended application
control flow and is usually integrated with
the navigation links of a web application.
For example, authentication and
authorization are a common part of the
control flow in many web applications,
through which an web application restricts
its sensitive information and privileged
operations from unauthorized users. As
another example, e-commerce websites
usually manage the sequence of operations
that the customers need perform during
shopping and checkout. A web application is
usually implemented as a number of
independent modules, each of which can be
directly accessed in any order by a user.
This unique feature of web applications
significantly complicates the enforcement of

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 292

the application’s control flow across
different modules. This task needs to be
performed through a tight collaboration of
two approaches. The first approach, which is
practiced by most web applications, is
interface hiding, where only accessible
resources and actions of the web application
are presented as web links and exposed to
users. The second approach requires explicit
checks of the application state, which is
maintained by session variables (or
persistent objects in the database), before
sensitive information and operations can be
accessed.

III. UNDERSTAND WEB
APPLICATION SECURITY
PROPERTIES, VULNERABILITIES
AND ATTACK VECTORS
A secure web application has to satisfy
desired security properties under the given
threat model. In the area of web application
security, the following threat model is
usually considered:
1) the web application itself is benign (i.e.,
not hosted or owned for malicious purposes)
and hosted on a trusted and hardened
infrastructure (i.e., the trust computing base,
including OS, web server, interpreter, etc.);
2) the attacker is able to manipulate either
the contents or the sequence of web requests
sent to the web application, but cannot
directly compromise the infrastructure or
the application code.
The vulnerabilities within web application
implementations may violate the intended
security properties and allow for
corresponding successful exploits. In
particular, a secure web application should
preserve the following stack of security
properties, as shown in Fig. 2. Input validity
means the user input should be validated
before it can be utilized by the web

application; state integrity means the
application state should be kept untampered;
logic correctness means the application logic
should be executed correctly as intended by
the developers. The above three security
properties are related in a way that failure in
preserving a security property at the lower
level will affect the assurance of the security
property at a higher level. For instance, if
the web application fails to hold the input
validity property, a crosssite scripting attack
can be launched by the attacker to steal the
victim’s session cookie. Then, the attacker
can hijack and tamper the victim’s web
session, resulting in the violation of state
integrity property. In the following sections,
we describe the three security properties and
show how the unique features of web
application development complicate the
security design for web applications.

 Fig. 2. Web Application Security
Properties

A. Input Validity
Given the threat model, user input data
cannot be trusted. However, for the
untrusted user data to be used in the
application (e.g., composing web response
or SQL queries), they have to be first
validated. Thus, we refer to this security
property as input validity property:

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 293

All the user input should be validated
correctly to ensure it is utilized by the web
application in the intended way.
The user input validation is often performed
via sanitization routines, which transform
untrusted user input into trusted data by
filtering suspicious characters or constructs
within user input. While simple in principle,
it is non-trivial to achieve the completeness
and correctness of user input sanitization,
especially when the web application is
programmed using scripting languages.
First, since user input data is propagated
throughout the application, it has to be
tracked all the way to identify all the
sanitization points. However, the dynamic
features of scripting languages have to be
handled appropriately to ensure the correct
tracking of user input data. Second, correct
sanitization has to take into account the
context, which specifies how the user input
is utilized by the application and interpreted
later either by the web browser or the SQL
interpreter. Thus different contexts require
distinct sanitization functions. However, the
weak typing feature of programming
languages makes context-sensitive
sanitization challenging and error-prone. In
current web development practices,
sanitization routines are usually placed by
developers manually in an ad-hoc way,
which can be either incomplete or
erroneous, and thus introduce vulnerabilities
into the web application. Missing
sanitization allows malicious user input to
flow into trusted web contents without
validation; faulty sanitization allows
malicious user input to bypass the validation
procedure. A web application with the above
vulnerabilities fails to achieve the input
validity property, thus is vulnerable to a
class of attacks, which are referred to as
script injections, dataflow attacks or input
validation attacks. This type of attacks

embed malicious contents within web
requests, which are utilized by the web
application and executed later. Examples of
input validation attacks include cross-site
scripting (XSS), SQL injection, directory
traversal, filename inclusion, response
splitting, etc. They are distinguished by the
locations where malicious contents get
executed. In the following, we illustrate the
most two popular input validation attacks.
1) SQL Injection: A SQL injection attack is
successfully launched when malicious
contents within user input flow into SQL
queries without correct validation. The
database trusts the web application and
executes all the queries issued by the
application. Using this attack, the attacker is
able to embed SQL keywords or operators
within user input to manipulate the SQL
query structure and result in unintended
execution. Consequences of SQL injections
include authentication bypass, information
disclosure and even the destruction of the
entire database. Interested reader can refer to
for more details about SQL injection.
2) Cross-Site Scripting: A cross-site
scripting (XSS) attack is successfully
launched when malicious contents within
user input flow into web responses without
correct validation. The web browser
interprets all the web responses returned by
the trusted web application (according to the
same-origin policy). Using this attack, the
attacker is able to inject malicious scripts
into web responses, which get executed
within the victim’s web browser. The most
common consequence of XSS is the
disclosure of sensitive information, e.g.,
session cookie theft. XSS usually serves as
the first step that enables further
sophisticated attacks (e.g., the notorious
MySpace Samy worm). There are several
variants of XSS, according to how the
malicious scripts are injected, including

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 294

stored/persistent XSS (malicious scripts are
injected into persistent storage), reflected
XSS, DOM-based XSS, content-sniffing
XSS, etc.

B. State Integrity
State maintenance is the basis for building
stateful web applications, which requires a
secure web application to preserve the
integrity of application states. However, The
involvement of an untrusted party (client) in
the application state maintenance makes the
assurance of state integrity a challenging
issue for web applications. A number of
attack vectors target the vulnerabilities
within session management and state
maintenance mechanisms of web
applications, including cookie poisoning
(tampering the cookie information), session
fixation (when the session identifier is
predictable), session hijacking (when the
session identifier is stolen), etc. Cross-site
request forgery (i.e., session riding) is a
popular attack that falls in this category. In
this attack, the attacker tricks the victim into
sending crafted web requests with the
victim’s valid session identifier, however,
on the attacker’s behalf. This could result in
the victim’s session being tampered,
sensitive information disclosed, financial
losses (e.g., an attacker may forge a web
request that instructs a vulnerable banking
website to transfer the victim’s money to his
account), etc. To preserve state integrity, a
number of effective techniques have been
proposed. Client-side state information can
be protected by integrity verification
through MAC (Message Authentication
Code). Session identifiers need to be
generated with high randomness (to defend
against session fixation) and transmitted
over secure SSL protocol (against session
hijacking). To mitigate CSRF attacks, web
requests can be validated by checking

headers (Referrer header, or Origin eader)
or associated unique secret tokens (e.g.,
NoForge , Request Rodeo, BEAP). Since the
methods of preserving state integrity are
relatively mature, thus falling beyond the
scope of this survey.
C. Logic Correctness
Ensuring logic correctness is key to the
functioning of web applications. Since the
application logic is specific to each web
application, it is impossible to cover all the
aspects by one description. Instead, a
general description that covers most
common application functionalities is given
as follows, which we refer to as logic
correctness property:
Users can only access authorized
information and operations and are
enforced to follow the intended workflow
provided by the web application.
To implement and enforce application logic
correctly can be challenging due to its state
maintenance mechanism and
“decentralized” structure of web
applications. First, interface hiding
technique, which follows the principle of
“security by obscurity”, is obviously
deficient in nature, which allows the attacker
to uncover hidden links and directly access
unauthorized information or operations or
violate the intended workflow. Second,
explicit checking of the application state is
performed by developers manually and in an
ad-hoc way. Thus, it is very likely that
certain state checks are missing on
unexpected control flow paths, due to those
many entry points
of the web application. Moreover, writing
correct state checks can be error-prone,
since not only static security policies but
also dynamic state information should be
considered. Both missing and faulty state
checks introduce logic vulnerabilities into
web applications. A web application with

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 295

logic flaws is vulnerable to a class of
attacks, which are usually referred to as
logic attacks or state violation attacks. Since
the application logic is specific to each web
application, logic attacks are also
idiosyncratic to their specific targets.
Several attack vectors that fall (or partly)
within this category include authentication
bypass, parameter tampering, forceful
browsing, etc. There are also application
specific logic attack vectors. For example, a
vulnerable ecommerce website may allow a
same coupon to be applied multiple times,
which can be exploited by the attacker to
reduce his payment amount.

IV. CATEGORIZE EXISTING
COUNTERMEASURES
A large number of countermeasures have
been developed to secure web applications
and defend against the attacks towards web
applications. These methods address one or
more security properties and instantiate
them into concrete security
specifications/policies (either explicitly or
implicitly) that are to be enforced at
different phases in the lifecycle of web
applications. We organize existing
countermeasures along two dimensions. The
first dimension is the security property that
these techniques address. The second
dimension is their design principle, which
we outline as the following three classes:
(1) Security by construction: this class of
techniques aim to construct secure web
applications, ensuring that no potential
vulnerabilities exist within the applications.
Thus, the desired security property is
preserved and all corresponding exploits
would fail. They usually design new web
programming languages or frameworks that
are built with security mechanisms, which
automatically enforce the desired security

properties. These techniques solve security
problems from the root and thus are most
robust. However, they are most suitable for
new web application development.
Rewriting the huge number of legacy
applications can be unrealistic.
(2) Security by verification: this class of
techniques aim to verify if the desired
security properties hold for a web
application and identify potential
vulnerabilities within the application. This
procedure is also referred to as vulnerability
analysis. Efforts have to be then spent to
harden the vulnerable web application by
fixing the vulnerabilities and retrofitting the
application either manually or automatically.
Techniques within this class can be applied
to both new and legacy web applications.
Existing program analysis and testing
techniques are usually adopted by the works
from this class. They have to be overcome a
number of technical difficulties in order to
achieve the completeness and correctness of
vulnerability analysis. In particular, program
analysis involves static analysis (i.e., code
auditing/review performed on the source
code without execution) and dynamic
analysis (i.e., observing runtime behavior
through execution). Static analysis tends to
be complete at identifying all potential
vulnerabilities, however, with the price of
introducing false alerts. On the other hand,
dynamic analysis guarantees the correctness
of identified vulnerabilities within explored
space, but cannot assure the completeness.
Program testing focuses on generating
concrete attack vectors that expose expected
vulnerabilities within the web application.
Similar to dynamic analysis, it also faces the
inherent challenge of addressing
completeness.
(3) Security by protection: this class of
techniques aim to protect a potentially
vulnerable web application against exploits

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 296

by building a runtime environment that
supports its secure execution. They usually
either
1) place safeguards (i.e., proxy) that separate
the web application from other components
in the Web ecosystem, or
2) instrument the infrastructure components
(i.e., language runtime, web browser, etc.) to
monitor its runtime behavior and
identify/quarantine potential
exploits. These techniques can be
independent of programming languages or
platforms, thus scale well. However, runtime
performance overhead is inevitably
introduced. Compared to a previous survey
which only focuses on vulnerability
analysis, this survey is more comprehensive
and covers the complete lifecyle of a web
application, from development,
auditing/testing to deployment. For each
individual technique, we identify its unique
strengthes and limitations, compared with
other techniques. We also discuss open
issues that remain insufficiently addressed.
Fig. 3 shows a summary of existing
techniques we have covered.
A. Input Validity
We first recall the input validity property:
All the user input should be validated
correctly to ensure it is utilized by the web
application in the intended way.
The root cause for input validation
vulnerabilities is that untrusted user input
data flows into trusted web contents without
sufficient and correct validation, which is an
instance of insecure information flow. Thus,
the information flow security model can be
naturally applied into addressing the input
validity property, which we refer to as
information flow (taint propagation)
specification. This specification is modeled
as follows in web applications. First, user
input data is marked as tainted at entry
points (i.e., sources) of the web application.

for composing SQL queries or web
responses), it has to be validated and
becomes untainted. If the above
specification is not enforced, the web
application has input validation
vulnerability. To enforce the information
flow specification, three tasks have to be
performed:
(1) user input identification, which requires
all the untrusted user data to be reliably
identified and separated from the trusted
web contents;
(2) user input tracking, which requires the
user data to be reliably recognized
throughout its flow within the application at
a certain granularity;
(3) user input handling, which requires the
user data to be correctly handled, and thus
utilized by the application in a secure way.
In practice, user input identification and
tracking can be achieved through strong
typing, variable/byte tainting and tracking,
etc. There are two general approaches for
handling untrusted user input. One is to
transform it into trusted data by sanitization
routines (i.e., sanitizers), which are usually
regarded as a black-box; the other is to
quarantine it based on certain predefined
security policies, so that potentially
malicious user input cannot be executed and
the structure integrity of web contents (e.g.,
web pages or SQL queries) is preserved.
Although the latter approach requires certain
manual intervention for specifying security
policy, it circumvents reasoning about the
correctness of sanitization routine, which
can be challenging due to its context-
sensitiveness

 V. CONCLUSION
This paper provided a comprehensive survey
of recent research results in the area of web
application security. We described unique
characteristics of web application

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 *

P a g e | 297

development identified important security
properties that secure web applications
should preserve and categorized existing
works into three major classes. We also
pointed out several open issues that still
need to be addressed. Web applications have
been evolving extraordinarily fast with new

programming models and technologies

emerging, resulting in an ever-changing

landscape for web application security with new

challenges, which requires substantial and

sustained efforts from security researchers. We

outline several evolving trends and point out

several pioneering works as follows. First, an

increasing amount of application code and logic

is moving to the client side, which brings new

security challenges. Since the client-side code is

exposed, the attacker is able to gain more

knowledge about the application, thus more

likely to compromise the server-side application

state. Several works have been trying to

address this problem [19], [43], [97], [98], [92],

[93]. Second, the business logic of web

applications is becoming more and more

complex, which further exacerbates the

absence of formal verification and robust

protection mechanisms for application logic. For

example, when multiple web applications are

integrated through APIs, their interactions may

expose logic vulnerabilities [100]. Third, an

increasing number of web applications are

embedding third-party programs or extensions,

e.g., iGoogle gadgets, Facebook games etc. To

automatically verify the security of third-party

applications and securely integrate them is

nontrivial [85]. Last but not least, new types of

attacks are always emerging, e.g., HTTP

parameter pollution attack [101], which

requires security professionals to quickly react

without putting a huge number of web

applications at risk.

REFERENCES

[1] Verizon 2010 Data Breach
Investigations
Report,http://www.verizonbusiness.com
/resources/reports/rp 2010- databreach-
report en xg.pdf.

[2] Web Application Security Statistics,
http://projects.webappsec.org/w/page/13
246989/WebApplication
SecurityStatistics.

[3] WhiteHat Security, “WhiteHat website
security statistic report 2010.”

[4] J. Bau and J. C. Mitchell, “Security
modeling and analysis,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 18–25,
2011.

[5] H. J. Wang, C. Grier, A. Moshchuk, S.
T. King, P. Choudhury, and H. Venter,
“The multi-principal os construction of
the gazelle web browser,” in
USENIX’09: Proceedings of the 18th
conference on USENIX security
symposium, 2009, pp. 417–432.

[6] S. Tang, H. Mai, and S. T. King, “Trust
and protection in the illinois browser
operating system,” in OSDI’10:
Proceedings of the 9th USENIX
conference on Operating systems design
and implementation, 2010, pp. 1–8.

