

International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 09
August 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 231

Effective Risk Communication for Android Apps

 1Ms.E. Sai Priya ; 2Mrs.N. Swapna Goud ; 3Mr.G.Vishnu Murthy
1M.Tech Student, Department of Computer Science and Engineering, Anurag Group of

Institutions, Telangana, India.
2Assistant Professor, Department of Computer Science and Engineering, Anurag Group of

Institutions, Telangana, India.
3Professor and Head of the Department, Department of Computer Science and Engineering,

Anurag Group of Institutions, Telangana, India.
1Mail id: priya.china55@gmail.com, 2Mail id: swapnagoudcse@cvsr.ac.in,

3Mail id: hodcse@cvsr.ac.in

Abstract:

The android platform adopts permissions to protect

sensitive resources from untrusted apps. However,

after permissions are granted by users at install time,

apps could use these permissions (sensitive

resources) with no further restrictions. Thus, recent

years have witnessed the explosion of undesirable

behaviors in Android apps. An important part in the

defense is the accurate analysis of Android apps.

However, traditional syscall-based analysis

techniques are not well-suited for Android, because

they could not capture critical interactions between

the application and the Android system. This paper

presents VetDroid, a dynamic analysis platform for

generally analyzing sensitive behaviors in Android

apps from a novel permission use perspective.

VetDroid proposes a systematic permission use

analysis technique to effectively construct permission

use behaviors, i.e., how applications use permissions

to access (sensitive) system resources, and how these

acquired permission-sensitive resources are further

utilized by the application. With permission use

behaviors, security analysts can easily examine the

internal sensitive behaviors of an app. Using real-

world Android malware, we show that VetDroid can

clearly reconstruct fine-grained malicious behaviors

to ease malware analysis. We further apply VetDroid

to 1249 top free apps in Google Play. VetDroid can

assist in finding more information leaks than

TaintDroid, a state-of-theart technique. In addition,

we show how we can use VetDroid to analyze fine-

grained causes of information leaks that TaintDroid

cannot reveal. Finally, we show that VetDroid can

help to identify subtle vulnerabilities in some (top

free) applications otherwise hard to detect. .

Keywords

Android Security, Permission Use Analysis,

Vetting Undesirable Behaviors, Android Behavior

Representation.

1. Introduction

Smartphone platform are becoming more and

more popular these days. To protect sensitive

resources in the smart phones, permission-based

isolation mechanism is used by modern smart phone

systems to prevent untrusted apps from unauthorized

accesses. In Android, an app needs to explicitly

request a set of permissions when it is installed.

After permissions are granted to an app, there is no

way to inspect and restrict how these permissions are

used by the app to utilize sensitive resources.

Unsurprisingly, Android has attracted a huge number

of attacks. According to McAfee threat report of Q3

2012, Android remains the largest target for mobile

malware and the number almost doubled in Q4 2012.

While these malware apps are clear examples

containing undesirable behaviors, unfortunately even

in supposedly benign apps, there could also be many

hidden undesirable behaviors such as privacy

invasion.

An important part in the fight against these

undesirable behaviors is the analysis of sensitive

behaviors in Android apps. Traditional analysis

techniques reconstruct program behaviors from

collected program execution traces. A rich literature

exists that focuses on solutions to construct effective

behavior representations. All these research efforts

have mostly used system calls to depict software

behaviors because system calls capture the intrinsic

characteristics of the interactions between an

application and the underlying system. Previous

studies differ from each other only in how to

structure the set of system calls made by the

applications is not readily applicable due to the

following unique features of Android.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/
mailto:priya.china55@gmail.com
mailto:swapnagoudcse@cvsr.ac.in
mailto:hodcse@cvsr.ac.in

International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 09
August 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 232

Fig. 1. Limitations of syscall-based solutions on

Android platform.

A. Android Framework Managed Resources

 As depicted in Figure 1, Android is an

application framework on top of Linux kernel where

applications do not directly use system calls to access

system resources. Instead, most system resources in

Android are managed and protected by the Android

framework, and the application-system interactions

occur at a higher semantic level (such as accessing

contacts, call history) than system calls at the Linux

Kernel level. Indeed, Android provides specific APIs

for applications to access system resources and

regulates the access rules. Using system calls to learn

the interaction behaviors between applications and

Android will lose a semantic view of accesses to

Android resources, degrading the quality and

precision of the reconstructed behaviors.

B. Binder Inter-Process Communication (IPC)

In Android, system services are provided in

separated processes, with a convenient IPC

mechanism (Binder) to facilitate the communication

among system services and applications. Binder IPC

is heavily used in Android and recommended in the

design of applications. Figure 1 demonstrates the

problems brought by the wide use of IPC to

traditional syscall-level behavior reconstruction.

First, traditional solutions would only intercept a lot

of system calls used to interact with the Binder

driver, hiding the real actions performed by the

application. Second, the use of IPC in Android apps

breaks the execution flow of an app into chains

among multiple processes, making the evasion of

traditional syscall-based behavior monitoring easier.

C. Event Triggers

Android employs an event trigger mechanism to

notify interested applications when certain

(hardware) events occur. In this model, for example,

if an application wants to be notified when the

phone’s location changes, it just needs to register a

callback for such an event. When Android sniffs a

location change event from the location sensors, it

notifies all the interested applications of the latest

location by invoking their registered callbacks.

Although the event notification is proceeded via

Binder IPC (sycall), this asynchronous resource

access model via system delivery is quite different

from the synchronous application-request access

model in three aspects. First, selecting privileged

event notifications in a syscalls requires ad-hoc

Binder IPC dissecting. Second, intercepting event

notification is far away from identifying the

callbacks because application may have its specific

logic in dispatching events to specific callbacks.

Thirdly, could find that application registered

callbacks are application code, so their executions

cannot be captured with syscalls. As a result,

traditional behavior reconstruction methods will lose

such important behavior characteristics. The above

analysis indicates that a general method to analyze

sensitive behaviors of Android apps is highly

desired. Since Android does not use system calls as

the main mechanism to isolate applications, system

calls do not appear to be a good vehicle for

representing behaviors.

Apps are developed in such way that to protect

sensitive resources in the smart phones. Permission -

based isolation mechanism is used by modern smart

phone systems to prevent untrusted apps from

unauthorized accesses. The main challenge to protect

sensitive data. Permission Use Analysis as a new

and complementary aspect in analyzing Android

apps.

2. Literature Survey

Security Analysis can be described as a

systematic analysis technique using permission. This

paper elaborates a dynamic analysis platform for

generally analyzing sensitive behaviors in Android

apps called ‘Security Analysis’ using permission

base analysis. It actually shows how applications use

permissions to access sensitive resources, and how

these acquired permission sensitive resources are

further utilized by the application. Internal

behaviours of apps can be easily tested using

permission behaviours. Security Analysis can also

remake the fine-grained behaviours. Security

Analysis can track all potential sensitive behaviours

inside the apps. Security Analysis overcomes the

problems of previous already done researches.

Android-based Smartphone users can get free

applications from Android Application marketing

platform. But, certification of application is not done

by organizations and they may contain malware

applications that can steal privacy information for

users. Permissions are adapted by android platform

in order to protect sensitive resources from untrusted

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 09
August 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 233

apps. After permissions are granted by users at install

time, applications can use these permission with no

further restrictions. Recent years have witnessed the

expandation of undesirable behaviors in Android

apps. Analysis of android apps must be done

correctly. As traditional system call based analysis

techniques could not capture critical interactions

between the application and the Android system, are

not well suited for android. Internal behaviors of

apps can be easily examined by security analysts

using permission behaviors. Using real-world

Android malware, security analysis can clearly

reconstruct fine-grained malicious behaviors to ease

malware analysis. Security Analysis can assist in

finding more information leaks than Taint Droid, a

state-of-threat technique.

 Smartphone can be described as a mobile device

equipped with enhanced computing capability and

connectivity, such as iPhone by Apple, Windows

Phone by Microsoft, etc. In the past few years, the

global telephony industries have increased the sales

of Smartphones. A Smartphone is usually sold with

an in-built mobile operating system (OS) together

with a number of pre-installed ‘‘applications’’

packaged by the device manufacturer. An

application, the software running on smart phones,

enhances the Smartphone’s functionality and

supports the interaction with end users to accomplish

their tasks. web browser, alarm clock, address book,

media player and Calendar are the common

applications provided by the device manufacturers,

but one important application exists on every

Smartphone—the ‘‘application store’’, which allows

end users to access online application markets to

browse and download additional applications of their

choice. Smartphone application distribution was

highly dependent on third party sources, where

individual application developers were free to upload

their products. There is still a large group of end

users who prefer visiting third-party application

markets, due to a huge number of low-price

applications being available. But not all the

applications from markets are ‘‘safe’’. The software

that is specially designed to harm a device, its OS or

other software is called ‘‘Malware’’, which stands

for ‘malicious software’. The increasing sales of

smart phones has increased the growth of mobile

malware.

After an application is installed, a set of

application programming interfaces (APIs) are called

during the runtime. Each API call is associated with

a particular permission. When an API call is made,

the Android OS checks whether or not its associated

permission has been approved by the user. Only a

match result will proceed to execute the certain API

call. In this way, the required permissions are able to

protect the user’s privacy-relevant resource from the

unauthorized operations. It cannot fully stop the

malware developers who can declare any required

permissions for their applications. Smartphones

platforms are becoming more and more popular these

days. To protect sensitive resources in the smart

phones, permission-based isolation mechanism is

used by modern Smartphone systems to prevent

entrusted apps from unauthorized accesses. In

Android, an app needs to explicitly request a set of

permissions when it is installed. , After permissions

are granted to an app, there is no way to inspect and

restrict how these permissions are used by the app to

utilize sensitive resources. Unsurprisingly, Android

has attracted a huge number of attacks. While these

malware apps are clear examples containing

undesirable behaviors, unfortunately even in

supposedly benign apps, there could also be many

hidden undesirable behaviors such as privacy

invasion. An important part in the fight against these

undesirable behaviors is the analysis of sensitive

behaviors in Android apps. Security Analysis can be

used to analyze fine-grained causes of information

leaks that Taint Droid cannot reveal. All the

researches efforts for these have mostly used system

calls to depict software behaviors because system

calls capture the intrinsic characteristics of the

interactions between an application and the

underlying system.

3. System Analysis

A. Existing System

Traditional techniques for analyzing malware

permission related analysis techniques.

a) Malware Analysis

Plenty of studies have focused on analyzing

malware at the level of system call. In sequenced

system calls with arguments were translated into

actions that capture the sample’s behaviors, such as

changes to file system, modifying registries.

Crowdroid used system call vectors to represent the

signature of malicious behaviors. The temporal

pattern of system calls was proposed to depict the

application behavior for Symbian platform. The

limitation of reconstructing behaviors using linear

system calls with a large-scale study. They

reconstructed resource access behaviors by

considering read/write system calls to identify

malicious intents with the observation that most

benign programs access their own files and registries.

Dependency graphs of system calls were firstly

proposed in to represent behaviors. It captures the

intrinsic application-system interactions and seems to

be a good solution for behavior representation. In

researchers reconstructed dependencies among

system calls by matching the types of their

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 09
August 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 234

arguments and return values. Comparettital

employed dynamic taint analysis to track the

dependencies among system calls.

Syscall-based techniques are not well-suited for

the Android platform due to the inability of

monitoring Android-specific behaviors. DroidScope

seems to notice these problems by seamlessly

reconstructing the semantics from system calls and

Java. It only refines existing work, leaving the root

problems of Android’s special permission

mechanism and programming model untouched.

Although they were reported to detect known and

unknown malware samples, the do not analyze the

fine-grained internal behaviors of malware samples,

which is the focus of Security Analysis

b) Permission Analysis

 The effectiveness of the time-of-use and install-

time permission grant mechanism. This work was

extended in to provide guidelines for platform

designers in determining the most appropriate

permission-granting mechanism for a given

permission. Permission-based security rules were

used to design a lightweight certification framework

that could mitigate malware at install time. Android’s

permission system by introducing runtime

constraints on the granted permissions. Mobile IFC

introduced context-aware policies for permission

enforcement. In this permission model, permissions

are granted depending on the device state, such as the

GPS location or time of the day. This mechanism

brings a new kind of flexibility and interesting

security applications. To help end users understand

application behaviors at install time, AppProfiler

devised a two-step translation technique which maps

API calls to high-level behavior profiles. While

Security Analysis also tries to provide better

behavior understanding, it is a tool provided for

different users (security analysts) and it uses a

different new technique/perspective (permission use

behavior) to precisely capture application-system

interactions and sensitive behaviors inside an app.

novelly leveraged Natural Language Processing

(NLP) techniques to assess the risks of application by

measuring whether the developers have explicitly

explained the reasons for requiring permission-

sensitive resources in its functional descriptions.

Performed an empirical analysis on the

expressiveness of Android’s permission sets and

discussed some potential improvements for

Android’s permission proposed the first solution to

systematically detect over privileged permissions in

Android apps and one third of the applications in this

study were found to be over privileged. Probabilistic

models of permission request patterns or permission

request sets were also used to indicate the risk of new

applications. To extract permission specifications for

Android, used API fuzz testing while adopted static

analysis on Android source code.

 Copper Droid was an analysis tool to reconstruct

Android-specific behaviors with syscall-level

introspection. It might be more suited for large-scale

automated analysis, while Security Analysis to help a

human analyst to understand much better internal

behaviors of the analyzed malware. Our Security

Analysis differs from all existing work in that it

provides the first systematic frame.

B. Proposed System

Security Analysis:

 Design a dynamic analysis system called Security

Analysis to automatically perform permission use

analysis on Android apps. It is non-trivial to

construct an effective permission use analysis

technique. Security Analysis overcomes several key

challenges to completely identify all permission

sensitive behaviors with accurate permission use

information during the runtime. Analysis is

performed in two phases: first, Security Analysis

identifies all sensitive interactions between the

Android system and apps with accurate permission

use information by intercepting all invocations to

Android APIs and sniffing exact permission check

information from Android’s permission enforcement

system; second, based on the identified sensitive

interactions, Security Analysis tracks all potential

sensitive behaviors inside the apps, by recognizing

the exact delivery point in the application for each

permission-sensitive resource and locating all the use

points of these resources with permission-based

tainting analysis. Security Analysis also features a

driver to enlarge the scope of the dynamic analysis to

cover more application behaviors and a behavior

profiler to generate behavior graphs with highlighted

sensitive behaviors for analysts to examine.

To evaluate the effectiveness of permission use

analysis and to analyze Security Analysis real-world

Android malware. The results show that the

permission use behaviors reconstructed by Security

Analysis can significantly ease the malware analysis.

Apply Security Analysis to more than one thousand

top free apps in Google Play Store. Security Analysis

finds more information leaks than the state-of-the-art

leak detection system TaintDroid and shows its

capability to analyze the fine-grained incentives of

information leaks among the apps. Security Analysis

even detects subtle Account Hijack Vulnerability in a

top free Android app. The analysis overhead caused

by Security Analysis is reasonably low for an offline

analysis tool.

 This paper makes the following major

contributions.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 09
August 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 235

•Analyze the limitations of existing syscall-based

behavior analysis methods when applied to Android

platform and propose permission use analysis as a

new perspective to analyze Android apps.

•Present a systematic framework to reconstruct

permission use behaviors. Our automated solution is

able to completely identify all possible permission

use points with accurate permission information.

• Implement a prototype system, Security

Analysis, and evaluate its effectiveness in analyzing

real-world Android apps. Security Analysis not only

greatly eases the analysis of malware behaviors, but

also assists in identifying fine grained causes for

information leakages and even subtle vulnerabilities

in benign Android apps otherwise hard to detect.

Vetting Market Apps

Next,use Security Analysis to vet 1,249 top

(benign) apps crawled from Google Play official

store. These apps are top free apps crawled from 32

different categories such as games, education,

entertainment, finance, social, sports, tools. Also use

multiple emulators to parallelize the process of

reconstructing permission use behaviors for these

apps. There are several interesting findings.

Finding 1 (Security Analysis Can Assist in

Finding More Information Leaks Than TaintDroid):

Based on the reconstructed permission use behaviors,

implement a simple permission-based filter that

selects permission use graphs with at least one

permission to read system resource and one

permission to exfiltrate data to a remote party. The

selected graphs are further classified with regard to

E-PUPs. Manually check these classified behaviors

and confirm four kinds of information leaks, as listed

in Table IV.

Finding 2 (Security Analysis Can Inspect the

Fine-Grained Causes of Information Leakage):

Permission Use Analysis captures the internal logic

of permission usages inside an app, enables us to

analyze the fine-grained procedure of information

leakage. Analyze the permission use behaviors of

several information leaks reported by Security

Analysis to investigate the contexts of reading and

leaking sensitive information. Mainly focus on

Phone Number and Location leakage cases because

they are relatively interesting.

Finding 3 (Security Analysis Can Help Detect

Subtle Application Vulnerabilities): Since SMS

service is unique and quite important for smart

phones, analyze 33 apps that request both

RECEIVE_SMS and SEND_SMS permissions by

running these apps in Security Analysis By carefully

examining the permission use behaviors, find that the

Viber application is vulnerable to Account Hijack

attack.

Use Security Analysis to reconstruct the

permission use behavior of the activation process. As

Viber intercepts incoming SMS messages in

ActivationSmsReceiver, and extracts the activation

code from the message body using a regular

expression. Once an activation code is matched, the

activation process is proceeded in the Registration

Activity. ActivationCodeReceived() function. By

carefully examining the whole permission use

behavior, Viber does not check the origin of an

activation SMS. An attacker could pass the activation

by intercepting the activation SMS from the victim

and sending it to the attacker’s Viber client, causing

the victim’s account hijacked. It is not hard to steal

an SMS from a victim, especially when the Account

Hijack attack on the victim could lead to a

reasonable profit. SMS stealing could be possibly

implemented by malware such as SMSReplicator. To

further confirm this vulnerability, perform an

experiment to hijack the Viber account of avolunteer

in our group. By stealthily replacing an app in his

smartphone into our repackaged version (the

activation SMS from Viber server is forwarded by

our repackaged app to the attacker’s device. After

binding the volunteer’s phone number to the

attacker’s device, free calls and messages are

successfully initiated to his friends on behalf of his

identity.

4. Design and Implementation

A. Modules

1. Security Analysis model.

2. Permissions use Analysis module.

3. Trigger module.

Module Description:

Security Analysis model:

 A risk signal two relevant measures are the

warning rate which defines how often a user receives

warnings generated by the risk signal and the

detection rate which defines what percentage of

malicious apps will trigger the signal.

Permissions use Analysis module:

Risk signals based only on apps from the Android

market are more robust as they are not tuned to

detect malicious apps in our particular data set, and

aim only at detecting apps that request too much

permission. Furthermore, it may be desirable for the

signals to use only critical

Trigger module:

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 09
August 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 236

Different apps have different functionalities, and thus

may require different permissions; it thus makes

sense to take into account the intended functionality

of an app when deriving a risk signal based on

permissions.

5. Conclusion

The results from four user studies validated our

hypothesis that when risk ranking is presented in a

user-friendly fashion, e.g., translated into categorical

values and presented early in the selection process, it

will lead users to select apps with lower risk. The

majority of participants preferred to have such a risk

metric in Google Play Store. A risk metric would

cause positive changes in the app ecosystem. When

users prefer lower-risk apps, developers will have

incentives to better follow the least-privilege

principle and request only necessary permissions. It

is also possible that the introduction of this risk score

will cause more users to pay for low risk apps.

Creates an incentive for developers to create lower

risk apps that do not contain invasive ad networks

and in general over-request permissions. Our studies

are not the last word on the question of how to best

present risk information. For example, we have also

not examined how the risk score interacts with other

factors to affect a user’s choice, such as user ratings

in the natural setting and whether an app is free or

not. Also of interest is how users behave when

choosing among a list of search results (as opposed

to choosing between two options). These topics are

important ones for future research.

6. References

[1] W. Enck et al., “TaintDroid: An information

flow tracking system for real-time privacy

monitoring on smartphones,” in Proc. 9th USENIX

Conf. OSDI, pp. 1–6, 2010.

[2] IDC: Android Market Share Reached 75%

Worldwide in Q3 2012. [Online]. Available:

http://techcrunch.com/2012/11/02/idc-android-

Market-share-reached-75-worldwide-in-q3-2012/,

accessed May 7, 2013.

[3] D. Barrera, H. G. Kayacik, P. C. van

Oorschot, and A. Somayaji, “A methodology for

empirical analysis of permission-based security

models and its application to Android,” in Proc. 17th

ACM CCS, 2010, pp. 73–84.

[4] Mcafee Threats Report: Third Quarter 2012.

[Online]. Available: http://www.mcafee.com/ ca/

resources / reports / rp - quarterly - threat - q3-

2012.pdf, accessed May 7, 2013.

[5] K. Rieck, T. Holz, C. Willems, P. Düssel, and

P. Laskov, “Learning and classification of malware

behavior,” in Proc. 5th Int. Conf. DIMVA,

Jul. 2008, pp. 108–125.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/
http://techcrunch.com/2012/11/02/idc-android

