

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

COMPILER & IT’S PHASES Piyush chutani1, Rohan khanna, Puneet bhalla

P a g e | 500

Compiler & It’s Phases

 Piyush chutani
1
, Rohan khanna

2
, Puneet bhalla

3

 (Student, Dept. of computer science . DCE, Gurgaon, India)

 ABSTRACT

Compiler is the set of program that translate a

program written in source language into

target language (machine language). In this

paper we discuss about compiler, analysis

synthesis model of compiler, phases of

compiler, need of compiler and error handler.

As we know source program or code written in

high level language and convert into machine

language. After compilation target program

can be executed to process input and produce

output. Each phase perform their own task and

produce output. These phases linked to each

other and output of one phase passes to other

and final intermediate program is produced

from compiler. Working of each phase is

described in this paper.

Key words- Design, Token, attribute, model,

memory.

1. INTRODUCTION

 Compiler is a program that compiles a source

program into target program. Compilation is

the term or concept in production of any

software. It act as link between application

written in high level platform and low level

platform(where the application executed on

machine.) The compilation means translation

of high level code into machine level code.

The output of translation is independent

executable program that can run directly.

 Source pg. Target Pg.

 Error message

 Fig. 1. Compiler structure

2. ANALYSIS SYNTHSIS MODEL OF

COMPUTER

In the analysis synthesis model we done

compilation in two phase. The two phases are

2.1 Analysis phase - It is the first phase of

modal. In analysis phase an intermediate

representation is formed from the given

source code/program. In this phase

information is collected from source code

store that information into data structure

symbol table. This phase is also called

“front end” . Various part of this phase

are

 Lexical analyzer

 Syntax analyzer

 Semantic analyzer

2.2 Synthesis phase - It is the second phase

of model. In synthesis phase an

intermediate representation get from

analysis phase are converted into target

Compiler

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

COMPILER & IT’S PHASES Piyush chutani1, Rohan khanna, Puneet bhalla

P a g e | 501

program. This phase is also called “Back

end”. Various part of this phase are

 Intermediate code generator

 Code Generator

 Code optimizer

3. PHASES OF COMPILER

There are six phases of compiler. Each phase

interacts with a symbol table Manager and

error handler. Each phase uses an intermediate

form of the program produced by an earlier

phase.

3.1 LEXICAL ANALYZER

It is first phase of compiler. It is the phase the

program break into lexemes. Each lexeme

corresponds to atomic logical entity. For each

lexeme the lexical analyzer produce output in

the form of token.

Syntax-< Token_name, attribute_value >

 Token _name is an abstract

symbol that is used during

syntax analysis.

 Attribute_name points to an

entry in symbol table for this

token.

The information from symbol table is needed

for semantic analysis and code generation

 Consider the given statement in source code.

 Alpha = Beta + bit * 50

 This statement converted into lexeme and

token is produced for each lexeme.

 Table1. lexeme’s correspond token

 Lexeme

 Token

 Alpha t1

 = op11

 Beta t2

 + op22

 Bit t3

 * op33

 50 number1

Fig..2. After lexical analyzer

 3.2 SYNTAX ANALYZER

It is second phase of compiler. The

input to this phase is the group of

token produced by lexical analyzer. In

this parser check that received tokens

are correct order. It arrange group of

token in grammatical phrase. It

perform various task such as

 Validate syntax- Check

whether group of token meets

grammatical scheme.

 Generate syntax tree-

Construct the syntax (parser)

tree.

 Syntax error is produced-

Message of error is shown if

any.

 Alpha = Beta + bit *

50

 Lexical analyzer

 t1 = t2 + t3 * 50

 Syntax analyzer

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

COMPILER & IT’S PHASES Piyush chutani1, Rohan khanna, Puneet bhalla

P a g e | 502

Syntax Tree-The parse tree describe the

syntactic structure of input. It also reflects the

structure of program.

. Fig.3.Syntax tree

 Fig..4. After syntax analyzer

3.3 SEMANTIC ANALYZER

It is the third phase of compiler. The input to

this phase is syntax tree produce by syntax

analyzer.

Function of semantic analyzer

Disambiguate overloaded operators- Specify

the meaning of each overloaded operator if

any.

Uniqueness checking- Name of the

variable is unique.

Type checking - It is the process of

checking type of variable. This may

occur either at compile time or at

run time.

Type coercion- It refers to type

conversion. If operator applied to

floating point number and integer

then compiler may coercion the

integer into floating point number.

Example shows below.

Fig.5. Coercion concept

3.4 INTERMEDIATE CODE

GENERATOR

It is the fourth phase of compiler. In this

source program is converted into machine

independent intermediate language. In this the

intermediate representation as a program for

an abstract machine. It is the solution for

avoiding the construction P x Q compilers.

Where

P = numbers of source language

 =

 t1 +

 t2 *

 t3 50

 =

 t1 +

 t2 *

 t3 int to

float

 float 50

 coercion applied

 t1 = t2 + t3 * 50

 Syntax analyzer

 =

 t1 +

 t2 *

 t3 50

 Semantic analyzer

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

COMPILER & IT’S PHASES Piyush chutani1, Rohan khanna, Puneet bhalla

P a g e | 503

Q= number of object language

There are two properties for intermediate

representation

 It is easy to produce.

 It is easy to easy to translate into

target (machine) language.

 Three address code

 Str1 := int to float(50)

 Str2 := t3 * Str1

 Str3 := t2 + Str2

 t1 := Str3

 Fig.6. After Intermediate code generation

3.5 CODE OPTIMIZATION

It is the fifth phase of compiler. This phase is

used for improvement in intermediate code

received from intermediate code generation.

Aim of this phase to produce better target

code. The term better refers to less coding,

easily running and less time consuming. Here

conversion is take place of integer to floating

point. It can be done once for all time

compilation.

Apply code optimization

Str1 = t3 + 50.0

t1 = t2 + Str1

 Fig.7. After code optimization

3.6 CODE GENERATION

It is the sixth phase of compiler. Its input

is the intermediate code generated from

previous phase. Then it produced the

target program. The target program

consist register address, memory

locations and various machine code.

Here we are using two registers named

X1 and X2 and corresponding procedure

followed.

LDF X2, t3

MULF X2 * #50.0

LDF X1, t2

ADDF X1, X1 ,X2

STF t1, X2

 Semantic analyzer

 =

 t1 +

 t2 * coercion applied

 t3 int to float

 float 50

 Intermediate code generation

 Str1 := int to float(50)

 Str2 := t3 * Str1

 Str3 := t2 + Str2

 t1 := Str3

 Intermediate code generation

 Str1 := int to float(50)
 Str2 := t3 * Str1

 Str3 := t2 + Str2

 t1 := Str3

 code optimization

 Str1 = t3 +50.0

 t1 = t2 + str1

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

COMPILER & IT’S PHASES Piyush chutani1, Rohan khanna, Puneet bhalla

P a g e | 504

Fig.8. After code generation

4. BLOCK DIAGRAM OF COMPILER

Fig.9. phases of compiler (ref.

www.google.com)

 5. ERROR HANDLING

The compiler perform a special function called

error handling. The error handling include the

detection and reporting of errors. When each

phase of compiler is performing their working

if any error exist their then error handler

automatically called and report as an error and

give the details of error. Such as it give the

numbers of line at which error is happened and

detail of error (what type of error is

happened). So it interact with all phases of

compiler.

 6. NEED OF COMPILER

 Various point clear the need of compiler are.

 Efficient for hardware.

 More user friendly.

 Platform independent

 Easy to avoid error

 Fill the semantic gap b/w higher

level language and machine

language.

 7. CONCLUSION

 The compiler externally seen as a single a

single unit but internally it work’s in different

phases. Each phase has its own work. The

output of one phase is passes to next phase.

The detect the error in source program and

make easier for user to correct the program.

We need one time compilation. It become

intermediate between higher level language

and machine language.

 8. REFRENCES

1. Dr. Matt Poole 2002, Compilers

edited by Mr. Christopher Whyley,

2nd Semester 2006/2007.

2. “Compilers” http://www.info.univ-

tours.fr/˜mirian/.

3. “Basics of Compiler Design”

http://www.diku.dk/_torbenm/Basics

 Str1 = t3 +50.0

 Code generation

 LDF X2, t3

 MULF X2 * #50.0

 DF X1, t2

 ADDF X1, X1 ,X2

 STF t1, X2

