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Abstract: 

The objective of this paper to find the 

numerical solution of unsteady magneto hydro 

dynamic free convective Couette flow of viscous 

incompressible fluid confined between two vertical 

permeable parallel plates in the presence of thermal 

radiation is performed. A uniform magnetic field 

which acts in a direction orthogonal to the permeable 

plates, and uniform suction and injection through the 

plates are applied. The magnetic field lines are 

assumed to be fixed relative to the moving plate. The 

momentum equation considers buoyancy forces while 

the energy equation incorporates the effects of 

thermal radiation. The fluid is considered to be a 

gray absorbing – emitting but non – scattering 

medium in the optically thick limit. The Roseland and 

approximation is used to describe the radioactive 

heat flux in the energy equation. The two plates are 

kept at two constant but different temperatures and 

the viscous and Joule dissipations are considered in 

the energy equation. The non – linear coupled pair of 

partial differential equations are solved by an 

efficient Crank Nicholson method. With the help of 

graphs, the effects of the various important flow 

parameters entering into the problem on the velocity, 

temperature and concentration fields within the 

boundary layer are discussed. Also the effects of 

these flow parameters on skin friction coefficient and 

rates of heat and mass transfer in terms of the Nussle 

and Sherwood numbers are presented numerically in 

tabular form. 

 

Keywords: Free convection, MHD, Viscous 

dissipative fluid, Thermal radiation, Coquette flow, 
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Introduction: 

The study of free convection flow is useful 

for energy – related engineering applications such as 

geophysics and problems involving the spread of 

pollution. Soriano et al. [1] studied free convection  

 

 

flow along an isothermal vertical finite plate 

using perturbation analysis, and the velocity and 

temperature fields were obtained for small Gash of 

number. This problem was extended by Soriano and 

Wang – Tzu [2] to include moderate Gash of 

numbers by using a numerical finite difference 

scheme. The effect of natural convection on unsteady 

Coquette flow was studied by Singh [3]. The Laplace 

transform technique was used to obtain the velocity 

and temperature fields, the skin friction and rate of 

heat transfer. It was observed that an increase in the 

Gash of number results in an increase in the flow 

velocity. Jha [4] extended the work of Singh [3] by 

discussing the combined effects of natural convection 

and a uniform transverse magnetic field when the 

magnetic field is fixed relative to the plate or fluid. 

Using the Laplace transform technique, exact 

solutions were obtained for the velocity and 

temperature fields.  

 

The trends observed with respect to the 

magnetic field strength were consistent with those 

observed in [5]. Singh et al. [6] compared the 

unsteady free convection Coquette flow at large 

values of time with the corresponding steady-state 

problem and found that they are in good agreement. 

It was also observed that the flow velocity decreases 

with increasing Prandtl number. Jha and Apere [7] 

extended the work of Jha [4] by considering the 

unsteady MHD free convection Coquette flow 

between two vertical parallel porous plates with 

uniform suction and injection. The cases where the 

magnetic field is considered fixed relative to the fluid 

and fixed relative to the moving plate were 

considered. The velocity and temperature 

distributions were obtained using the Laplace 

transform technique. The results revealed that both 

temperature and velocity decrease with increasing 

Prandtl number and with increasing suction/injection 

parameter. The effect of magnetic field strength on 

the velocity is consistent with the results obtained in 
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[3] and [5]. The velocity has also been found to 

increase with increasing Gash of number. 

 

Couette flows find widespread applications 

in geophysics, planetary sciences and also many 

areas of industrial engineering. For many decades 

engineers have studied such flows with and without 

rotation and also for both the steady case and 

unsteady case. Both Newtonian and non – Newtonian 

flows with for example magnetic field effects and 

heat transfer have also been examined. Such studies 

have entailed many configurations including the flow 

between rotating plates, rotating concentric cylinders, 

etc. In rotating Coquette flows a viscous layer at the 

boundary is instantaneously set into motion. An early 

study of unsteady Coquette flow was reported by 

Vidyanidhi and Nigam [8] who studied the viscous 

flow between rotating parallel plates under constant 

pressure gradient. Verma and Sehgal [9] used the 

micro polar flow model to obtain analytical solutions 

for the Coquette flow of fluids which can support 

couple stresses and distributed body couples. Liu and 

Chen [10] investigated computationally the transient 

rotating Coquette flow problem. Jana and Datta [11] 

studied the steady Coquette flow of a viscous 

incompressible fluid between two infinite parallel 

plates, one stationary and the other moving with 

uniform velocity, in a rotating frame of reference. 

Heat transfer rates were shown to decrease with an 

increase in rotation parameter. Seth et al. [12] studied 

the transient magneto hydro dynamic Coquette flow 

between parallel rotating plates with one plate 

moving with a time – dependent velocity in its own 

plane. Both impulsive start and accelerated startup of 

the moving plate were considered.  

 

An asymptotic solution was presented for 

both large and small times and shear stresses at the 

moving plate due to primary and secondary flows 

computed. An increase in rotation parameter was 

shown to elevate the secondary flow shear stress 

component but depress values of the primary flow 

component. Mandal and Mandal [13] obtained 

analytical solutions for the effects of magnetic field 

and Hall currents on rotating parallel plate Coquette 

flow. They also studied the case where the plates 

have arbitrary conductivity and thickness. The 

transient dusty suspension Coquette flow problem 

was studied by Kythe and Puri [14]. Singh et al. [15] 

obtained closed form solutions for velocity and skin 

friction for rotating hydro magnetic Coquette flow, 

showing that the Ekman number decreases primary 

velocities but boosts the secondary velocity values. 

The converse effect was reported for the magnetic 

parameter (Hartmann number).  

 

Main purpose of this present paper is to find 

the numerical solution of unsteady magneto 

hydrodynamic free convective Coquette flow of 

viscous incompressible fluid confined between two 

vertical permeable parallel plates in the presence of 

thermal radiation is performed. A uniform magnetic 

field which acts in a direction orthogonal to the 

permeable plates, and uniform suction and injection 

through the plates are applied. The magnetic field 

lines are assumed to be fixed relative to the moving 

plate. The momentum equation considers buoyancy 

forces while the energy equation incorporates the 

effects of thermal radiation. The fluid is considered to 

be a gray absorbing – emitting but non – scattering 

medium in the optically thick limit. The Roseland 

approximation is used to describe the radioactive heat 

flux in the energy equation.  

 

The non – linear coupled pair of partial 

differential equations are solved by an efficient Crank 

Nicholson method which is more economical from 

computational point of view. The resulting system of 

equations are solved to obtain the velocity and 

temperature distributions. These solutions are useful 

to gain a deeper knowledge of the underlying 

physical processes and it provides the possibility to 

get a benchmark for numerical solvers with reference 

to basic flow configurations. The mathematical 

analysis and the method of solution of this paper have 

been presented in Section 2 and 3 respectively and 

the results are discussed in Section 4 and the 

conclusions are set out in Section 5. 

 

Mathematical formulation: 

The incompressible Newtonian fluid flows 

between two parallel vertical non – conducting 

permeable plates. These plates are located on planes 

0y and hy  , and are infinite in the x and 

z directions. The plate at hy   is stationary and 

the other plate moves with time – dependent velocity 
n

otU   in the positive x direction (where oU is 

constant and n is a non – negative integer). The 

temperature of the moving and stationary plates are 

fixed at wT  and hT   respectively, with hw TT  . 

Uniform suction through the moving plate and 

uniform injection through the stationary plate are 
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applied through the plates at 0t  in the negative y direction. 
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Figure 1. Physical model of the problem 

We make the following simplifying assumptions. 

1. A uniform magnetic field oB is applied in the positive y direction and is assumed undisturbed as the 

induced magnetic field is neglected by assuming a very small magnetic Reynolds number.  

2. It is assumed that the external electric field is zero and the electric field due to the polarization of charges is 

negligible. 

3. The homogeneous chemical reaction of first order with rate constant between the diffusing species and the 

fluid is neglected.  

4. The concentration of the diffusing species in the binary mixture is assumed to be very small in comparison 

with the other chemical species, which are present and hence Soret and Duffer effects are negligible. 

5. The fluid has constant kinematic viscosity and constant thermal conductivity and the Bossiness’s 

approximation have been adopted for the flow.  
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6. The fluid is a gray and optically thick absorbing emitting but non – scattering medium. 

7. The fluid has a refractive index of unity. 

Under the above assumptions, the governing equations are: 

Continuity Equation: 

0




y

u

                                                                                                                                       

(1) 

Momentum Equation: 
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Energy Equation: 
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(3) 

Where u  is the flow velocity in x direction, 
 
is the fluid density, g

 
is the acceleration due to gravity, 

 
is 

the coefficient of viscosity, 
 
is the coefficient of thermal expansion, T   is the fluid temperature, 

 
is the 

electrical conductivity, pC
 
is the specific heat capacity at constant pressure,   is the thermal conductivity and rq

 
is the radioactive heat flux. 

The corresponding initial and boundary conditions are 




















hyatTTu

yatTTtUu
t

hyforTTut

h

w

n

o

h

,0

0,
:0

0,0:0

                                                                                               (4) 

The radioactive heat flux term is simplified by making use of the Roseland approximation [36] as 

y

T

k
qr




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4

*3

4
                                                                                  (5) 

Here    is Stefan – Boltzmann constant and  
*k  is the mean absorption coefficient. It is assumed that the 

temperature differences within the flow are sufficiently small so that 
4T  can be expressed as a linear function of T 

after using Taylor’s series to expand 
4T  about the free stream temperature hT 

 
and neglecting higher – order terms. 

This results in the following approximation: 
434 34 hh TTTT                                          (6) 

Using equations (5) and (6) in the last term of equation (3), we obtain: 
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(7) 

Introducing (7) in the equation (3), the energy equation becomes: 
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To find the solutions of equations (2), (3) and (8) subject to the initial and boundary conditions (4), two cases are 

considered:  

1. Impulsive movement of the plate at 0y  (i.e. 0n ) and  

2. Uniformly accelerated movement of the plate at 0y  (i.e. 1n ).  

Case – I: Impulsive movement of the plate 0y : 

Taking 0n in equation (2) and introducing the following non – dimensional quantities in equations (2), (3) and 

(8): 
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The equations (2) and (3), using non – dimensional quantities (9) reduce to the following                                    non 

– dimensional form of equations: 
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Where Gr  is the thermal Gash of number, M is the Magnetic field (Hartmann number), a  is the Accelerating 

parameter, Pr  is the Prandtl number, R  is the thermal radiation parameter and Ec  is the Eckert number. 

The initial and boundary conditions (4) reduce to: 




















10,0

01,1
:0

100,0:0

yatu

yatu
t

yforut







                                                                                                   (12) 

 

Case – II: Uniformly accelerated movement of the plate (at 0y ) 

Taking 1n  in equation (2) and using equation (9), the equation (2) reduces to the following  non – dimensional 

form of equation: 
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The initial and boundary conditions (4) reduce to: 
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(14) 

For practical engineering applications and the design of chemical engineering systems, quantities of interest include 

the following Skin – friction, Nussle number and Sherwood number are useful to compute.  

Skin – friction: The skin friction or the shear stress at the moving plate of the channel in  non – dimensional form is 

given by: 
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Nussle Number: The rate of heat transfer at the moving hot plate of the channel in non – dimensional form is given 

by: 
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Further the rate of heat transfer on the stationary plate is given by: 
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The mathematical formulation of the problem is now completed. Equations (10), (11)& (13) present a coupled 

nonlinear system of partial differential equations and are to be solved by using initial and boundary conditions (12) 

& (14). However, exact solutions are difficult, whenever possible. Hence, these equations are solved by the Crank 

Nicholson method. 

 

Numerical Solution by Crank Nicholson Method: 

Equations (10), (11) & (13) represent coupled system of non – linear partial differential equations which 

are solved numerically under the initial and boundary conditions (12) & (14) using the finite difference 

approximations. A linearization technique is first applied to replace the non – linear terms at a linear stage, with the 

corrections incorporated in subsequent iterative steps until convergence is reached. Then the Crank Nicolson 

implicit method is used at two successive time levels [17]. An iterative scheme is used to solve the linear zed system 

of difference equations. The solution at a certain time step is chosen as an initial guess for next time step and the 

iterations are continued till convergence, within a prescribed accuracy. Finally, the resulting block tridiagonal 

system is solved using the generalized Thomas – algorithm [17]. Finite difference equations relating the variables 

are obtained by writing the equations at the midpoint of the computational cell and then replacing the different terms 

by their second order central difference approximations in the y direction. The diffusion terms are replaced by the 

average of the central differences at two successive time – levels. The computational domain is divided into meshes 

of dimension t  and y  in time and space respectively as shown in figure 2. We define the variables yuB  and 

yL  to reduce the second order differential equations (10) & (11) to first order differential equations. The finite 

difference representations for the resulting first order differential equations (10), (11) & (13) take the following 

forms: 
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Where QZFO  represents the viscous dissipation term which are known from the solution of the momentum 

equations and can be evaluated at the midpoint 









2

1
,

2

1
ji of the computational cell. Computations have been 

made for Gr 2.0, Pr 0.71, R 2.0, M 2.0, F 0.3, a 2.0 and  t 0.1. Grid – independence studies 

show that the computational domain  t0 and 11  y  can be divided into intervals with step sizes 

t 0.0001 and y 0.005 for time and space respectively. The truncation error of the central difference 

schemes of the governing equations is  22 , ytO  . Stability and rate of convergence are functions of the flow 

and heat parameters. Smaller step sizes do not show any significant change in the results. Convergence of the 

scheme is assumed when all of the unknowns u   and   for the last two approximations differ from unity by less 

than 
610

for all values of y in 11  y at every time step. Less than 7 approximations are required to satisfy 

this convergence criteria for all ranges of the parameters studied here. 
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Figure 2. Mesh Layout 

Results and Discussions: 

We solve the similarity equations (18), (19) and (20) numerically subject to the boundary conditions given 

by (12) & (14). Graphical representations of the numerical results are illustrated in figure (3) through figure (15) to 

show the influences of different numbers on the boundary layer flow. In this study, we investigate the influence of 

the effects of material parameters such as Grashof number (Gr), Prandtl number (Pr), Hartmann number (M), 

Thermal radiation parameter (R) and Eckert number (Ec) separately in order to clearly observe their respective 

effects on the velocity and temperature profiles of the flow have been observed through graphically in the cases of 

impulsive movement of the plate (i.e. n = 0) and uniformly accelerated movement of the plate (i.e. n = 1) . And also 

skin friction coefficient )( o , Rate of heat and mass transfer coefficients )&( 1NuNuo respectively have been 

observed through tabular forms. During the course of numerical calculations of the velocity (u) and temperature (θ), 

the values of the Prandtl number are chosen for Mercury ( Pr = 0.025), Air at 25oC and one atmospheric pressure (

Pr = 0.71), Water ( Pr = 7.00) and Water at 4 Co
( Pr = 11.40). For the physical significance, the numerical 

discussions in the problem a 2.0 and t 0.1 stable values for velocity and temperature and fields are obtained. 

Figures (3) and (4) illustrate the effects of Gr (thermal Grashof number) on the velocity field. We observe that the 

velocity of fluid increases with increasing thermal Grashof number in both the cases. It is due to reason that 

increases in give rise to buoyancy effects resulting in more induced flows. Figures (5) and (6) display the effects of 

Hartmann number M (magnetic parameter) on the velocity field. It is observed that the velocity of fluid increases 

with increasing magnetic parameter in case of impulsive movement of the plate (i.e. n = 0), but decreases with 

increasing magnetic parameter in case of uniformly accelerated movement of the plate (i.e. n = 1). Figures (4) and 

(5) represent the velocity profiles for different values of Pr (Prandtl number). It is observed that the velocity of fluid 

decreases as the value of Prandtl number increases in both the cases. This is in agreement with the physical fact that 

the thermal boundary layer thickness decreases with increasing.  

Unsteady region 
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Figure 3. Velocity profiles for different values of 

Thermal Grashof number in case of impulsive 

movement of the plate 

 

Figure 4. Velocity profiles for different values of 

Thermal Grashof number in case of uniformly 

accelerated movement of the plate 

 

The effects of radiation parameter on the velocity profiles are presented in figures (3) and (4). From these 

figures, we observe that as the value of R (radiation parameter) increases, the velocity decreases in both the cases 

when the other physical parameters are fixed. The effect of viscous dissipation (Eckert number) on the velocity 

profiles is shown in the figures (4) and (5) in case of impulsive movement of the plate (i.e. n = 0) and accelerated 

movement of the plate (i.e. n = 1). The Eckert number (Ec) expresses the relationship between the kinetic energy in 

the flow and the enthalpy. It embodies the conversion of kinetic energy into internal energy by work done against 

the viscous fluid stresses. From these figures the velocity profiles are increasing with increasing values of Eckert 

number in both the cases. 

 

Figure 5. Velocity profiles for different values of Thermal radiation parameter in case of impulsive movement of the plate 

 

Figure 6. Velocity profiles for different values of Thermal radiation parameter in case of uniformly accelerated movement of the 

plate 
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The temperature profiles are illustrated in figures (5) to (6) for different values of Prandtl number, radiation 

parameter and Eckert number respectively. In figure (5), it can be seen that the temperature of the fluid is inversely 

proportional to the value of Pr. Thus increasing reduces the temperature in the system. This trend is generally due to 

the decrease of the thermal diffusivity at high value of Pr. From figure (3), it is clear that an increase in the radiation 

parameter results in decreasing the temperature within the boundary layer, as well as a decrease in the thermal 

boundary layer thickness. The influence of the viscous dissipation parameter i.e., the Eckert number (Ec) on the 

temperature profiles are shown in figure (7). From this figure (7) we observed that the temperature profiles are 

reducing with  

  

 

Figure 7: Temperature Profiles for different values of Eckert number 

 

 

Table – 1: Skin friction in case of impulsive movement of the plate 
 

Gr  Pr  M  R  Ec  o  

2.0 0.71 2.0 2.0 0.001 – 0.9973134 

4.0 0.71 2.0 2.0 0.001 – 0.2873451 

2.0 7.00 2.0 2.0 0.001 – 1.7731157 

2.0 0.71 4.0 2.0 0.001 – 0.2014462 

2.0 0.71 2.0 4.0 0.001 – 1.6500381 

2.0 0.71 2.0 2.0 0.100 – 0.1179032 
 

 

 

Table – 2: Skin friction in case of uniformly accelerated movement of the plate 
 

Gr  Pr  M  R  Ec  o  

2.0 0.71 2.0 2.0 0.001 – 0.9273543 

4.0 0.71 2.0 2.0 0.001 – 0.1827641 

2.0 7.00 2.0 2.0 0.001 – 1.7126543 

2.0 0.71 4.0 2.0 0.001 – 1.7993425 

2.0 0.71 2.0 4.0 0.001 – 1.6722764 

2.0 0.71 2.0 2.0 0.100 – 0.7466328 
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Tables (1) represent the skin friction in case 

of impulsive movement of the plate  (i.e. n = 0) and 

in case of uniformly accelerated movement of the 

plate (i.e. n = 1) respectively. From the two tables, it 

is clear that in case of uniformly accelerated 

movement of the plate the skin friction increases as 

the value of Hartmann number (magnetic field) 

increases (keeping other parameters constant), but for 

impulsive movement of the plate, it decreases as the 

value of Hartmann number increases (keeping other 

parameters constant). Again, the skin friction 

decreases as the values of the Prandtl number and 

radiation parameter increase (keeping other 

parameters constant) in both the cases  (n = 0 and n = 

1). When the value of thermal Grashof number is 

increased (keeping other parameters constant) the 

value of skin friction also gets increased in both the 

cases (n = 0 and n = 1). Further, the skin friction 

increases as the values of Eckert number (keeping 

other parameters constant) are increased in both the 

cases (n = 0 and n = 1). 

 

Table – 2 shows the effect of Thermal radiation 

parameter, Prandtl number and Eckert number on the 

Nusselt number (the rate of heat transfer) at the 

moving and stationary plates. We see that the Nusselt 

number at the moving plate
oNu is increasing with 

increasing values of radiation parameter and Prandtl 

number but decreasing with increasing values of 

Eckert number. The Nusselt number at the stationary 

plate 1Nu  is decreasing with increasing values of 

radiation parameter and Prandtl number but 

increasing with increasing values of Eckert number. 

In order to ascertain the accuracy of the numerical 

results, the present results are compared with the 

previous results of Rajput and Sahu [12] in tables – 1 

and 2 for both the cases I and II. They are found to be 

in an excellent agreement. 
 

Conclusions: 

This work investigated is to find the 

numerical solution of unsteady magneto hydro 

dynamic free convective Coquette flow of viscous 

incompressible fluid confined between two vertical 

permeable parallel plates in the presence of thermal 

radiation is performed. The non – linear coupled pair 

of partial differential equations are solved by an 

efficient Crank Nicholson method. A parametric 

study illustrating the influence of different flow 

parameters on velocity, temperature and 

concentration fields are investigated in case of 

impulsive movement of the plate (i.e. n = 0) and 

uniformly accelerated movement of the plate (i.e. n = 

1). We conclude that the flow field and the quantities 

of physical interest are significantly influenced by 

these numbers.  

1. A growing of Grashof number and Eckert 

number are to enhance the velocity of the flow 

field at all points in both the cases (n = 0 and n 

= 1). 

2. A growing of Prandtl number and Thermal 

radiation parameter are to retard the velocity of 

the flow field at all points in both the cases (n = 

0 and n = 1). 

3. A growing of Hartmann number is to enhance 

the velocity of the flow in case of in case of 

impulsive movement of the plate (i.e. n = 0) and 

is to retard the velocity of the flow in case of 

uniformly accelerated movement of the plate 

(i.e. n = 1) at all points. 

4. The temperature of the flow is increasing with 

increasing values of Eckert number while 

decreasing with increasing values of Prandtl 

number and Thermal radiation parameter at all 

the points. 

5. Skin friction is increases with increasing of 

Hartmann number and Eckert number in case of 

impulsive movement of the plate (i.e. n = 0). 

6. Skin friction is decreases with increasing of 

Hartmann number and increases with increasing 

of Eckert number in case of uniformly 

accelerated movement of the plate (i.e. n = 1). 
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