

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 539

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

DISTRIBUTED OPERATING SYSTEM- AN OVERVIEW

Rashmi Dewan, Nikita Pahuja, Shivangi Kukreja

Student, Computer Science & Engineering, Maharshi Dayanand University

Gurgaon, Haryana, India

rashmidewan9@gmail.com

nikpahuja28@gmail.com

shivangikukreja@gmail.com

ABSTRACT

The intention of this paper is to provide an

overview on the subject of distributed

operating system. The overview includes

previous and existing concepts, current

technologies. This paper also covers

definition, overview, challenges in building

dos, distributing computing models, design

consideration, advantages of distributed

operating systems, disadvantages of

distributed operating system . Through this

paper we are creating awareness among the

people about this rising field of operating

system. This paper also offers a

comprehensive number of references for

each concept of operating system.

KEYWORDS

 DISTRIBUTED – give a share or a unit

of (something) to each of a number of

recipients.

 SYSTEM – a set of things working

together as parts of a mechanism or an

interconnecting network; a complex whole.

 PERFORMANCE – an act of presenting

a play, concert, or other form of

entertainment.

 PROTOCOL - the official procedure or

system of rules governing affairs of state or

diplomatic occasions.

1) INTRODUCTION

A distributed operating system is an operating

system that runs on several machines whose

purpose is to provide a useful set of services,

generally to make the collection of machines

behave more like a single machine. The distributed

operating system plays the same role in making the

collective resources of the machines more usable

that a typical single-machine operating system

plays in making that machine's resources more

usable. Usually, the machines controlled by a

distributed operating system are connected by a

relatively high quality network, such as a high

speed local area network. Most commonly, the

participating nodes of the system are in a relatively

small geographical area, something between an

office and a campus.

Distributed operating systems typically run

cooperatively on all machines whose resources

they control. These machines might be capable of

independent operation, or they might be usable

merely as resources in the distributed system. In

some architectures, each machine is an equally

powerful peer as all the others. In other

architectures, some machines are permanently

designated as master or are given control of

particular resources. In yet others, elections or

other selection mechanisms are used to designate

mailto:rashmidewan9@gmail.com
mailto:nikpahuja28@gmail.com
mailto:shivangikukreja@gmail.com

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 540

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

some machines as having special roles, often

controlling roles.

Sometimes distinctions are made between parallel

operating systems, distributed operating systems,

and network operating systems, though the latter

term is now a bit archaic. The distinctions are

perhaps arbitrary, though they do point out

differences in the design space for making

operating systems control operations across

multiple processing engines.

 A parallel operating system is usually defined

as running on specially designed parallel

processing hardware. It usually works on the

assumption that elements of the hardware

(such as the memory) are tightly coupled.

Often, the machine is expected to be devoted

to running a single task at very high speed.

 A distributed operating system is usually

defined as runing on more loosely coupled

hardware. Unlike parallel operating systems,

distributed operating systems are intended to

make a collection of resources on multiple

machines usable by a set of loosely

cooperating users running independent tasks.

 Network operating systems are sometimes

regarded as systems that attempt merely to

make the network connecting the machines

more usable, without regard for some of the

larger problems of building effective

distributed systems.

Although many interesting research distributed

operating systems have been built since the 1970s,

and some systems have been in use for many

years, they have not displaced traditional operating

systems designed primarily to support single

machines; however, some of the components

originally built for distributed operating systems

have become commonplace in today's systems,

notably services to access files stored on remote

machines. The failure of distributed operating

systems to capture a large share of the marketplace

may be primarily due to our lack of understanding

on how to build them, or perhaps their lack of

popularity stems from users not really needing

many distributed services not already provided.

Distributed operating systems are also an

important field for study because they have helped

drive general research in distributed systems.

Replicated data systems, authentication services

such as Kerberos, agreement protocols, methods of

providing causal ordering in communications,

voting and consensus protocols, and many other

distributed services have been developed to

support distributed operating systems, and have

found varying degrees of success outside of that

field. Popular distributed component services like

CORBA owe some of their success to applying

hard lessons learned by researchers in distributed

operating systems. increasingly, cooperative

applications and services run across the Internet,

and they face similar problems to those seen and

frequently solved in the realm of distributed

operating systems.

Distributed operating systems are hard to design

because they face inherently hard problems, such

as distributed consensus and synchronization.

Further, they must properly trade off issues of

performance, user interfaces, reliability, and

simplicity. The relative scarcity of such systems,

and the fact that most commercial operating

systems' design still focuses on single-machine

systems, suggests that no distributed operating

system yet developed has found the proper trade-

off among these issues.

Research continues in distributed operating

systems, particularly in certain critical elements of

them that have obvious value, especially file

systems and other forms of data sharing. Other

continuing research in distributed operating

systems focuses on their use in important special

cases, such as high-performance clustered servers

and grid computing. Cloud computing is a recent

development closely related to distributed

operating systems. The increasing popularity of

smart phones and tablets points out further need, if

not for distributed operating systems, than at least

for better methods to allow mobile devices to share

their resources and work cooperatively. The

emerging field of ubiquitous computing offers

different hardware, networking, and application

characteristics likely to spur further research on

distributed operating systems. Peer systems,

currently used primarily to share data, are also

likely to spur further research in distributed

operating systems issues. Sensor networks are

another form of highly specialized distributed

system that has benefited from the lessons of

distributed operating systems.

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 541

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

2) OVERVIEW

At each locale (typically a node), the kernel

provides a minimally complete set of node-level

utilities necessary for operating a node’s

underlying hardware and resources. These

mechanisms include allocation, management, and

disposition of a node’s resources, processes,

communication, and input/output management

support functions. Within the kernel, the

communications sub-system is of foremost

importance for a distributed OS.

In a distributed OS, the kernel often supports a

minimal set of functions, including low-level

address space management, thread management,

and inter-process communication (IPC). A kernel

of this design is referred to as a microkernel. Its

modular nature enhances reliability and security,

essential features for a distributed OS. It is

common for a kernel to be identically replicated

over all nodes in a system and therefore that the

nodes in a system use similar hardware. The

combination of minimal design and ubiquitous

node coverage enhances the global system's

extensibility, and the ability to dynamically

introduce new nodes or services.

2.1) SYSTEM MANAGEMENT

COMPONENTS
System management components are

software processes that define the node's

policies. These components are the part of

the OS outside the kernel. These

components provide higher-level

communication, process and resource

management, reliability, performance and

security. The components match the

functions of a single-entity system, adding

the transparency required in a distributed

environment.

The distributed nature of the OS requires

additional services to support a node's

responsibilities to the global system. In

addition, the system management

components accept the "defensive"

responsibilities of reliability, availability,

and persistence. These responsibilities can

conflict with each other. A consistent

approach, balanced perspective, and a

deep understanding of the overall system

can assist in identifying diminishing

returns. Separation of policy and

mechanism mitigates such conflicts.

2.2) WORKING TOGETHER

AS AN OPERATING SYSTEM
The architecture and design of a

distributed operating system must realize

both individual node and global system

goals. Architecture and design must be

approached in a manner consistent with

separating policy and mechanism. In

doing so, a distributed operating system

attempts to provide an efficient and

reliable distributed computing framework

allowing for an absolute minimal user

awareness of the underlying command and

control efforts.

The multi-level collaboration between a

kernel and the system management

components, and in turn between the

distinct nodes in a distributed operating

system is the functional challenge of the

distributed operating system. This is the

point in the system that must maintain a

perfect harmony of purpose, and

simultaneously maintain a complete

disconnect of intent from implementation.

This challenge is the distributed operating

system's opportunity to produce the

foundation and framework for a reliable,

efficient, available, robust, extensible, and

scalable system. However, this

opportunity comes at a very high cost in

complexity.

2.3) THE PRICE OF

COMPLEXITY
In a distributed operating system, the

exceptional degree of inherent complexity

could easily render the entire system an

anathema to any user. As such, the logical

price of realizing a distributed operation

system must be calculated in terms of

overcoming vast amounts of complexity in

many areas, and on many levels. This

calculation includes the depth, breadth,

http://en.wikipedia.org/wiki/Locale_%28computer_hardware%29
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Thread_%28computing%29
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Diminishing_returns
http://en.wikipedia.org/wiki/Diminishing_returns

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 542

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

and range of design investment and

architectural planning required in

achieving even the most modest

implementation.

These design and development

considerations are critical and

unforgiving. For instance, a deep

understanding of a distributed operating

system’s overall architectural and design

detail is required at an exceptionally early

point. An exhausting array of design

considerations are inherent in the

development of a distributed operating

system. Each of these design

considerations can potentially affect many

of the others to a significant degree. This

leads to a massive effort in balanced

approach, in terms of the individual design

considerations, and many of their

permutations. As an aid in this effort, most

rely on documented experience and

research in distributed computing.

3) CHALLENGES IN BUILDING

DISTRIBUTED OPERATING

SYSTEM

One core problem for distributed operating

system designers is concurrency and

synchronization. These issues arise in single-

machine operating systems, but they are easier

to solve there. Typical single-machine systems

run a single thread of control simultaneously,

simplifying many synchronization problems.

The advent of multicore machines is

complicating this issue, but most multicore

machines have relatively few cores, lessoning

the problem. Further, they typically have

shared access to memory, registers, or other

useful physical resources that are directly

accessible by all processes that they must

synchronize. These shared resources allow use

of simple and fast synchronization primitives,

such as semaphores. Even modern machines

that have multiple processors typically include

hardware that makes it easier to synchronize

their operations.

Distributed operating systems lack these

advantages. Typically, they must control a

collection of processors connected by a

network, most often a local area network

(LAN), but occasionally a network with even

more difficult characteristics. The access time

across this network is orders of magnitude

larger than the access time required to reach

local main memory and even more orders of

magnitude larger than that required to reach

information in a local processor cache or

register. Further, such networks are not as

reliable as a typical bus, so messages are more

likely to be lost or corrupted. At best, this

unreliability increases the average access time.

This imbalance means that running blocking

primitives across the network is often

infeasible. The performance implications for

the individual component systems and the

system as a whole do not permit widespread

use of such primitives. Designers must choose

between looser synchronization (leading to

odd user-visible behaviors and possibly fatal

system inconsistencies) and sluggish

performance. The increasing gap between

processor and network speeds suggests that

this effect will only get worse.

Theoretical results in distributed systems are

discouraging. Research on various forms of

the Byzantine General problem and other

formulations of the problems of reaching

decisions in distributed systems has provided

surprising results with bad implications for the

possibility of providing perfect

synchronization of such systems. Briefly,

these results suggest that reaching a distributed

decision is not always possible in common

circumstances. Even when it is possible, doing

so in unfavorable conditions is very expensive

and tricky. Although most distributed systems

can be designed to operate in more favorable

circumstances than these gloomy theoretical

results describe (typically by assuming less

drastic failure modes or less absolute need for

complete consistency), experience has shown

that even pragmatic algorithm design for this

environment is difficult.

A further core problem is providing

transparency. Transparency has various

definitions and aspects, but at a high level it

simply refers to the degree to which the

operating system disguises the distributed

nature of the system. Providing a high degree

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 543

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

of transparency is good because it shields the

user from the complexities of distribution. On

the other hand, it sometimes hides more than it

should, it can be expensive and tricky to

provide, and ultimately it is not always

possible. A key decision in designing a

distributed operating system is how much

transparency to provide, and where and when

to provide it.

A related problem is that the hardware, which

the distributed operating system must

virtualize, is more varied. A distributed

operating system must not only make a file on

disk appear to be in the main memory, as a

typical operating system does, but must make

a file on a different machine appear to be on

the local machine, even if it is simultaneously

being accessed on yet a third machine. The

system should not just make a multi-machine

computation appear to run on a single

machine, but should provide observers on all

machines with the illusion that it is running

only on their machine.

Distributed operating systems also face

challenging problems because they are

typically intended to continue correct

operation despite failure of some of their

components. Most single-machine operating

systems provide very limited abilities to

continue operation if key components fail.

They are certainly not expected to provide

useful service if their processor crashes. A

single processor crash in a distributed

operating system should allow the remainder

of the system to continue operations largely

unharmed. Achieving this ideal can be

extremely challenging. If the topology of the

network connecting the system's component

nodes allows the network to split into disjoint

pieces, the system might also need to continue

operation in a partitioned mode and would be

expected to rapidly reintegrate when the

partitions merge.

The security problems of a distributed

operating system are also harder. First, data

typically moves over a network, sometimes

over a network that the distributed operating

system itself does not directly control. This

network may be subject to eavesdropping or

malicious insertion and alteration of messages.

Even if protected by cryptography, denial of

service attacks may cause disconnections or

loss of critical messages. Second, access

control and resource management mechanisms

on single machines typically take advantage of

hardware that helps keep processes separate,

such as page tables. Distributed operating

systems cannot rely on this advantage. Third,

distributed operating systems are typically

expected to provide some degree of local

control to users on their individual machines,

while still enforcing general access control

mechanisms. When an individual user is

legitimately able to access any bytes stored

anywhere on his own machine, preventing him

from accessing data that belongs to others is a

much harder problem, particularly if the

system strives to provide controlled high-

performance access to that data.

Distributed operating systems must often

address the issue of local autonomy. In many

(but not all) architectures, the distributed

system is composed of workstations whose

primary job is to support one particular user.

The distributed system must balance the needs

of the entire collection of supported users

against the natural expectation that one's

machine should be under one's own control.

The local autonomy question has clear security

implications, but also relates to how resources

are allocated, how scheduling is done, and

other issues.

In many cases, distributed operating systems

are expected to run on heterogeneous

hardware. Although commercial convergence

on a small set of popular processors has

reduced this problem to some extent, the wide

variety of peripheral devices and

customizations of system settings provided by

today's operating systems often makes

supposedly identical hardware behave

radically differently. If a distributed operating

system cannot determine whether running the

same operation on two different component

nodes produces the same result, it will face

difficulties in providing transparency and

consistency.

All the previously mentioned problems are

exacerbated if the system scale becomes

sufficiently large. Many useful distributed

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 544

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

algorithms scale poorly, because the number

of messages they require faces combinatorial

explosion, or because the delays required to

include large numbers of nodes in

computations become unreasonable, or

because data structures grow in proportion to

the number of participants. High scale ensures

that partial failures will become more

common, and that low probability events will

begin to pop up every so often. High scale

might also imply that the distributed operating

system must operate away from the relatively

friendly world of the LAN, leading to greater

heterogeneity and uncertainty in

communications.

An entirely different paradigm of building

system software for distributed systems can

avoid some of these difficulties. Sensor

networks, rather than performing general

purpose computing, are designed only to

gather information from sensors and send it to

places that need it. The nodes in a sensor

network are typically very simple and have

low power in many dimensions, from CPU

speed to battery. As a result, while inherently

distributed systems, sensor network nodes

must run relatively simple code. Operating

systems designed for sensor networks, like

TinyOS, are thus themselves extremely

simple. By proper design of the operating

system and algorithms that perform the limited

applications, a sensor network achieves a

cooperative distributed goal without worrying

about many of the classic issues of distributed

operating systems, such as tight

synchronization, data consistency, and partial

failure. This approach does not seem to offer

an alternative when one is designing a

distributed operating system for typical

desktop or server machines, but may prove to

be a powerful tool for other circumstances in

which the nodes in the distributed systems

need only do very particular and limited tasks.

Other limited versions of distributed operating

system also avoid many of the worst

difficulties faced in the general case. In cloud

computing, for example, the provider of the

cloud does not himself have to worry about

maintaining transparency or consistency

among the vast number of nodes he supports.

His distributed systems problems are more

limited, relating to management of large

numbers of nodes, providing strong security

between the users of portions of his system,

ensuring fair and fast use of the network, and,

at most, providing some basic distributed

system primitives to his users. By expecting

the users or middleware to customize the basic

node operations he provides to suit their

individual distributed system needs, the cloud

provider offloads many of the most

troublesome problems in distributed operating

systems. Since the majority of users of cloud

computing don't need those problems solved,

anyway, this approach suits both the

requirements of the cloud provider and the

desires of the typical customer.

4) DISTRIBUTED COMPUTING

MODELS

THREE BASIC DISTRIBUTIONS

To better illustrate this point, examine three system

architectures; centralized, decentralized, and

distributed. In this examination, consider three

structural aspects: organization, connection, and

control. Organization describes a system's physical

arrangement characteristics. Connection covers the

communication pathways among nodes. Control

manages the operation of the earlier two

considerations.

4.1) ORGANIZATION

A centralized system has one level of

structure, where all constituent elements

directly depend upon a single control

element. A decentralized system is

hierarchical. The bottom level unites

subsets of a system’s entities. These entity

subsets in turn combine at higher levels,

ultimately culminating at a central master

element. A distributed system is a

collection of autonomous elements with

no concept of levels.

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Centralized_system
http://en.wikipedia.org/wiki/Decentralized_system

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 545

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

4.2) CONNECTION

Centralized systems connect constituents

directly to a central master entity in a hub

and spoke fashion. A decentralized system

(aka network system) incorporates direct

and indirect paths between constituent

elements and the central entity. Typically

this is configured as a hierarchy with only

one shortest path between any two

elements. Finally, the distributed

operating system requires no pattern;

direct and indirect connections are

possible between any two elements.

Consider the 1970s phenomena of “string

art” or a spirograph drawing as a fully

connected system, and the spider’s web or

the Interstate Highway System between

U.S. cities as examples of a partially

connected system.

4.3) CONTROL

Centralized and decentralized systems

have directed flows of connection to and

from the central entity, while distributed

systems communicate along arbitrary

paths. This is the pivotal notion of the

third consideration. Control involves

allocating tasks and data to system

elements balancing efficiency,

responsiveness and complexity.

Centralized and decentralized systems

offer more control, potentially easing

administration by limiting options.

Distributed systems are more difficult to

explicitly control, but scale better

horizontally and offer fewer points of

system-wide failure. The associations

conform to the needs imposed by its

design but not by organizational

limitations.

5) ADVANTAGES OF

DISTRIBUTED OPERATNG

SYSTEM

There are three important advantages in

the design of distributed operating system:

5.1) MAJOR

BREAKTHROUGH IN

MICROPROCESSOR

TECHNOLOGY

 Micro- processors have become very

much powerful and cheap, compared with

mainframes and minicomputers, so it has

become attractive to think about designing

large systems consisting of small

processors. These distributed systems

clearly have a price/performance

advantages over more traditional systems.

5.2) INCREMENTAL

GROWTH

The second advantage is that if there is a

need of 10 per cent more computing

power, one should just add 10 per cent

more processors. System architecture is

crucial to the type of system growth,

however, since it is hard to give each user

of a personal computer another 10 per

cent.

5.3) RELIABILITY

Reliability and availability can also be a

big advantage; a few parts of the system

can be down without disturbing people

using the other parts; On the minus side,

unless one is very careful, it is easy for the

communication protocol overhead to

become a major source of inefficiency.

6) DISADVANTAGES OF

DISTRIBUTED OPERATING

SYSTEM

Although distributed systems have their

strengths, they also have their weaknesses. In

this section, we will point out a few of them.

http://en.wikipedia.org/wiki/Network_operating_system
http://en.wikipedia.org/wiki/String_art
http://en.wikipedia.org/wiki/String_art
http://en.wikipedia.org/wiki/Spirograph
http://en.wikipedia.org/wiki/Fully_connected_network
http://en.wikipedia.org/wiki/Fully_connected_network
http://en.wikipedia.org/wiki/Spider_web
http://en.wikipedia.org/wiki/Interstate_Highway_System
http://en.wikipedia.org/wiki/Software_flow_control

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 546

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

We have already hinted at the worst problem:

software. With the current state-of-the-art, we

do not have much experience in designing,

implementing, and using distributed software.

What kinds of operating systems,

programming languages, and applications are

appropriate for these systems? How much

should the users know about the distribution?

How much should the system do and how

much should the users do? The experts differ

(not that this is unusual with experts, but when

it comes to distributed systems, they are barely

on speaking terms). As more research is done,

this problem will diminish, but for the moment

it should not be underestimated.

A second potential problem is due to the

communication network. It can lose messages,

which requires special software to be able to

recover, and it can become overloaded. When

the network saturates, it must either be

replaced or a second one must be added. In

both cases, some portion of one or more

buildings may have to be rewired at great

expense, or network interface boards may have

to be replaced (e.g., by fiber optics). Once the

system comes to depend on the network, its

loss or saturation can negate most of the

advantages the distributed system was built to

achieve.

Finally, the easy sharing of data, which we

described above as an advantage, may turn out

to be a two-edged sword. If people can

conveniently access data all over the system,

they may equally be able to conveniently

access data that they have no business looking

at. In other words, security is often a problem.

For data that must be kept secret at all costs, it

is often preferable to have a dedicated, isolated

personal computer that has no network

connections to any other machines, and is kept

in a locked room with a secure safe in which

all the floppy disks are stored. The

disadvantages of distributed systems are

summarized in Fig. 1-3.

Despite these potential problems, many people

feel that the advantages outweigh the

disadvantages, and it is expected that

distributed systems will become increasingly

important in the coming years. In fact, it is

likely that within a few years, most

organizations will connect most of their

computers into large distributed systems to

provide better, cheaper, and more convenient

service for the users. An isolated computer in a

medium-sized or large business or other

organization will probably not even exist in

ten years.

SUMMARY

A distributed operating system is a software over

a collection of independent, networked,

communicating, and physically separate

computational nodes. Each individual node holds a

specific software subset of the global aggregate

operating system. Each subset is a composite of

two distinct service provisioners. The first is a

ubiquitous minimal kernel, or microkernel, that

directly controls that node’s hardware. Second is a

higher-level collection of system management

components that coordinate the node's individual

and collaborative activities. These components

abstract microkernel functions and support user

applications.

The microkernel and the management components

collection work together. They support the

system’s goal of integrating multiple resources and

processing functionality into an efficient and stable

system. This seamless integration of individual

nodes into a global system is referred to as

transparency, or single system image; describing

the illusion provided to users of the global

system’s appearance as a single computational

entity.

ACKNOWLEDGMENTS

We thank our guide for his timely help, giving

outstanding ideas and encouragement to finish this

research work successfully.

SIDE BAR

Comparison: it is an act of assessment or

evaluation of things side by side in order to see to

what extent they are similar or different. It is used

to bring out similarities or differences between two

things of same type mostly to discover essential

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Kernel_%28computing%29
http://en.wikipedia.org/wiki/Microkernel
http://en.wikipedia.org/wiki/Single_system_image

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 547

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

features or meaning either scientifically or

otherwise.

Content: The amount of things contained in

something. Things written or spoken in a book, an

article, a programme, a speech, etc.

REFERENCES

1) Tanenbaum, Andrew S (September 1993).

"Distributed operating systems anno 1992.

What have we learned so far?".

Distributed Systems Engineering 1 (1).

pp. 3–10. doi:10.1088/0967-1846/1/1/001.

2) Nutt, Gary J. (1992). Centralized and

Distributed Operating Systems. Prentice

Hall. ISBN 978-0-13-122326-4.

3) Gościński, Andrzej (1991). Distributed
Operating Systems: The Logical Design.

Addison-Wesley Pub. Co. ISBN 978-0-

201-41704-3.

4) Fortier, Paul J. (1986). Design of

Distributed Operating Systems: Concepts
and Technolog. Intertext Publications.

5) Hansen, Per Brinch, ed. (2001). Classic

Operating Systems: From Batch
Processing to Distributed Systems.

Springer. ISBN 978-0-387-95113-3.

6) Using LOTOS for specifying the

CHORUS distributed operating system

kernel Pecheur, C. 1992. Using LOTOS

for specifying the CHORUS distributed

operating system kernel. Comput.

Commun. 15, 2 (Mar. 1992), 93-102.

7) COOL: kernel support for object-oriented

environments Habert, S. and Mosseri, L.

1990. COOL: kernel support for object-

oriented environments. In Proceedings of

the European Conference on Object-

Oriented Programming on Object-

Oriented Programming Systems,

Languages, and Applications (Ottawa,

Canada). OOPSLA/ECOOP '90. ACM,

New York, NY, 269-275.

RELATED REFERNCES

1) Li, K. and Hudak, P. 1989. Memory

coherence in shared virtual memory

systems. ACM Trans. Comput. Syst. 7, 4

(Nov. 1989), 321-359.

2) Garcia-Molina, H. and Salem, K. 1987.

Sagas. In Proceedings of the 1987 ACM

SIGMOD international Conference on

Management of Data (San Francisco,

California, United States, May 27–29,

1987). U. Dayal, Ed. SIGMOD '87. ACM,

New York, NY, 249-259.

3) Harris, T., Marlow, S., Peyton-Jones, S.,

and Herlihy, M. 2005. Composable

memory transactions. In Proceedings of

the Tenth ACM SIGPLAN Symposium on

Principles and Practice of Parallel

Programming (Chicago, IL, USA, June

15–17, 2005). PPoPP '05. ACM, New

York, NY, 48-60.

4) Herlihy, M. and Moss, J. E. 1993.

Transactional memory: architectural

support for lock-free data structures. In

Proceedings of the 20th Annual

international Symposium on Computer

Architecture (San Diego, California,

United States, May 16–19, 1993). ISCA

'93. ACM, New York, NY, 289-300.

5) Herlihy, M., Luchangco, V., Moir, M.,

and Scherer, W. N. 2003. Software

transactional memory for dynamic-sized

data structures. In Proceedings of the

Twenty-Second Annual Symposium on

Principles of Distributed Computing

(Boston, Massachusetts, July 13–16,

2003). PODC '03. ACM, New York, NY,

92-101.

6) Shavit, N. and Touitou, D. 1995. Software

transactional memory. In Proceedings of

the Fourteenth Annual ACM Symposium

on Principles of Distributed Computing

(Ottawa, Ontario, Canada, August 20–23,

1995). PODC '95. ACM, New York, NY,

204-213.

7) Kubiatowicz, J., Bindel, D., Chen, Y.,

Czerwinski, S., Eaton, P., Geels, D.,

Gummadi, R., Rhea, S., Weatherspoon,

H., Wells, C., and Zhao, B. 2000.

OceanStore: an architecture for global-

scale persistent storage. In Proceedings of

the Ninth international Conference on

Architectural Support For Programming

Languages and Operating Systems

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1088%2F0967-1846%2F1%2F1%2F001
http://books.google.com/books?id=HXgZAQAAIAAJ
http://books.google.com/books?id=HXgZAQAAIAAJ
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-13-122326-4
http://books.google.com/books?id=ZnYhAQAAIAAJ
http://books.google.com/books?id=ZnYhAQAAIAAJ
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-201-41704-3
http://en.wikipedia.org/wiki/Special:BookSources/978-0-201-41704-3
http://books.google.com/books?id=F7QmAAAAMAAJ
http://books.google.com/books?id=F7QmAAAAMAAJ
http://books.google.com/books?id=F7QmAAAAMAAJ
http://books.google.com/books?id=-PDPBvIPYBkC
http://books.google.com/books?id=-PDPBvIPYBkC
http://books.google.com/books?id=-PDPBvIPYBkC
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-387-95113-3

Vijayakrishna Satyamsetti
A Research In AC-AC/DC-DC DAB Based Solid State Transformers

P a g e | 548

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

(Cambridge, Massachusetts, United

States). ASPLOS-IX. ACM, New York,

NY, 190-201.

