

Analysis and Comparison of Carbon Graphite Piston over Cast Iron Piston of Four Stroke 100cc bike (Hero Splendor) Engine.

Jatender Datta

Student, Phd (Mechanical Engg.) Desh Bhagat University, Punjab(India) Email: jatindatta4@gmail.com under the guidance of

Dr. Sahib Sartaj Singh (Workshop Suptt , Department of Mechanical Engineering) Punjabi University, Patiala (INDIA).

Abstract—*This paper describes the stress*, strain, displacement and thermal stresses of cast iron piston and carbon graphite piston by using finite element Analysis (FEA). The parameters used for the simulation are operating gas pressure, temperature and properties of pistons. material The specifications used for the study of these pistons belong to four stroke 100cc hero bike engine. This paper illustrates the procedure for analytical design of cast iron piston and carbon graphite piston using specifications of four stroke 100cc hero bike engine. The results predict the maximum stress and critical region on cast iron piston and carbon graphite piston using FEA. It is important to locate the critical area of concentrated stress for appropriate modifications. The 3D model of the pistons drawn by using Solidworks (Feature module) and Simulation module was used to mesh the pistons and Static analysis (FEA)

Keywords—IC engine piston, FEA on piston, stress analysis on piston, strain, displacement, analysis on cast iron piston, carbon graphite piston analysis.

I. INTRODUCTION

A piston is a component of reciprocating engines, reciprocating pumps, gas and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder wall.

II. FEM (Finite Element Method)

The finite element method (FEM) is a numerical method for solving problems of engineering and mathematical physics. It is also referred finite element to as analysis (FEA). Typical problem areas of interest include structural analysis, heat transfer, mass transport, fluid flow. and electromagnetic potential. The analytical solution of these problems generally require boundary the solution to value problems for partial differential equations. The finite element method formulation of the problem results in a system of algebraic equations. The method yields approximate values of the unknowns at discrete number of points over the domain. To solve the problem, it subdivides a large problem into smaller, simpler parts that are called finite elements. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. FEM then uses vibrational methods from the calculus of variations to

approximate a solution by minimizing an associated error function.

III METHODOLOGY OF PROPOSED WORK

The methodology of this work is based upon information collected and processed the study and research phase. The technique to be applied for the design of piston are as follows:

Collection of recent development in IC engine piston.

- Reverse engineering this piston, and calculated dimensions were measured and reproduced as a 3-D model in Solidworks software, and analyzed in Solidworks Simulation.
- Material selection for analyse from solidworks's library.
- Meshing of 3D model of piston.
- Apply the Boundary conditions.
- Result calculation.
- Comparison of Total deformation and Max. Von misses stress in Static analysis.

IV ENGINE SPECIFICATIONS

Туре	Air cooled, 4 - stroke single cylinder OHC		
Displacement	97.2 cc		
Max. Power	6.15kW (8.36 Ps) @8000 rpm		
Max. Torque	0.82kg - m (8.05 N-m) @5000 rpm		
Max. Speed	87 Kmph		
Bore x Stroke	50.0 mm x 49.5 mm		
Carburetor	Side Draft, Variable Venturi Type with TCIS		
Compression Ratio	9.9 : 1		
Starting	Kick / Self Start		
Ignition	DC - Digital CDI		
Oil Grade	SAE 10 W 30 SJ Grade, JASO MA Grade		

Air Filtration	Dry, Pleated Paper Filter
Fuel System	Carburetor
Fuel Metering	Carburetion

V Reverse Engineering the Piston:

With the help of vernier caliper the dimensions of the model piston were measured. By using this measurement 3D model of the piston were drawn using Solidworks modeling software.

VI. BOUNDARY CONDITIONS AND LOADS

(i)Maximum gas pressure at top surface of the piston 5MPa

(ii) Temperature at Top surface of the piston 400°C

(iii)Piston pin holes are fixed .

VII. Report of static analysis on cast iron piston where 5 MPa pressure applied on the top of the piston head as below:

Model Information

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Model Reference	Prop	erties	Components
	Name:	Gray Cast Iron	SolidBody
	Model type:	Linear Elastic Isotropic	1(LPattern2)(Piston
11 11 11	Default failure	Unknown	100cc_Hero Splendor)
	criterion:		
	Tensile strength:	1.51658e+008 N/m^2	
	Compressive strength:	5.72165e+008 N/m^2	
	Elastic modulus:	6.61781e+010 N/m^2	
	Poisson's ratio:	0.27	
	Mass density:	7200 kg/m^3	
	Shear modulus:	5e+010 N/m^2	
	Thermal expansion	1.2e-005 /Kelvin	
	coefficient:		

Loads and Fixtures

Fixture name	Fixture Image			Fixture De	tails
Fixed-1				Entities: Type:	2 face(s) Fixed Geometry
Resultant	Resultant Forces				
Con	ponents	X	Y	Z	Resultant
Reactio	on force(N)	-0.185829	9428.67	0.964079	9428.67
Re Mom	eaction ent(N·m)	0	0	0	0

Load name	Load Image	Load Details
Pressure-1		Entities: 2 face(s) Type: Normal to selected face Value: 5 Units: N/mm^2 (MPa)

Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	1.50467 mm
Tolerance	0.0752336 mm
Mesh Quality	High

Mesh Information - Details

Total Nodes	139938
Total Elements	86193
Maximum Aspect Ratio	167.85
% of elements with Aspect Ratio < 3	90.8
% of elements with Aspect Ratio > 10	0.39
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:44
Computer name:	JATENDERDATTA
	n

Meshed Model

R

International Journal of Research

Available at <u>https://edupediapublications.org/journals</u>

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09 August 2017

Study (I)

Here we found the result of static analysis where pressure of 5MPa has applied on the top of the piston head.

VIII. Result of static analysis on cast iron piston where temperature at top surface of the piston is 400° C as below-

IX . Here, we compared cast iron material with C-Graphite, where the boundary conditions are same as previous studies as 5 MPa pressure applied on the top surface of the c-graphite pistion , the report of the static analysis on C-Graphite piston can be find as below-

Model Information

Model name: Piston 100cc_Hero Splendor			
Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
LPattern2	Solid Body	Mass:0.0609817 kg Volume:2.7224e-005 m^3 Density:2240 kg/m^3 Weight:0.59762 N	Default Aug 09 16:08:19 2017

Material Properties

Model Reference	Prop	Components	
	Name: Model type:	C (Graphite) Linear Elastic Isotropic	SolidBody 1(LPattern2)(Piston 100cc Hero Splendor)
	Default failure criterion:	Unknown	_ 1 /
	Yield strength:	1.20594e+008 N/m^2	
	Tensile strength:	1.00826e+008 N/m^2	
	Elastic modulus: Poisson's ratio:	2.1e+011 N/m^2 0.28	
	Mass density:	2240 kg/m^3 1 3e-005 /Kelvin	
	expansion coefficient:	1.50 005 / Keivin	
Curve Data:N/A			

Fixture name	Fiz	xture Image		Fixture Details	5
Fixed-1				Entities: 2 fa Type: Fixe	ce(s) ed Geometry
Resultant Forc	es				
Compone	ents	X	Y	Z	Resultant
Reaction for	rce(N)	-0.201809	9428.71	1.45164	9428.71
Reactio Moment(N	n Jam)	0	0	0	0

Load name	Load Image	Load Details
Pressure-1		Entities: 2 face(s) Type: Normal to selected face Value: 5 Units: N/mm^2 (MPa)

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09 August 2017

Meshed model

Study (III)

X. Result of static analysis on C- Graphite $\,$ piston where temperature at top surface of the piston $\,$ is 400°C $\,$

Study (IV)

XI. Static analysis on c-graphite piston again with same boundary conditions, but, this time the thickness of 1mm has been added on the bottom side of the piston head, the result can be find as below-

Model Information

Model name: Piston 100cc_Hero Splendor_ modified Current Configuration: Default

Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
Boss-Extrude8			
	Solid Body	Mass:0.0617103 kg Volume:2.75492e-005 m^3 Density:2240 kg/m^3 Weight:0.604761 N	Default Aug 14 16:55:00 2017

International Journal of Research

Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 09 August 2017

Conclusion-

In the conclusion, according to above static analysis results on cast iron piston (Study I) and c-graphite piston Study III, we found according to result that cast iron piston is slightly strong than c-graphite, but the result we got after slightly changing the design of c-graphite piston by 1mm (addition in thickness) on the bottom side of piston head then the results found differ than previous results, here the results are better than cast iron piston as shown in (study V).

On the other hand, when we analyzed both pistons (cast iron & c-graphite) as study II & study IV, after applied the temperature of 400°C on the top of the piston head then the results came out in the favor of c-graphite piston.

Furthermore, we compared c- graphite with cast iron then we found that C-graphite material is lighter in weight than cast iron according to volumetric properties, moreover, the thermal conductivity of cgraphite is much better than cast iron. At last, according to above results c-graphite piston is better than cast iron for IC engines.

REFERENCES

[1] RS Khurmi and JK Gupta "Machine Design" Eurasia publishing house (pvt.) ltd. Ram Nagar, New Delhi -

110055, http://www.simpopdf.com, 2005

[2] S.S. Feng et al., An experimental and numerical study of finned metal foam heat sinks under impinging air jet

cooling, International Journal of Heat and Mass Transfer 77 (2014) 1063– 1074.

[3] M.M. Haque et al., "Effect of superheating temperatures on microstructure and properties of strontium modified

aluminium-silicon eutectic alloy"

Journal of Materials Processing

Technology 162–163 (2005) 312–316

4] Ajay Raj Singh et al.,, Dr. Pushpendra Kumar Sharma, "Design, Analysis and Optimization of Three Aluminum

Piston Alloys Using FEA" Int. Journal of Engineering Research and Applications, ISSN : 2248-9622, Vol. 4, Issue

1 Version 3, January 2014, pp.94-102.

[5] M.X. Calbureanu et al.,, "The finite element analysis of the thermal stress distribution of a piston head"

International Journal OF Mechanics, Issue 4, Volume 7, 2013, pp- 467-474.

[6] S. Srikanth Reddy et al., Thermal Analysis and Optimization of I.C. Engine Piston Using Finite Element Method,

International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 12, December 2013, pp 7834-7843.

[7] A. R. Bhagat et al., Thermal Analysis And Optimization Of I.C.
Engine Piston Using finite Element Method,
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2919-2921.

[8] Vinay V. Kuppast et al., "Thermal Analysis of Piston for the Influence on Secondary motion", International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622, Vol. 3, Issue 3, May-Jun 2013, pp.1402-1407

[9] Bhaumik Patel, Ashwin Bhabhor (2012) "thermal analysis of a piston of reciprocating air compressor" IJAERS, ISSN: 2249–8974, PP. 73-75..