

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav

P a g e | 694

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Java Remote Method Invocation
Pramod Kumar & Ruchi Yadav

Dept. of Information & Technology Dronacharya College of Engineering, Farruhknagar,

Gurgaon, India

Abstract

Java offers interesting opportunities for

parallel computing. In particular, Java

Remote Method Invocation provides an

unusually flexible kind of Remote Procedure

Call. Unlike RPC, RMI supports

polymorphism, which requires the system to

be able to download remote classes into a

running application. Sun’s RMI

implementation achieves this kind of

flexibility by passing around object type

information and processing it at run time,

which causes a major run time overhead.

Using Sun’s JDK 1.1.4 on a Pentium

Pro/Myrinet cluster, for example, the

latency for a null RMI (without parameters

or a return value) is 1228 μse c, which is

about a factor of 40 higher than that of a

user-level RPC. In this paper, we study an

alternative approach for implementing RMI,

based on native compilation. This approach

allows for better optimization, eliminates the

need for processing of type information at

run time, and makes a light weight

communication protocol possible. We have

built a Java system based on a native

compiler, which supports both compile time

and run time generation of marshallers. We

find that almost all

of the run time overhead of RMI can be

pushed to compile time. With this approach,

the latency of a null RMI is reduced to 34

μsec, while still supporting polymorphic

RMIs (and allowing interoperability with

other JVMs).

Keywords: Invocation, Implementation,

Compilation, Latency, Polymorphic.

 I. INTRODUCTION

There is a growing interest in using Java for

high-performance parallel applications.

Java’s clean and type-safe object-oriented

programming model and its support for

concurrency make it an attractive

environment for writing reliable, large-scale

parallel programs. For shared memory

machines, Java offers a familiar

multithreading paradigm. For distributed

memory machines such as clusters of

workstations, Java provides Remote Method

Invocation, which is an object-oriented

version of Remote Procedure Call (RPC).

The RMI model offers many advantages for

parallel and distributed programming,

including a seamless integration with Java’s

object model, heterogeneity, and flexibility.

Unfortunately, many existing Java

implementations have inferior performance

of both sequential code and communication

primitives, which is a serious disadvantage

for high-performance computing.

Much effort is being invested in improving

serial code performanceby replacing the

original byte code interpretation scheme

with just-in-time compilers, native

compilers, and specialized hardware. The

communication overhead of Java RMI

implementations, however, remains a major

weakness. RMI is originally designed for

client/server programming in distributed

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav

P a g e | 695

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

(web based) systems, where latencies on the

order of several milliseconds are typical. On

more tightly coupled parallel machines, such

latencies are unacceptable. On our Pentium

Pro/Myrinet cluster, for example, Sun’s JDK

1.1.4 implementation of RMI obtains a two

way null-latency (the latency of an RMI

without parameters or a return value) of

1228 microseconds, compared to 30

microseconds for a user level Remote

Procedure Call protocol in C. (A null-RMI

in Sun’s latest JDK, version 1.2 beta, is even

slower.) Part of this large overhead is caused

by inefficiencies in the JDK. The JDK is

built on a hierarchy of stream classes that

copy data and call virtual methods.

Serialization of method arguments is

implemented by recursively inspecting

object types until primitive types are

reached, and then invoking the primitive

serializers a byte at a time. All of this is

performed at run time, for each remote

invocation. In addition, RMI is implemented

on top of IP sockets, which adds kernel

overhead (and four context switches on the

critical path). Besides inefficiencies in the

JDK, a second and more fundamental reason

for the slowness of RMI is the difference

between the RPC and RMI models. Java’s

RMI scheme is designed for flexibility and

interoperability. Unlike RPC, it allows

classes unknown at compile time to be

exchanged between a client and a server and

to be downloaded into a running program. In

Java, an actual parameter object in an RMI

can be a subclass of the method’s formal

parameter type. In polymorphic object-

oriented languages, the dynamic type of the

parameter-object (the subclass) should be

used by the method, not the static type of the

formal parameter.

II. DESIGN AND IMPLEMENTATION

OF MANTA

This section will discuss the design of the

Manta system (including the unimplemented

parts) and describe the current

implementation status of the system. We

will focus on the Manta RMI

implementation.

1. Manta Structure

Since Manta is designed for high-

performance parallel computing, it uses a

native compiler rather than a JIT. The most

important advantage of a native compiler is

that it can do more aggressive optimizations

and therefore generate better code. To

support interoperability with other JVMs,

however, Manta also has to be able to

process the byte code for the application,

and contains a run-time byte-code-to-native

compiler. The Manta system is illustrated in

Figure 1. The box in the middle describes

the structure of a node running a Manta

application. Such a node contains the

executable code for the application and

(de)serialization routines, both of which are

generated by Manta’s native compiler. A

Manta node can communicate with another

Manta node (the box on the left) through a

fast RMI protocol (using Manta’s own

serialization format); it can communicate

with another JVM (the box on the right)

through a JDK-compliant protocol (using

Sun’s serialization format). Determining

which protocol to use is done with an initial

probe RMI, which is only recognized by a

Manta application, not by a JVM. A Manta-

to-Manta RMI is performed with Manta’s

own fast protocol, which is described in

detail in the next subsection. This is the

common case for high performance parallel

programming, for which Manta is

optimized. Manta’s serialization and

deserialization protocols support

heterogeneity. A Manta-to-JVM RMI is

performed with a slower protocol that

is compatible with Sun’s RMI standard.

Manta uses generic routines to (de)serialize

the objects to or from Sun’s format. These

routines use runtime type inspection

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav

P a g e | 696

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

(reflection), and are similar to Sun’s

protocol. The routines are written in C (as is

all of Manta’sun time system) and execute

more efficiently than Sun’s protocol, which

is written mostly in Java. A Manta

application must be able to work with byte

codes from other nodes, to implement

polymorphic RMIs with JVMs. When a

Manta application requests a byte code from

a remote process, Manta will invoke its byte

code compiler to generate the metaclasses,

the serialization routines, and the object

code for the methods (as if they were

generated by the Manta source code

compiler).

2. Serialisation and Communication

RMI systems can be split into three major

components: low-level communication, the

RMI protocol (stream management and

method dispatch), and serialization. Below,

we discuss how Manta implements this

functionality.

Low – level communication:-

Java RMI implementations are built on top

of TCP/IP, which was not designed for

parallel processing. Manta uses the Panda

communication library, which has efficient

implementations on a variety of networks.

On Myrinet, Panda uses the LFC

communication system . To avoid the

overhead of operating system calls, LFC and

Panda run in user space. On Fast Ethernet,

Panda is implemented on top of UDP. In this

case, the network interface is managed by

the kernel, but the Panda RPC protocols run

in user space.

The RMI protocol:-

The run time system for the Manta RMI

protocol is written in C. It was designed to

minimize serialization and dispatch

overhead, such as copying, buffer

management, fragmentation, thread

switching, and indirect method calls. Figure

2 gives an overview of the layers in our

system and compares it with the layering of

the JDK system. The shaded layers denote

compiled code, while the white layers are

interpreted (or JIT-compiled) Java. Manta

avoids the stream layers of the JDK. Instead,

RMIs are serialized directly into a Panda

buffer. Moreover, in the JDK these stream

layers are written in Java and their overhead

thus depends on the quality of the interpreter

or JIT. In Manta, all layers are either

implemented as compiled C code or

compiler generated native code.

The Serialisation protocol:-

The serialization of method arguments is an

important source of overhead of existing

RMI implementations. Serialization takes

Java objects and converts (serializes) them

into an array of bytes. The JDK serialization

protocol is written in Java and uses

reflection to determine the type of each

object during run time. With Manta, all

serialization code is generated by the

compiler, avoiding the overhead of dynamic

inspection. Serialization code for most RMI

calls is generated at compile time. Only

serialization code for polymorphic RMI

calls that are not locally available is

generated, by the Manta compiler, at run

time. The overhead of this run time code

generation is incurred only once, the first

time the new class is used as a polymorphic

argument to some method invocation.

 Figure 1: Manta/JVM

Interoperability

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav

P a g e | 697

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 III. PERFORMANCE

MEASUREMENT

In this section, the performance of Manta is

compared against the Sun JDK 1.1.4.

Experiments are run on a homogeneous

cluster of Pentium Pro processors. Each

node contains a 200 MHz Pentium Pro and

128 MByte of EDO-RAM. All boards are

connected by two different networks: 1.2

Gbit/sec Myrinet [6] and Fast Ethernet (100

Mbit/sec Ethernet). The system runs the

BSD/OS (Version 3.0) operating system

from BSDI and RedHat Linux version

2.0.36. Timing differences between BSD

and Linux are small to negligible. Except

where otherwise noted, the numbers

reported are from runs on BSD. Both Manta

and Sun’s JDK run over Myrinet and Fast

Ethernet. We have created a small user-level

layer that implements socket functionality in

order to run JDK RMI over Myrinet, on top

of Illinois Fast Messages (FM). FM’s round-

trip latency is 4 μs higher than that of LFC.

Latency:-

The simplest case is an empty method

without any parameters, the null-RMI. On

Myrinet, a null-RMI takes about 34 μs. Only

4 microseconds are added to the latency of

the Panda RPC, which is 30 μs. When

passing primitive data types as a parameter

to a remote call, the latency grows with less

than a microsecond per parameter,

regardless of the type of the parameter (this

is not shown in the table). When one or

more objects are passed as parameters in a

remote invocation, the latency increases

with several microseconds. The reason is

that a table must be created by the run time

system to detect possible cycles and

duplicates in the objects. Separate

measurements show that almost all time that

is taken by adding an object parameter is

spent at the remote side of the call,

deserializing the call request (not shown).

The serialization of the request on the

calling side, however, is affected less by the

object parameters.

Throughput:-

The table also shows the measured

throughput of the Panda RPC protocol, with

the same message size as the remote method

invocation. Two versions of Panda are

shown. The basic version, with which

almost all measurements in this paper are

performed, is Panda 3.0. On Myrinet we

have also performed measurements with

Panda 4.0, which supports a scatter/gather

interface. This scatter/ gather interface

makes it possible to remove some copying

of user data from the critical path, resulting

in an improved throughput. Unfortunately,

dereferencing the scatter/gather vector

involves extra processing, which increases

the latency somewhat. Panda 3.0 achieves a

throughput of 55.7 MByte/s on Myrinet,

which is much higher than the throughput

for Manta (20.6 MByte/s).

Application performance:-

In addition to the low-level latency and

throughput benchmarks, we have also used

three parallel applications to measure the

performance of our system. The applications

are Successive Over relaxation (a numerical

grid computation), Traveling Salesperson

Problem (a combinatorial optimization

program), and Iterative Deepening A* (a

search program). For TSP we used a 15 city

problem, for SOR a 2048 *512 matrix, for

IDA* we solved a random instance of a

sliding tile puzzle (with solution length 56).

The applications are described in more detail

in [20]. We have implemented the programs

with Sun RMI 1.1.4 (on Fast Ethernet) and

Manta/Panda 3.0 RMI (on Fast Ethernet and

Myrinet). Figure 6 shows run times, in

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav

P a g e | 698

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

seconds, for the serial program, and for runs

of the parallel program, on 1 and 16

processors. Note the different scale for the

16 processor run. The programs are run on

the Pentium Pros on BSD.

 IV. RELATED WORK

Many projects for parallel programming in

Java exist (see, for example, the JavaGrande

web page at http://www.javagrande.org/).

Titanium is a Java based language for high-

performance parallel scientific computing. It

extends Java with features like immutable

classes, fast multidimensional array access

and an explicitly

parallel SPMD model of communication.

The Titanium compiler translates Titanium

into C. It is built on the Split-C/Active

Messages back-end. The JavaParty system is

designed to ease parallel cluster

programming in Java. In particular, its goal

is to run multi-threaded programs with as

little change as possible on a workstation

cluster. JavaParty is implemented on top of

Java RMI, and thus suffers from the same

performance problem as RMI. Java/DSM

implements a JVM on top of TreadMarks,

adistributed shared memory system. No

explicit communication is necessary, all

communication is handled by the underlying

DSM. No performance data for Java/DSM

were available to us. Breget al study RMI

performance and interoperability. Krishna

swamy et al improve RMI performance

somewhat by using caching and UDP

instead of TCP. Sampemane et al describe

how RMI can be run over Myrinet using the

socket Factory facility. Gokhale et al discuss

high-performance computing issues for

CORBA. Hirano et al provide performance

figures of RMI and RMI-like systems on

Fast Ethernet. Our system differs by being

designed from scratch to provide high

performance, both at the compiler and run

time system level. For the non-polymorphic

RMI part, Manta’s compiler-generated

serialization is similar to Orca’s

serialization. The buffering and dispatch

scheme is similar to the single-threaded

upcall model. Small, non-blocking,

procedures are run in the interrupt handler,

to avoid expensive thread switches.

 Figure 6: Application Run Time

 V. CONCLUSION

We have built a new compiler-based Java

system (Manta) that was designed from

scratch to support efficient Remote Method

Invocations on parallel computer systems.

Performance measurements show that

Manta’s RMI implementation is

substantially faster than the Sun JDK and

JIT. For example, on Fast Ethernet, the null

latency is improved from 1711 μs (for the

JDK) to 233 μs, on Myrinet from 1228 μs to

34 μs, in both cases only a few

microseconds slower than a C-based RPC.

The gain in efficiency is due to three factors:

the use of compile time type information to

generate specialized serializers; a more

streamlined and efficient RMI protocol; and

the usage of faster communication protocols.

RMI is originally designed for flexible

distributed (client/server) computing, and

allows subclasses to be downloaded into a

running program. Sun’s implementation

handles serialization, dispatch and buffer

management at run time. It is designed for

flexibility, not speed. Our system uses

http://www.javagrande.org/

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav

P a g e | 699

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

compile time information to make the run

time protocol as lean as possible, so that

processing it will be fast. Flexibility is

achieved by recompiling classes and

generating serializers as and when they are

needed. Our implementation is designed for

speed, yet preserves the polymorphism of

RMI. We find that with the right

combination of user level messaging,

compile time type information, and run time

compilation, Java’s RMI can be made

almost as fast as a C-based RPC

implementation while retaining the

flexibility of RMI, making Java a viable

alternative for high performance parallel

programming.

 VI. ACKNOWLEDGEMENT

This work is supported in part by a USF

grant from the Vrije Universiteit. Aske Plaat

is supported by a SION grant from the

Dutch research council NWO. We thank

Kees Verstoep for writing a Java socket

layer for Myrinet on FM. Ceriel Jacobs and

Rutger Hofman implemented and debugged

a substantial part of the Manta system. We

thank Raoul Bhoedjang for his keen

criticism on this work. We thank Michael

Philippsen for providing us with JavaParty,

and for helpful discussions. We thank Thilo

Kielmann for discussions on polymorphism

in distributed object oriented languages and

for his feedback on an earlier draft of this

paper. We thank the anonymous referees for

helpful feedback.

 VII. REFERENCES

[1] H.E. Bal, R.A.F. Bhoedjang, R.

Hofman, C. Jacobs, K.G.

Langendoen, T. R¨uhl, and M.F.

Kaashoek. Performance Evaluation

of the Orca Shared Object System.

ACM Trans. Of Computer Systems,

16(1):1–40, February 1998.

[2] H.E. Bal, R.A.F. Bhoedjang, R.

Hofman, C. Jacobs, K.G.

Langendoen, and K. Verstoep.

Performance of a High-Level

Parallel Language on a High-Speed

Network. Journal of Parallel and

Distributed Computing, 40(1):49–64,

February 1997.

[3] B. Bershad, S. Savage, P. Pardyak,

E. Gun Sirer, D. Becker, M.

Fiuczynski, C. Chambers, and S.

Eggers. Extensibility,Safety and

Performance in the SPIN Operating

System. In 15th ACM Symposium on

Operating System Principles (SOSP-

15), pages 267–284, 1995.

[4] R. A. F. Bhoedjang, T. R¨uhl, and H.

E. Bal. User-Level Network

Interface Protocols. IEEE Computer,

31(11):53–60 , November 1998.

[5] R.A.F. Bhoedjang, T. R¨uhl, and

H.E. Bal. Efficient Multicast on

Myrinet Using Link-Level Flow

Control. In Int. Conf. on Parallel

Processing, pages 381–390,

Minneapolis, MN, August 1998.

