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Abstract 

Java offers interesting opportunities for 

parallel computing. In particular, Java 

Remote Method Invocation provides an 

unusually flexible kind of Remote Procedure 

Call. Unlike RPC, RMI supports 

polymorphism, which requires the system to 

be able to download remote classes into a 

running application. Sun’s RMI 

implementation achieves this kind of 

flexibility by passing around object type 

information and processing it at run time, 

which causes a major run time overhead. 

Using Sun’s JDK 1.1.4 on a Pentium 

Pro/Myrinet cluster, for example, the 

latency for a null RMI (without parameters 

or a return value) is 1228 μse c, which is 

about a factor of 40 higher than that of a 

user-level RPC. In this paper, we study an 

alternative approach for implementing RMI, 

based on native compilation. This approach 

allows for better optimization, eliminates the 

need for processing of type information at 

run time, and makes a light weight 

communication protocol possible. We have 

built a Java system based on a native 

compiler, which supports both compile time 

and run time generation of marshallers. We 

find that almost all 

of the run time overhead of RMI can be 

pushed to compile time. With this approach, 

the latency of a null RMI is reduced to 34 

μsec, while still supporting polymorphic 

RMIs (and allowing interoperability with 

other JVMs). 

 

Keywords: Invocation, Implementation, 

Compilation, Latency, Polymorphic. 

 

 

                          I. INTRODUCTION 

There is a growing interest in using Java for 

high-performance parallel applications. 

Java’s clean and type-safe object-oriented 

programming model and its support for 

concurrency make it an attractive 

environment for writing reliable, large-scale 

parallel programs. For shared memory 

machines, Java offers a familiar 

multithreading paradigm. For distributed 

memory machines such as clusters of 

workstations, Java provides Remote Method 

Invocation, which is an object-oriented 

version of Remote Procedure Call (RPC). 

The RMI model offers many advantages for 

parallel and distributed programming, 

including a seamless integration with Java’s 

object model, heterogeneity, and flexibility. 

Unfortunately, many existing Java 

implementations have inferior performance 

of both sequential code and communication 

primitives, which is a serious disadvantage 

for high-performance computing. 

Much effort is being invested in improving 

serial code performanceby replacing the 

original byte code interpretation scheme 

with just-in-time compilers, native 

compilers, and specialized hardware. The 

communication overhead of Java RMI 

implementations, however, remains a major 

weakness. RMI is originally designed for 

client/server programming in distributed 
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(web based) systems, where latencies on the 

order of several milliseconds are typical. On 

more tightly coupled parallel machines, such 

latencies are unacceptable. On our Pentium 

Pro/Myrinet cluster, for example, Sun’s JDK 

1.1.4 implementation of RMI obtains a two 

way null-latency (the latency of an RMI 

without parameters or a return value) of 

1228 microseconds, compared to 30 

microseconds for a user level Remote 

Procedure Call protocol in C. (A null-RMI 

in Sun’s latest JDK, version 1.2 beta, is even 

slower.) Part of this large overhead is caused 

by inefficiencies in the JDK. The JDK is 

built on a hierarchy of stream classes that 

copy data and call virtual methods. 

Serialization of method arguments is 

implemented by recursively inspecting 

object types until primitive types are 

reached, and then invoking the primitive 

serializers a byte at a time. All of this is 

performed at run time, for each remote 

invocation. In addition, RMI is implemented 

on top of IP sockets, which adds kernel 

overhead (and four context switches on the 

critical path). Besides inefficiencies in the 

JDK, a second and more fundamental reason 

for the slowness of RMI is the difference 

between the RPC and RMI models. Java’s 

RMI scheme is designed for flexibility and 

interoperability. Unlike RPC, it allows 

classes unknown at compile time to be 

exchanged between a client and a server and 

to be downloaded into a running program. In 

Java, an actual parameter object in an RMI 

can be a subclass of the method’s formal 

parameter type. In polymorphic object-

oriented languages, the dynamic type of the 

parameter-object (the subclass) should be 

used by the method, not the static type of the 

formal parameter.  

 

II. DESIGN AND IMPLEMENTATION 

OF MANTA 

This section will discuss the design of the 

Manta system (including the unimplemented 

parts) and describe the current 

implementation status of the system. We 

will focus on the Manta RMI 

implementation. 

 

1. Manta Structure 

Since Manta is designed for high-

performance parallel computing, it uses a 

native compiler rather than a JIT. The most 

important advantage of a native compiler is 

that it can do more aggressive optimizations 

and therefore generate better code. To 

support interoperability with other JVMs, 

however, Manta also has to be able to 

process the byte code for the application, 

and contains a run-time byte-code-to-native 

compiler. The Manta system is illustrated in 

Figure 1. The box in the middle describes 

the structure of a node running a Manta 

application. Such a node contains the 

executable code for the application and 

(de)serialization routines, both of which are 

generated by Manta’s native compiler. A 

Manta node can communicate with another 

Manta node (the box on the left) through a 

fast RMI protocol (using Manta’s own 

serialization format); it can communicate 

with another JVM (the box on the right) 

through a JDK-compliant protocol (using 

Sun’s serialization format). Determining 

which protocol to use is done with an initial 

probe RMI, which is only recognized by a 

Manta application, not by a JVM. A Manta-

to-Manta RMI is performed with Manta’s 

own fast protocol, which is described in 

detail in the next subsection. This is the 

common case for high performance parallel 

programming, for which Manta is 

optimized. Manta’s serialization and 

deserialization protocols support 

heterogeneity. A Manta-to-JVM RMI is 

performed with a slower protocol that 

is compatible with Sun’s RMI standard. 

Manta uses generic routines to (de)serialize 

the objects to or from Sun’s format. These 

routines use runtime type inspection 
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(reflection), and are similar to Sun’s 

protocol. The routines are written in C (as is 

all of Manta’sun time system) and execute 

more efficiently than Sun’s protocol, which 

is written mostly in Java. A Manta 

application must be able to work with byte 

codes from other nodes, to implement 

polymorphic RMIs with JVMs. When a 

Manta application requests a byte code from 

a remote process, Manta will invoke its byte 

code compiler to generate the metaclasses, 

the serialization routines, and the object 

code for the methods (as if they were 

generated by the Manta source code 

compiler). 

 

2. Serialisation and Communication 

RMI systems can be split into three major 

components: low-level communication, the 

RMI protocol (stream management and 

method dispatch), and serialization. Below, 

we discuss how Manta implements this 

functionality. 

 

Low – level communication:- 

Java RMI implementations are built on top 

of TCP/IP, which was not designed for 

parallel processing. Manta uses the Panda 

communication library, which has efficient 

implementations on a variety of networks. 

On Myrinet, Panda uses the LFC 

communication system . To avoid the 

overhead of operating system calls, LFC and 

Panda run in user space. On Fast Ethernet, 

Panda is implemented on top of UDP. In this 

case, the network interface is managed by 

the kernel, but the Panda RPC protocols run 

in user space. 

 

The RMI protocol:- 

The run time system for the Manta RMI 

protocol is written in C. It was designed to 

minimize serialization and dispatch 

overhead, such as copying, buffer 

management, fragmentation, thread 

switching, and indirect method calls. Figure 

2 gives an overview of the layers in our 

system and compares it with the layering of 

the JDK system. The shaded layers denote 

compiled code, while the white layers are 

interpreted (or JIT-compiled) Java. Manta 

avoids the stream layers of the JDK. Instead, 

RMIs are serialized directly into a Panda 

buffer. Moreover, in the JDK these stream 

layers are written in Java and their overhead 

thus depends on the quality of the interpreter 

or JIT. In Manta, all layers are either 

implemented as compiled C code or 

compiler generated native code. 

 

The Serialisation protocol:- 

The serialization of method arguments is an 

important source of overhead of existing 

RMI implementations. Serialization takes 

Java objects and converts (serializes) them 

into an array of bytes. The JDK serialization 

protocol is written in Java and uses 

reflection to determine the type of each 

object during run time. With Manta, all 

serialization code is generated by the 

compiler, avoiding the overhead of dynamic 

inspection. Serialization code for most RMI 

calls is generated at compile time. Only 

serialization code for polymorphic RMI 

calls that are not locally available is 

generated, by the Manta compiler, at run 

time. The overhead of this run time code 

generation is incurred only once, the first 

time the new class is used as a polymorphic 

argument to some method invocation. 

 

 

 
                Figure 1: Manta/JVM 

Interoperability 
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        III. PERFORMANCE 

MEASUREMENT 

In this section, the performance of Manta is 

compared against the Sun JDK 1.1.4. 

Experiments are run on a homogeneous 

cluster of Pentium Pro processors. Each 

node contains a 200 MHz Pentium Pro and 

128 MByte of EDO-RAM. All boards are 

connected by two different networks: 1.2 

Gbit/sec Myrinet [6] and Fast Ethernet (100 

Mbit/sec Ethernet). The system runs the 

BSD/OS (Version 3.0) operating system 

from BSDI and RedHat Linux version 

2.0.36. Timing differences between BSD 

and Linux are small to negligible. Except 

where otherwise noted, the numbers 

reported are from runs on BSD. Both Manta 

and Sun’s JDK run over Myrinet and Fast 

Ethernet. We have created a small user-level 

layer that implements socket functionality in 

order to run JDK RMI over Myrinet, on top 

of Illinois Fast Messages (FM). FM’s round-

trip latency is 4 μs higher than that of LFC. 

 

Latency:- 

The simplest case is an empty method 

without any parameters, the null-RMI. On 

Myrinet, a null-RMI takes about 34 μs. Only 

4 microseconds are added to the latency of 

the Panda RPC, which is 30 μs. When 

passing primitive data types as a parameter 

to a remote call, the latency grows with less 

than a microsecond per parameter, 

regardless of the type of the parameter (this 

is not shown in the table). When one or 

more objects are passed as parameters in a 

remote invocation, the latency increases 

with several microseconds. The reason is 

that a table must be created by the run time 

system to detect possible cycles and 

duplicates in the objects. Separate 

measurements show that almost all time that 

is taken by adding an object parameter is 

spent at the remote side of the call, 

deserializing the call request (not shown). 

The serialization of the request on the 

calling side, however, is affected less by the 

object parameters. 

 

Throughput:- 

The table also shows the measured 

throughput of the Panda RPC protocol, with 

the same message size as the remote method 

invocation. Two versions of Panda are 

shown. The basic version, with which 

almost all measurements in this paper are 

performed, is Panda 3.0. On Myrinet we 

have also performed measurements with 

Panda 4.0, which supports a scatter/gather 

interface. This scatter/ gather interface 

makes it possible to remove some copying 

of user data from the critical path, resulting 

in an improved throughput. Unfortunately, 

dereferencing the scatter/gather vector 

involves extra processing, which increases 

the latency somewhat. Panda 3.0 achieves a 

throughput of 55.7 MByte/s on Myrinet, 

which is much higher than the throughput 

for Manta (20.6 MByte/s). 

 

Application performance:- 

In addition to the low-level latency and 

throughput benchmarks, we have also used 

three parallel applications to measure the 

performance of our system. The applications 

are Successive Over relaxation (a numerical 

grid computation), Traveling Salesperson 

Problem (a combinatorial optimization 

program), and Iterative Deepening A* (a 

search program). For TSP we used a 15 city 

problem, for SOR a 2048 *512 matrix, for 

IDA* we solved a random instance of a 

sliding tile puzzle (with solution length 56). 

The applications are described in more detail 

in [20]. We have implemented the programs 

with Sun RMI 1.1.4 (on Fast Ethernet) and 

Manta/Panda 3.0 RMI (on Fast Ethernet and 

Myrinet). Figure 6 shows run times, in 
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seconds, for the serial program, and for runs 

of the parallel program, on 1 and 16 

processors. Note the different scale for the 

16 processor run. The programs are run on 

the Pentium Pros on BSD. 

 

 

 

                         IV. RELATED WORK 

Many projects for parallel programming in 

Java exist (see, for example, the JavaGrande 

web page at http://www.javagrande.org/). 

Titanium is a Java based language for high-

performance parallel scientific computing. It 

extends Java with features like immutable 

classes, fast multidimensional array access 

and an explicitly 

parallel SPMD model of communication. 

The Titanium compiler translates Titanium 

into C. It is built on the Split-C/Active 

Messages back-end. The JavaParty system is 

designed to ease parallel cluster 

programming in Java. In particular, its goal 

is to run multi-threaded programs with as 

little change as possible on a workstation 

cluster. JavaParty is implemented on top of 

Java RMI, and thus suffers from the same 

performance problem as RMI. Java/DSM 

implements a JVM on top of TreadMarks, 

adistributed shared memory system. No 

explicit communication is necessary, all 

communication is handled by the underlying 

DSM. No performance data for Java/DSM 

were available to us. Breget al study RMI 

performance and interoperability. Krishna 

swamy et al  improve RMI performance 

somewhat by using caching and UDP 

instead of TCP. Sampemane et al describe 

how RMI can be run over Myrinet using the 

socket Factory facility. Gokhale et al discuss 

high-performance computing issues for 

CORBA. Hirano et al provide performance 

figures of RMI and RMI-like systems on 

Fast Ethernet. Our system differs by being 

designed from scratch to provide high 

performance, both at the compiler and run 

time system level. For the non-polymorphic 

RMI part, Manta’s compiler-generated 

serialization is similar to Orca’s 

serialization. The buffering and dispatch 

scheme is similar to the single-threaded 

upcall model. Small, non-blocking, 

procedures are run in the interrupt handler, 

to avoid expensive thread switches. 

 

 
                   Figure 6: Application Run Time 

 

 

 

                         V. CONCLUSION 

We have built a new compiler-based Java 

system (Manta) that was designed from 

scratch to support efficient Remote Method 

Invocations on parallel computer systems. 

Performance measurements show that 

Manta’s RMI implementation is 

substantially faster than the Sun JDK and 

JIT. For example, on Fast Ethernet, the null 

latency is improved from 1711 μs (for the 

JDK) to 233 μs, on Myrinet from 1228 μs to 

34 μs, in both cases only a few 

microseconds slower than a C-based RPC. 

The gain in efficiency is due to three factors: 

the use of compile time type information to 

generate specialized serializers; a more 

streamlined and efficient RMI protocol; and 

the usage of faster communication protocols. 

RMI is originally designed for flexible 

distributed (client/server) computing, and 

allows subclasses to be downloaded into a 

running program. Sun’s implementation 

handles serialization, dispatch and buffer 

management at run time. It is designed for 

flexibility, not speed. Our system uses 

http://www.javagrande.org/


      

 
 
 

JAVA REMOTE METHOD INVOCATION Pramod Kumar & Ruchi Yadav 
 

P a g e  | 699 

International Journal of Research (IJR)   Vol-1, Issue-10 November 2014   ISSN 2348-6848 

compile time information to make the run 

time protocol as lean as possible, so that 

processing it will be fast. Flexibility is 

achieved by recompiling classes and 

generating serializers as and when they are 

needed. Our implementation is designed for 

speed, yet preserves the polymorphism of 

RMI. We find that with the right 

combination of user level messaging, 

compile time type information, and run time 

compilation, Java’s RMI can be made 

almost as fast as a C-based RPC 

implementation while retaining the 

flexibility of RMI, making Java a viable 

alternative for high performance parallel 

programming. 
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