

PV AC Modules by PR+ Fuzzy for Control Strategy of Fly back Micro inverter with Hybrid Mode

Chennaiah Banoth^{1,} Mahender kodela^{2,} Kumaraswamy Madavena³

¹ Assistant Professor Department of Facilities and Services Planning (Building Technology and services), Jawaharlal Nehru Architecture and Fine Arts University, Hyderabad, Telangana, India

² Assistant Professor Department of Electrical and Electronics Engineering, Vaagdevi College Of Engineering, warangal, Telangana, India.

³ Associate Professor Department of Electrical and Electronics Engineering, Ganapthi Engineering College, warangal, Telangana, India.

banoth.chennaiah@gmail.com & mahi.kodela@gmail.com & kumar21sriram@gmail.com

Abstract— This paper presents a control strategy of a flyback microinverter with hybrid operation mode for photovoltaic (PV) AC modules. This paper presents a control strategy of a fly back micro inverter with hybrid operation mode for photovoltaic (PV) AC modules. The proposed control strategy consists of two components: the proportionalresonant (PR) + Fuzzy controller with the harmonic compensator (HC), and the hybrid nominal duty ratio. Compared to the conventional control strategy using the proportional-Resonant (PR) controller, the PR+ Fuzzy controller with HC provides higher system gain at the fundamental and harmonic frequencies of the grid without using high proportional gain in both operation modes. Then, it enhances tracking speed and disturbance rejection performances satisfying the desired stability. Moreover, by applying the hybrid nominal duty ratio yielded from the proposed operation mode selection, the disturbance rejection is achieved more effectively, and the control burden is reduced. Finally, the simulation and experiment results were shown to verify the tracking speed and disturbance rejection performances of the proposed control strategy.

Index Terms—Current control scheme, photovoltaic (PV) module, right-half-plane(RHP) zero, single-stageinverter.

I. INTRODUCTION

with an increase of attention in renewable energy sources, the PV energy has been widely utilized in various industrial fields. The PV power systems can be classified into centralized, string, and ac module systems .Among them, in the ac module system, a low-power grid-connected inverter called as the microinverter is mounted on a single PV module; it can track the individual maximum power point (MPP), and so reduces power losses by PV module mismatch and partial shading .Moreover, the ac module system has higher reliability and easier maintenance than those of other PV systems .Thus, with these advantages, the ac module PV system has been recently considered as a trend of the future PV power systems. The worth of the microinverter is evaluated by its power conversion efficiency, the shape of output current, power density, reliability, and cost .To meet these requirements, a single-stage flyback inverter topology has been adopted due to its simple circuit structure and potential for high efficiency and reliability. Moreover, the flyback inverter topology has both step-down and step-up functions; this characteristic is suitable for the PV applications where the inverter should operate in wide voltage range.

When the flyback inverter operates under the constant switching frequency, the operation modes can be classified as the discontinuous current mode (DCM) and continuous current mode (CCM). Actually, the PV inverter called as the CCM flyback inverter has both operation modes; it inevitably operates in DCM at the low instantaneous power level or low solar irradiation level although it operates in CCM at all instantaneous power levels for rated average power. Then, it can be regarded that the flyback inverter has hybrid operation mode over whole ac-line period. Compared to a flyback inverter

International Journal of Research Available at https://edupediapublications.org/journals e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 10 September 2017

only with DCM, the flyback inverter with hybrid mode has the numerous merits such as higher efficiency with lower current stress, higher power capability, and easier filter design. However, the control input-to-output current transfer function of the flyback inverter in the CCM region has a right half-plane (RHP) zero which results in the limitations of increasing the system gain and controller bandwidth. Since the operating point varies widely in the PV inverter applications, especially, the controller should cover the minimum RHP zero. When a conventional PI controller is applied to the flyback inverter with hybrid mode, the proportional gain is designed to be relatively low for ensuring stability in all operating points.

The system gain of the flyback inverter in the DCM region is inherently much low. To achieve fast reference tracking and disturbance rejection performances, the high gain feed-back controller is required in the DCM operation. However, when the conventional PI controller is applied, the control gain is limited by the RHP zero in CCM. As a result, it causes unacceptable power quality and high total harmonic distortion (THD) by the poor control performance in DCM [15]. This is the reason why the use of the flyback inverter with hybrid mode is limited despite its many advantages.

To avoid the mentioned problem, some previous studies in control the primary current instead of controlling the output current because there is no RHP zero in the transfer function for the control input to the primary current. The control approach bypasses the difficulties posed by the RHP zero. However, the power quality is low because this approach controls the output current indirectly.

The PR controller is an alternative of the PI controller. It provides an infinite gain at a selected resonant frequency without using high proportional gain .Moreover, because the controller has flexibility of selecting the resonant frequency, adding multiple PR controllers such as the harmonic compensator is possible for compensating the harmonics of the selected fundamental frequency.

Fig. 1. Circuit diagram of the flyback microinverter.

In this paper, the current control strategy of the flyback microinverter with hybrid mode is proposed. The proposed control strategy consists of two components: the PR controller with HC and the hybrid nominal duty ratio. The PR controller with HC provides high gain at the fundamental and harmonic frequencies of the grid and achieves the zero-tracking error in both operation modes. The hybrid nominal duty ratio performs as a feedforward control input and is determined by the proposed operation mode selection. By applying the hybrid nominal duty ratio according to proper operation region, it can achieve more effective disturbance rejection and faster dynamics. Thus, the proposed control strategy gives the higher tracking performance and better disturbance rejection in both operation modes and strengthens the many advantages of the flyback inverter with hybrid mode. In Section II, the basic operation of the flyback inverter for each mode is introduced. Section III represents the system dynamic characteristic according to each operation mode, and handles with the problems on the conventional current control with the PI controller. Then, the proposed control strategy is introduced, and its superiority and validity are represented from theoretical analysis. Finally, the simulation and experimental results are shown in Section IV.

II. PRINCIPLE OF OPERATION OF THE FLYBACK INVERTER WITH HYBRID MODE

Fig.1 shows a circuit diagram of the flyback microinverter; it consists of an input capacitor Cin, a flyback converter with turn ratio n (Ns / Np), a full-bridge type unfolding circuit (S2 – S5), and an output filter. The flyback converter operates under the high switching frequency to convert PV power into rectified sinusoidal waveform.

The unfolding circuit works under the grid frequency f to inject sinusoidal ac current into the grid; switches S2 and S5 are turned on during the positive half-cycle of the grid voltage vg, while S3 and S4 are turned on during the negative half-cycle.

Steady-state analysis of DCM and CCM operations :

Under the constant switching frequency fs, the operation modes are classified into DCM and CCM. In DCM, the magnetizing current im becomes zero within each switching period Ts, and the transformer T is completely demagnetized as shown in Fig. 2. When S1 is turned on, the primary current ipri is stored in the magnetizing inductance Lm, and its peak value is expressed as follows:

Fig : Circuit diagram of the flyback microinverter

$$I_{pri,pk_DCM}(t) = \frac{V_{PV}}{L_m} D_{DCM}(t) T_s$$
(1)

where DDCM is the duty ratio in DCM. The energy ELm stored in Lm is expressed as

$$E_{Lm} = \frac{1}{2} L_m I_{pri,pk}^2(t) = \frac{(V_{PV} D_{DCM}(t) T_s)^2}{2L_m}.$$
 (2)

Assuming lossless operation in the inverter, the power balance equations can be obtained as

$$V_{PV}I_{PV} = \frac{V_g I_g}{2} = P_o \tag{3}$$

$$V_{PV}I_{pri}(t) = v_g(t)i_g(t) = V_gI_g\sin^2\omega t$$
(4)

where VPV and IPV are the average values of the voltage and current for a PV module. vg and ig are the grid voltage and grid current; Vg and Ig are the peak values of vg and ig, respectively. Po is the average output power. Ipri is the average primary current. ω is the angular frequency of the grid voltage. If there is no loss, the energy stored in Lm is equal to the energy transferred to the grid. Assuming $|vg| \approx vo$, from (2)-(4), DDCM can be derived a

$$D_{DCM}(t) = \frac{2}{V_{PV}} \sqrt{P_o L_m f_s} |\sin \omega t|$$

= $d_{DCM, pk} |\sin \omega t|$ (5)

where dDCM,pk is the peak value of DDCM. In CCM, Lm is applied to VPV during the turn-on time of S1, while the voltage across Lm is reflected the output voltage during the turn-off time. Using the voltage-seconds law for Lm, the duty ratio DCCM in CCM is calculation as

$$D_{CCM}(t) = \frac{V_g \left| \sin \omega t \right|}{n V_{PV} + V_g \left| \sin \omega t \right|}.$$
 (6)

The duties DDCM and DCCM determine the relationship betweenthe input voltage VPV and output voltage vo.

Fig : Key waveforms in DCM and CCM.

As mentioned above, the peak value of the primary current in DCM is expressed as the equation (1). In case of CCM, as shown in Fig. 2, the peak value of the primary current Ipri, pk_CCM is equal to the sum of the average magnetizing current Im and the ripple component. Because the magnetizing current is the same as the primary current when S1 is turned on, its average value can be expressed using the average value of the primary current Ipri and the duty ratio DCCM as

$$I_m(t) = \frac{I_{pri}(t)}{D_{CCM}(t)}.$$
(7)

Thus, from Fig. and the power relationship in (2), the peak value of the primary current Ipri, pk_CCM is calculated as

$$I_{pri,pk_CCM}(t) = \frac{I_{pri}(t)}{D_{CCM}(t)} + \frac{V_{PV}D_{CCM}(t)T_S}{2L_m}$$

$$= \frac{i_o}{V_{PV}}(nV_{PV} + |v_g(t)|) + \frac{1}{2L_m f_s}V_{PV}\frac{|v_g(t)|}{nV_{PV} + |v_g(t)|}.$$
(8)

The peak value of the secondary current is the same as the peak value of ipri for each mode divided by the turn ratio n.

Flyback microinverter with hybrid mode :

Under the DCM operation, the turn-off time toff is divided into the falling time tf and the zero time Δt . The time tf is constant and is given by

$$t_f = \frac{nV_{PV}d_{DCM,pk}}{V_g}T_s = n\lambda d_{DCM,pk}T_s$$
(9)

where VPV/Vg is denoted as λ . Because im is zero before end of each switching period Ts, the following condition (10) is satisfied in DCM

$$t_{on}(t) + t_f = d_{DCM,pk} (|\sin \omega t| + n\lambda) T_s \le T_s.$$
(10)

With an increase of the output power, DDCM also increases, and the sum of the turn-on time and falling time becomes Ts. Thus, from (5) and (10), the critical duty ratio Dcri can be obtained as follows:

$$D_{cri}(t) = \frac{t_{on}(t)}{T_s} = \frac{d_{DCM,pk}T_s |\sin \omega t|}{d_{DCM,pk} (|\sin \omega t| + n\lambda)T_s}$$

$$= \frac{V_g |\sin \omega t|}{nV_{PV} + V_g |\sin \omega t|}.$$
(11)

From (11), the fact that the duty ratio DDCM is equal to DCCM under boundary condition is verified, and the flyback operates in the DCM region when DDCM is smaller than DCCM. Fig. shows the operation regions of the flyback inverter in a half-cycle of the grid under conditions given in Table I. As shown in Fig. 3, the flyback inverter operates in DCM at the low instantaneous power level or low solar irradiation level although it operates in CCM region above a certain power level in ac line period. Because the flyback inverter has both operation modes over whole ac line period, it performs as the flyback inverter with hybrid mode.

Fig : The boundary between DCM and CCM regions varies according to the magnetizing inductanceLm.Lower Lm results in larger DCM region at the given output power. The critical magnetizing inductance Lm,cri is derived from (5) and (6) as follows:

$$L_{m,cri} = \frac{1}{4P_o f_s} \left(\frac{V_{PV} V_g}{n V_{PV} + V_g} \right)^2.$$
(12)

To make the flyback inverter only operate in the DCM region, Lm should be lower than Lm,cri at a certain output power. The flyback inverter only with the DCM region suffers from the high current

International Journal of Research

Available at <u>https://edupediapublications.org/journals</u>

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 10 September 2017

stress which causes high power losses and limits the increase of the power capacity. As Lm increases, the CCM region increases, and the maximum current stress gradually decreases. Thus, the high Lm enhances the efficiency and power capacity. However, when setting the value of Lm, there is a trade-off between the efficiency and transformer size; higher Lm gives the lower current stress but a larger transformer size. Thus, the design of Lm for the flyback inverter with hybrid mode should be above Lm,cri, and consider the acceptable current stress and transformer size.

PR+Fuzzy for Control Strategy of Fly back Micro inverter with Hybrid Mod

Input2

output

ANALYSIS FOR CONTROL STRATEGY OF FLYBACK MICROINVERTER WITH HYBRID MODE

Control issues :

In the flyback microinverter with hybrid mode, the current controller should ensure the reference tracking and disturbance rejection performances in both operation regions. Fig. shows the equivalent circuit of the grid-connected flyback micro- inverter.

Input1

Fig : Equivalent circuit of the grid-connected flyback microinverter.

Using the control input-to-output current transfer function introduced in the transfer function Gid_DCM in DCM can be expressed as follows:

$$G_{id-DCM} = \frac{V_{PV}}{V_{g,rms}} \sqrt{\frac{P_o}{2L_m f_s}}$$
(13)

where Vg,rms is the rms value of the grid voltage. Eqn. (13) is noted that the system gain in DCM is constant and very low at all frequency ranges.

Using a small signal modeling, the transfer function Gid_CCM in CCM can be represented as

$$G_{id_CCM} = \frac{As + B}{R_{in}C_{in}L_{m}s^{2} + L_{m}s + D_{CCM}^{2}R_{PV}} - \frac{I_{Lm}}{n}$$
(14)

Where

$$A = R_{PV}C_{in} \frac{(1 - D_{CCM})(V_{Cin} + \frac{v_g}{n})}{n}$$
$$B = \frac{1 - D_{CCM}}{n}(V_{Cin} + \frac{v_g}{n} - D_{CCM}I_{Lm}R_{PV}).$$

From (14), it is observed that the control input-to-output current transfer function in CCM has

an RHP zero. The RHP zero varies according to the operating points, and its minimum value is at the peak of the grid voltage under maximum output power. Thus, the minimum RHP zero should be considered when the controller for the flyback inverter with hybrid mode is designed.

In the conventional control system [17], the PI controller is used to ensure the reference tracking and disturbance rejection performances. Fig. shows open-loop Bode plots of the compensated systems by the conventional PI controller. Used parameters are listed in Table I. The operating point in DCM is at the instantaneous power 25W under the rated average output power. While, the point in the CCM is the peak of vg under the rated average output power where it is the minimum RHP zero. The proportional gain kp of the PI controller is tuned to be low to ensure the stability in the operation point with the minimum RHP zero. Thus, the gains of the conventional PI controller are set as follows: the proportional integral gain kp = 0.08 and ki = 64. As shown in Fig, the system gain at the fundamental and its harmonic frequencies of the grid in DCM is much lower than that in CCM although the integral action of the PI controller gives high DC gain at the origin. This makes the flyback inverter in the DCM region be unable to ensure tracking the reference and rejecting disturbances by the PV and grid voltages effect. To increase the system gain at those frequencies, a high proportional gain is required. However, it raises the system gain at all frequencies and so could make the flyback inverter in the CCM region become unstable. Consequently, when applying the conventional PI controller to the flyback inverter with hybrid mode, there is a trade-off between control performance in DCM and stability in CCM.

Fig: Open-loop Bode plots of the compensated system by the conventional PI controller. (a) In DCM. (b) In CCM

Proposed control strategy:

To satisfy the desired control performance and stability in both operation modes, the PR controller can be developed, and its transfer function is expressed as

$$C_{PR}(s) = k_p + \frac{k_r s}{s^2 + \omega^2} \tag{15}$$

where kr is the resonant gain. The PR controller in (15) has an infinite gain at the grid frequency. However, the infinite gain would degrade the control performance and even cause the system to become unstable. In the practical implementation, the following form of the PR controller can be adopted as

$$C_{PR}(s) = k_p + \frac{2k_r\omega_c s}{s^2 + 2\omega_c s + \omega^2}$$
(16)

where ωc is chosen to widen the controller bandwidth and determines the -3 dB cutoff frequency of the controller. That is, the magnitude of the compensator becomes kr/2 at ω - ωc or ω + ωc . In the PR controller, kp is selected in the same way as that of a PI controller. That is, it is designed by the stability of the compensated systems considering the minimum RHP zero. The gain kr is tuned relatively high to minimize steady-state error but it is limited by the stability. In case of the proposed PR controller, the gains kr and ωc are 20 and 16, respectively; kr is selected to make the system have the phase margin above 45° to ensure the stability in practice. In addition, the harmonic

compensator is able to alleviate errors for the selective harmonic frequencies, and its transfer function is represented as

$$C_{HC}(s) = \sum_{h=3,5,7...} \frac{2k_{rh}\omega_c s}{s^2 + 2\omega_c s + (h\omega)^2}$$
(17)

where h is the harmonic order, and krh is the resonant gain for each harmonic frequency. The open-loop Bode plots of compensated system by the PR controller with the 3rd to 7th harmonic compensators is shown in Fig. 6. The 3rd, 5th, and 7th harmonics are the most prominent harmonics under the grid environment. Like the PR controller,

HC provides the high gain at selected harmonic frequency components, which helps eliminating steady-state error and the disturbance by the selected Compared frequency components. to the compensated system by the conventional PI controller shown in Fig., it is obvious that the PR controller with harmonic compensators brings the higher gain at the fundamental and its harmonic frequencies of the grid without high proportional gain. In addition, the bandwidth in DCM is increased. Thus, it enhances the reference tracking speed and disturbance rejection performances with satisfaction of the desired stability in both operation modes.

Fig. 7. The block diagram of the proposed control system.

The overall proposed control system for the flyback inverter with hybrid mode is shown in Fig.it consists of the PR controller with HC and the nominal duty ratio Dn. Ig * is the peak value of the reference grid current (or output current). As a kind of the feedforward control inputs, the nominal duty ratio Dn eliminates the disturbance effects and reduces the burden of the feedback controller. In only the duty ratio Dccm in (6) is applied to whole ac line period. In this case, the duty ratio Dccm causes the voltage mismatch in the DCM region, which increases the burden of the feedback controller. Since the system gain in DCM is relatively lower, this burden becomes heavier. To overcome the mismatch in DCM, the duty ratio DDCM should be applied when the flyback inverter operates in the DCM region; it means that the nominal duty ratio should be determined according to the operation region. To classify the section of operation modes without an additional current sensor, the critical duty ratio in can be used; it is noted that the flyback inverter operates in the DCM region when the following condition is satisfied as

$$D_{DCM}(t) \le D_{CCM}(t). \tag{18}$$

Thus, the hybrid nominal duty ratio Dn in the proposed control strategy is determined as follows:

$$D_n(t) = \begin{cases} D_{DCM}(t), & \text{if } D_{DCM}(t) \le D_{CCM}(t) \\ D_{CCM}(t), & \text{if } D_{DCM}(t) > D_{CCM}(t) \end{cases}$$
(19)

Finally, the proposed hybrid nominal duty ratio can significantly reduce the disturbance effect in both operation modes, and so improve the performance of the feedback controller.

TABLE PARAMETERS AND COMPONENTS OF THE PROTOTYPE

Parameters	Symbols	Value
PV voltage	V_{PV}	40-80V
Grid voltage	Vg	$210 V_{\text{ms}}$
Grid frequency	f	60Hz
Rated average output power	Po	200W
Switching frequency	fs	60kHz
Primary winding turns	N_p	14tums
Secondary winding turns	N_{s}	51tums
Magnetizing inductance	L_m	50µН
Leakage inductance	Lik	0.6µН
Input capacitor	Cin	6.6mF
Output capacitor	Co	0.68µF
Output inductor	Lo	400µH
Components	Symbols	
Main switch	S ₁	IPP200N25N3G
Unfold-bridge switches	S2, S3, S4, S5	IPP60R074C6
Rectifier diode	D.	C2D05120A

SIMULATION RESULTS

International Journal of Research

Available at <u>https://edupediapublications.org/journals</u>

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 04 Issue 10 September 2017

To verify the feasibility and performance of the proposed control strategy, the simulation by a simulator Psim and experiment using the prototype for the flyback microinverter shown in Fig. 1 were conducted. The nominal PV voltage and rated power were set up to 60V and 200W, respectively. The detail system parameters and parts are listed in Table I. Based on the analysis in the Section III, the controller parameters are designed. The prototype implemented using Microchip, was dsPIC33EP512GM604 under 25 kHz sampling frequency. Fig. shows the output current control performance when the conventional PI controller only with the duty ratio DCCM is used.

When the conventional control system is used, the grid current is distorted in the low power level. If the gain kp increases to track the reference signal, the system becomes unstable. Especially, the output current is not regulated by the poor tracking and rejecting disturbance performances in the power level only with DCM region over whole ac line period. On the other hand, in the proposed control strategy, it is observed that the output current tracks the reference current and achieves the almost zero tracking error without high proportional gain as shown in Fig.

Fig.9 Simulation results for the grid current ig and its reference ig_ref when the conventional control system is applied. (a) quarter-load condition. (b) full-load condition.

conditions

CONCLUSION

The current control strategy of the flyback microinverter with hybrid mode for PV ac module

has been introduced and verified by the analysis, simulation, and experimental results. In the proposed control strategy, the PR controller with HC provides the high system gain at fundamental and harmonic frequencies in both operation modes without using high proportional gain. The characteristic alleviates the trade-off between the control performance in DCM and stability in CCM when the conventional PI controller is used. In addition, the proposed hybrid nominal duty ratio vielded from the proposed operation mode selection eliminates the disturbance more effectively and reduces the burden of the feedback controller. From the simulation and experiment results, it is verified that the proposed control strategy shows faster reference tracking and better disturbance rejection than those of the conventional strategy. Finally, the proposed control strategy encourages the many advantages of the flyback inverter with hybrid mode and makes it to be used in the industrial field.

REFERENCES [1] Y.-H. Kim, J.-W. Jang, S.-C. Shin, and C.-Y. Won, "Weighted-efficiency enhancement control for a photovoltaic ac module interleaved flyback inverter using a synchronous rectifier," IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6481-6493, Dec. 2014. [2] G. Petrone, G. Spagnuolo, and M. Vitelli, "An analog technique for distributed MPPT PV applications," IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4713-4722, Dec. 2012. [3] H.-J. Chiu et al., "A module-integrated isolated solar microinverter," IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 781-788, Feb. 2013. [4] N. Sukesh, M. Pahlevaninezhad, and P. K. Jain, "Analysis and implementation of a single-stage flyback PV microinverter with soft switching," IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1819–1833. Dec. 2014.

[5] M. Gao, M. Chen, C. Zhang, and Z. Qian, "Analysis and implementation of an improved flyback inverter for photovoltaic ac module applications," IEEE Trans. Power. Electron., vol. 29, no. 7, pp. 3428–3444. Jul. 2014. [6] A. C. Nanakos, E. C. Tatakis, and N. P. Papanikolaou, "A weighted efficiency-oriented design methodology of flyback inverter for ac photovoltaic modules," IEEE Trans. Power. Electron., vol. 27, no. 7, pp. 3221– 3233. Jul. 2012. [7] T. Shimizu, K. Wada, and N. Nakamura, "A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the dc input for an ac photovoltaic module system," in Proc. IEEE PESC, 2002, pp. 1483-1488. [8] W. J. Cha, C. Y. Cho, J. M. Kwon, and B. H. Kwon, "Highlyefficient microinverter with soft-switching step-up converter and singleswitchmodulation inverter," IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3516-3523. Jun. 2015. [9] Z. Zhang, X.-F. He, and Y.-F. Liu, "An optimal control method for photovoltaic grid-tied-interleaved flyback microinverters to achieve high efficiency in wide load range," IEEE Trans. Power. Electron., vol. 28, no. 11, pp. 5074-5087. Nov. 2013. [10] Y.-H.Kim,Y.-H.Ji,J.-G.Kim,Y.-C.Jung,andC.-

Y.Won,"Anewcontrol strategy forimprovingweighted efficiency inphotovoltaic acmodule-type interleaved flyback inverter," IEEETrans. Power.Electron., vol. 28, no. 6, pp. 2688-2699. Jun. 2013. [11] A. C. Kyritsis, E. C. Tatakis, and N. P. Papanikolaou, "Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems," IEEE Trans. Energy. Convers., vol. 23, no. 1, pp. 281-293. Mar. 2008. [12] H. Hu, S. Harb, N. H. Kutkut, Z. J. Shen, and I. Batarseh, "A single-stage microinverter without using electrolytic capacitors," IEEE Trans. Power. Electron., vol. 28, no. 6, pp. 2677-2687. Jun. 2013. [13] S. Zengin, F. Deveci, and M. Boztepe, "Decoupling capacitor selection in DCM flyback PV microinverters considering harmonic distortion," IEEE Trans. Power. Electron., vol. 28, no. 2, pp. 816-825. Feb. 2013.

CHENNAIAH BANOTH

Completed **B.Tech**. in Electrical & Electronics Engineering in 2008 from VAAGDEVI COLLEGE OF ENGINEERING, Bollikunta,Warangal Dist, Affiliated to JNTUH, Hyderabad, Telangana, India. and **M.Tech** in Power Electronics(PE) in 2011 from

VAAGDEVI COLLEGE OF ENGINEERING, Bollikunta, Warangal Dist, Affiliated to JNTUH, Hyderabad, Telangana, India Area of interest includes Power Electronics, Building Electrical services and Building Automation.

E-mail id: banoth.chennaiah@gmail.com

MAHENDER KODELA

Completed B.Tech in Electrical & Electronics Engineering in 2009 from Vaagdevi college of Engineering, warangal Affiliated to JNTUH, Hyderabad and M.Tech in Power Electronics in 2013 from SR Engineering College, Warangal. Working as Assistant Professor at Vaagdevi College Of Engineering, warangal, Telangana, India. Area of interest includes Power Electronics, Control SyStems.

E-mail id: mahi.kodela@gmail.com

KUMARASWAMY MADAVENA

Completed B.Tech in Electrical & Electronics Engineering in 2008 from Vaagdevi college of Engineering, warangal Affiliated to JNTUH, Hyderabad and M.Tech in Control Systems in 2011 from Ramappa Engineering College, Warangal. Telangana, India. Working as Assoc. Professor at Ganapathi Engineering College, warangal, Telangana, India. Area of interest includes Power Electronics, Control Systems.

E-mail id : <u>kumar21sriram@gmail.com</u>