
   

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue 10 

September 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 363    
  
 

SQL-Style Processing Geo-Distributed Framework 
Swetha Koduri & T. Satya kiranmai 

1Assistant Professor, Information Technology, Malla Reddy College of Engineering and Technology, 
Maisammaguda, Dhulapalli,Telangana 

2Assistant Professor, Computer science and engineering CMR College of Engineering and Technology, 

Kandlakoya, Medchal, Telangana. 
koduriswetha@gmail.com & tadepallikiranmai84@gmail.com

Abstract—Hadoop is widely used distributed 

processing frameworks for large-scale data 

processing in an efficient and fault-tolerant 

manner on private or public clouds. These big-

data processing systems are extensively used by 

many industries, e.g., Google, Facebook, and 

Amazon, for solving a large class of problems, 

e.g., search, clustering, log analysis, different 

types of join operations. However, all these 

popular systems have a major drawback in 

terms of locally distributed computations, which 

prevent them in implementing geographically 

distributed data processing. The increasing 

amount of geographically distributed massive 

data is pushing industries and academia to 

rethink the current big-data processing systems. 

The novel frameworks, which will be beyond 

state-of-the-art architectures and technologies 

involved in the current system, are expected to 

process geographically distributed data at their 

locations without moving entire raw datasets to 

a single location. In this paper, we investigate 

and discuss challenges and requirements in 

designing geographically distributed data 

processing frameworks and protocols. We 

classify and study Map Reduce-based system 

and SQL-style processing geo-distributed 

frameworks, models, and algorithms with their 

overhead issues. 

INTRODUCTION 

 In contrast, in the present time, data is 

generated geodistributively at a much higher 

speed as compared to the existing data transfer 

speed; for example, data from modern satellites. 

There are two common reasons for having geo-

distributed data, as follows: (i) many 

organizations operate in different countries and 

hold datacenters (DCs) across the globe. 

Moreover, the data can be distributed across 

different systems and locations even in the same 

country, for instance, branches of a bank in the 

same country. (ii) Organizations may prefer to 

use multiple public and/or private clouds to 

increase reliability, security, and processing. In 

addition, there are several applications and 

computations that process and analyze a huge 

amount of massively geo-distributed data to 

provide the final output. For example, a 

bioinformatic application that analyzes existing 

genomes in different labs and countries to track 

the sources. 

 Geo-distributed databases and systems 

have been in existence for a long time. However, 

these systems are not highly fault tolerant, 

scalable, flexible, good enough for massively 

parallel processing, and simple to program, able 

to process a large-scale data, and fast in 

answering a query.  

On a positive side, several big-data 

processing programming models and 

frameworks such as Map-Reduce, Hadoop, and 

Spark have been designed to overcome the 

disadvantages (e.g., fault-tolerance, 

unstructured/massive data processing, or slow 
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processing time) of parallel computing, 

distributed databases, and cluster computing. 

Thus, this survey paper focuses on the Map-

Reduce, Hadoop, and Spark based systems.  

On a negative side, these frameworks 

do not regard geo-distributed data locations, and 

hence, they follow a trivial solution for geo-

distributed data processing: copy all raw data to 

one location before executing a locally 

distributed computation. 

In this work, we will review several models, 

frameworks, and resource allocation algorithms 

for geo distributed big-data processing that try to 

solve the abovementioned problems. In a 

nutshell, geo-distributed big-data processing 

frameworks have the following properties:  

Ubiquitous computing: The new system should 

regard different data locations, and it should 

process data at different locations, transparent to 

users. In other words, new geo-distributed 

systems will execute a geo-computation like a 

locally distributed computation on geo-locations 

and support any type of big-data processing 

frameworks, languages, and storage media at 

different locations.  

Data transfer among multiple DCs: The new 

system should allow moving only the desired 

data, which eventually participate in the final 

output in a secure and privacy preserving 

manner among DCs, thereby reducing the need 

for high bandwidth. 

High level of fault-tolerance: Storing and 

processing data in a single DC may not be fault-

tolerant when the DC crashes. The new system 

should also allow data replication from one DC 

to different trusted DCs, resulting in a higher 

level of fault-tolerance.  

Advantages of geo-distributed data 

processing:- The main advantages of geo-

distributed big-data processing are given and 

listed below: 

• A geo-distributed Hadoop based system can 

perform data processing across nodes of 

multiple clusters while the standard 

Hadoop/Spark and their variants cannot process 

data at multiple clusters. 

• More flexible services, e.g., resource sharing, 

load balancing, fault-tolerance, performance 

isolation, data isolation, and version isolation, 

can be achieved when a cluster is a part of a geo-

distributed cluster. 

• A cluster can be scaled dynamically during the 

execution of a geo-distributed computation. 

• The computation cost can be optimized by 

selecting different types of virtual nodes in 

clouds according to the user requirement and 

transferring a job to multiple clouds. 

 

Iterative and SQL queries 

 

 The standard Map-Reduce was not 

developed for supporting iterative and a wide 

range of SQL queries. Hive, Pig and Spark SQL 

were developed for supporting SQL-style 

queries. However, all these languages are 

designed for processing in-home/local data. 

Since relational algebra is a basis of several 

different operations, it is required to develop a 

geo-distributed query language regarding data 

locality and the network bandwidth. The new 

type of query language must also deal with some 

additional challenges such as geo-distributed 

query optimization, geo-distributed query 

execution plan, geo-distributed indexing, and 

geo-distributed caching. The problem of joining 

of multiple tables that are located at different 

locations is also not trivial.  
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In this case, moving an entire table from 

one location to the location of the other table is 

naive yet cumbersome, because of network 

bandwidth, time, and cost. Hence, we see the 

joining operation in geo-distributed settings is a 

major challenge. The joining operation gets 

more complicated in the case of streaming of 

tables where a window-based join does not work 

because the joining values of multiple tables 

may not synchronously arrive at an identical 

time window, thereby leading to missing 

outputs. Processing iterative queries on the 

classical Hadoop was a cumbersome task due to 

disk-based storage after each iteration. However, 

Spark can efficiently process iterative queries 

due to in-memory processing. Processing 

iterative queries in a geo-computation requires 

us to find solutions to store intermediate results 

in the context of an iterative query. 

 

SQL-style processing framework for pre-

located geo-distributed 

Data 

 

A central command layer, pseudo-

distributed measurement of data transfer, and a 

workload optimizer. The main component of 

Geode is the central command layer that 

receives SQL analytical queries from the user, 

partitions queries to create a distributed query 

execution plan, executes this plan over involving 

DCs, coordinates data transfers between DCs, 

and collates the final output. At each DC, the 

command layer interacts with a thin proxy layer 

that facilitates data transfers between DCs and 

manages a local cache of intermediate query 

results used for data transfer optimization. The 

workload optimizer estimates the current query 

plan or the data replication strategy against 

periodically obtained measurements from the 

command layer. These measurements are 

collected using the pseudo distributed execution 

technique. Geode is built on top of Hive and 

uses less bandwidth than centralized analytics in 

a Microsoft production workload, TPC-CH, and 

Big Data Benchmark.  

Pros. Geode performs analytical queries locally 

at the data site. Also, Geode provides a caching 

mechanism for storing intermediate results and 

computing differences for avoiding redundant 

transfers. The caching mechanism reduces the 

data transfer for the given queries by 3.5 times.  

Cons. Geode does not focus on the job 

completion time and iterative machine learning 

workflows. 

SQL-style processing framework for user-

located geo-distributed data 

 

A globally distributed data management 

system. Database aspects, e.g., distributed query 

execution in the presence of sharding / re-

sharding, query restarts upon transient failures, 

and range/index extraction, of Spanner are 

discussed. In Spanner, table interleaving is used 

to keep tables in the database, i.e., rows of two 

tables that will join based on a joining attribute 

are kept co-located, and then, tables are 

partitioned based on the key. Each partition is 

called a shard that is replicated to multiple 

locations. A new type of operation is introduced, 

called Distributed Union that fetches results 

from the entire shard according to a query. 

However, performing the distributed union 

before executing any other operations, e.g., scan, 

filter, group by, join and top-k, will cause to 

read multiple shards, which may not participate 

in the final output. Hence, all such operators are 

pushed to the table before the distributed union, 

which takes place at the end to provide the final 

answer. Three different mechanisms of index or 
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range retrieval are given, as follows: distribution 

range extraction, seek range extraction, and lock 

range extraction. A recent paper carries the same 

flavor of the hybrid cloud computation, suggests 

a general framework for executing SQL queries, 

specifically, select, project, join, aggregation, 

maximum, and minimum, while not revealing 

any sensitive data to the public cloud during the 

computation. 

In the context of geo-data processing, 

data locality refers to data processing at the 

same site or nearby sites where the data is 

located. However, the current 

Hadoop/Spark/SQL-style based geo distributed 

data processing systems are designed on the 

principle of data pulling from all the locations to 

a single location, and hence, they do not regard 

data locality . In addition, due to a huge amount 

of raw data generated at different sites, it is 

challenging to send the whole dataset to a single 

location; hence, the design and development of 

systems that take the data locality into account 

are crucial for optimizing the system 

performance. In contrast, sometimes a 

framework regarding the data locality does not 

work well in terms of performance and cost, due 

to the limited number of resources or slow inter-

DC connections. Hence, it may be required to 

access/process data in nearby DCs, which may 

be faster than the local access. Thus, we find a 

challenge in designing a system for accessing 

local or remote (nearby) data, leading to 

optimized job performance. 

Scheduling In Geo-Distributed Systems 

We present some methods/architectures 

that preprocess a job before deploying it over 

distributed locations to find the best way for data 

distribution and/or the best node for the 

computation. The main idea of the following 

methods is in reducing the total amount of data 

transfer among DCs. Note that the following 

methods work offline and do not provide a way 

for executing a geo distributed job on top of 

Hadoop/Spark, unlike systems in §4.2 that 

execute a job and may handle such offline tasks 

too. 

Scheduling for Geo-distributed Map-Reduce-

based Systems:- 

WANalytics preprocesses a Map-

Reduce job before its real implementation and 

consists of two main components, as follows: 

Runtime analyzer: executes user’s job directed 

acyclic graph (DAG), which is about job 

execution flow, in a distributed way across DCs. 

The runtime analyzer finds a physical plan that 

specifies where does each stage of the job to be 

executed and how will data be transferred across 

DCs. The runtime layer consists of a centralized 

coordinator, only with one DC that interacts 

with all the other DCs. Users submit a DAG of 

jobs to the coordinator that asks the workload 

analyzer to provide a physical distributed 

execution plan for the DAG.  

Workload analyzer: continuously monitors and 

optimizes the user’s DAG and finds a distributed 

physical plan according to the DAG. The plan is 

determined in a manner that minimizes the total 

bandwidth usage by considering DC locations 

and data replication factor.  

Cons. Unlike Iridium, WANalytics does not 

consider the network bandwidth and job latency, 

and only focuses on the amount of data transfer 

among DCs. In addition, WANalytics is not 

designed to handle iterative machine learning 

workflows. 

Shuffle-aware data pushing at the map 

phase. It finds all those mappers that affect the 
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job completion in a DC, and hence, rejects those 

mappers for a new job. In other words the 

algorithm selects only mappers that can execute 

a job and shuffle the intermediate data under a 

time constraint. Mappers are selected based on 

monitoring the most recent jobs. The algorithm 

is presented for a single DC and can be extended 

to geo-distributed settings. It is assumed that the 

same mappers have appeared in previous jobs; 

otherwise, it is hard to have a prior knowledge 

of mappers. 

CONCLUSION 

The classical parallel computing 

systems cannot efficiently process a huge 

amount of massive data, because of fewer 

resiliencies to faults and limited scalability of 

systems. Map-Reduce, developed by Google, 

provide efficient, fault-tolerant, and scalable 

large-scale data processing at a single site. 

Hadoop and Spark were not designed for on-site 

geographically distributed data processing; 

hence, all the sites send their raw data to a single 

site before a computation proceeds. In this 

survey, we discussed requirements and 

challenges in designing geo-distributed data 

processing using Map-Reduce and Spark.  

Hadoop and HMR require a global reducer at a 

pre-defined location. However, the selection of a 

global reducer has been considered separately 

while it directly affects the job completion time. 

Hence, a global reducer may be selected 

dynamically while respecting several real-time 

parameters. Though not each site sends its 

complete datasets, there still exists open 

questions to deal with, e.g., should all the DCs 

send their outputs to a single DC or to multiple 

DCs that eventually converge, should a DC send 

its complete output to a single DC or partition its 

outputs and send them to multiple DCs, and 

what are the parameters to select a DC to send 

outputs.  

The existing work proposes frameworks 

that allow a limited set of operations. However, 

it is necessary to find answers to the following 

question: how to perform many operations like 

the standard Map-Reduce on geographically 

distributed Map-Reduce based framework. Also, 

we did not find a system that can process secure 

SQL-queries on geo-distributed data, but they 

focus on the hybrid cloud and store a significant 

amount of non-sensitive data in the private cloud 

too. Most reviewed frameworks do not deal with 

the job completion time. In a geo-distributed 

computation, the job completion time is affected 

by distance and the network bandwidth among 

DCs, the outputs at each DC, and the type of 

applications. However, there is no other 

framework that jointly optimizes job completion 

time and inter-DC transfer while regarding 

variable network bandwidth. Thus, there is a 

need to design a framework that optimizes 

several real-time parameters and focuses on the 

job completion time. In addition, the system 

must dynamically learn and decide whether the 

phase-to-phase or the end-to-end job completion 

time is crucial? Answering this question may 

also require us to find straggling mappers or 

reducers in the partial or entire computation. We 

also discussed critical limitations of using 

Hadoop and Spark in geo-distributed data 

processing. We can conclude that geo-

distributed big-data processing is highly 

dependent on the following five factors: task 

assignment, data locality, data movement, 

network bandwidth, and security and privacy. 
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