

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 363

SQL-Style Processing Geo-Distributed Framework
Swetha Koduri & T. Satya kiranmai

1Assistant Professor, Information Technology, Malla Reddy College of Engineering and Technology,
Maisammaguda, Dhulapalli,Telangana

2Assistant Professor, Computer science and engineering CMR College of Engineering and Technology,

Kandlakoya, Medchal, Telangana.
koduriswetha@gmail.com & tadepallikiranmai84@gmail.com

Abstract—Hadoop is widely used distributed

processing frameworks for large-scale data

processing in an efficient and fault-tolerant

manner on private or public clouds. These big-

data processing systems are extensively used by

many industries, e.g., Google, Facebook, and

Amazon, for solving a large class of problems,

e.g., search, clustering, log analysis, different

types of join operations. However, all these

popular systems have a major drawback in

terms of locally distributed computations, which

prevent them in implementing geographically

distributed data processing. The increasing

amount of geographically distributed massive

data is pushing industries and academia to

rethink the current big-data processing systems.

The novel frameworks, which will be beyond

state-of-the-art architectures and technologies

involved in the current system, are expected to

process geographically distributed data at their

locations without moving entire raw datasets to

a single location. In this paper, we investigate

and discuss challenges and requirements in

designing geographically distributed data

processing frameworks and protocols. We

classify and study Map Reduce-based system

and SQL-style processing geo-distributed

frameworks, models, and algorithms with their

overhead issues.

INTRODUCTION

 In contrast, in the present time, data is

generated geodistributively at a much higher

speed as compared to the existing data transfer

speed; for example, data from modern satellites.

There are two common reasons for having geo-

distributed data, as follows: (i) many

organizations operate in different countries and

hold datacenters (DCs) across the globe.

Moreover, the data can be distributed across

different systems and locations even in the same

country, for instance, branches of a bank in the

same country. (ii) Organizations may prefer to

use multiple public and/or private clouds to

increase reliability, security, and processing. In

addition, there are several applications and

computations that process and analyze a huge

amount of massively geo-distributed data to

provide the final output. For example, a

bioinformatic application that analyzes existing

genomes in different labs and countries to track

the sources.

 Geo-distributed databases and systems

have been in existence for a long time. However,

these systems are not highly fault tolerant,

scalable, flexible, good enough for massively

parallel processing, and simple to program, able

to process a large-scale data, and fast in

answering a query.

On a positive side, several big-data

processing programming models and

frameworks such as Map-Reduce, Hadoop, and

Spark have been designed to overcome the

disadvantages (e.g., fault-tolerance,

unstructured/massive data processing, or slow

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:koduriswetha@gmail.com
mailto:tadepallikiranmai84@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 364

processing time) of parallel computing,

distributed databases, and cluster computing.

Thus, this survey paper focuses on the Map-

Reduce, Hadoop, and Spark based systems.

On a negative side, these frameworks

do not regard geo-distributed data locations, and

hence, they follow a trivial solution for geo-

distributed data processing: copy all raw data to

one location before executing a locally

distributed computation.

In this work, we will review several models,

frameworks, and resource allocation algorithms

for geo distributed big-data processing that try to

solve the abovementioned problems. In a

nutshell, geo-distributed big-data processing

frameworks have the following properties:

Ubiquitous computing: The new system should

regard different data locations, and it should

process data at different locations, transparent to

users. In other words, new geo-distributed

systems will execute a geo-computation like a

locally distributed computation on geo-locations

and support any type of big-data processing

frameworks, languages, and storage media at

different locations.

Data transfer among multiple DCs: The new

system should allow moving only the desired

data, which eventually participate in the final

output in a secure and privacy preserving

manner among DCs, thereby reducing the need

for high bandwidth.

High level of fault-tolerance: Storing and

processing data in a single DC may not be fault-

tolerant when the DC crashes. The new system

should also allow data replication from one DC

to different trusted DCs, resulting in a higher

level of fault-tolerance.

Advantages of geo-distributed data

processing:- The main advantages of geo-

distributed big-data processing are given and

listed below:

• A geo-distributed Hadoop based system can

perform data processing across nodes of

multiple clusters while the standard

Hadoop/Spark and their variants cannot process

data at multiple clusters.

• More flexible services, e.g., resource sharing,

load balancing, fault-tolerance, performance

isolation, data isolation, and version isolation,

can be achieved when a cluster is a part of a geo-

distributed cluster.

• A cluster can be scaled dynamically during the

execution of a geo-distributed computation.

• The computation cost can be optimized by

selecting different types of virtual nodes in

clouds according to the user requirement and

transferring a job to multiple clouds.

Iterative and SQL queries

 The standard Map-Reduce was not

developed for supporting iterative and a wide

range of SQL queries. Hive, Pig and Spark SQL

were developed for supporting SQL-style

queries. However, all these languages are

designed for processing in-home/local data.

Since relational algebra is a basis of several

different operations, it is required to develop a

geo-distributed query language regarding data

locality and the network bandwidth. The new

type of query language must also deal with some

additional challenges such as geo-distributed

query optimization, geo-distributed query

execution plan, geo-distributed indexing, and

geo-distributed caching. The problem of joining

of multiple tables that are located at different

locations is also not trivial.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 365

In this case, moving an entire table from

one location to the location of the other table is

naive yet cumbersome, because of network

bandwidth, time, and cost. Hence, we see the

joining operation in geo-distributed settings is a

major challenge. The joining operation gets

more complicated in the case of streaming of

tables where a window-based join does not work

because the joining values of multiple tables

may not synchronously arrive at an identical

time window, thereby leading to missing

outputs. Processing iterative queries on the

classical Hadoop was a cumbersome task due to

disk-based storage after each iteration. However,

Spark can efficiently process iterative queries

due to in-memory processing. Processing

iterative queries in a geo-computation requires

us to find solutions to store intermediate results

in the context of an iterative query.

SQL-style processing framework for pre-

located geo-distributed

Data

A central command layer, pseudo-

distributed measurement of data transfer, and a

workload optimizer. The main component of

Geode is the central command layer that

receives SQL analytical queries from the user,

partitions queries to create a distributed query

execution plan, executes this plan over involving

DCs, coordinates data transfers between DCs,

and collates the final output. At each DC, the

command layer interacts with a thin proxy layer

that facilitates data transfers between DCs and

manages a local cache of intermediate query

results used for data transfer optimization. The

workload optimizer estimates the current query

plan or the data replication strategy against

periodically obtained measurements from the

command layer. These measurements are

collected using the pseudo distributed execution

technique. Geode is built on top of Hive and

uses less bandwidth than centralized analytics in

a Microsoft production workload, TPC-CH, and

Big Data Benchmark.

Pros. Geode performs analytical queries locally

at the data site. Also, Geode provides a caching

mechanism for storing intermediate results and

computing differences for avoiding redundant

transfers. The caching mechanism reduces the

data transfer for the given queries by 3.5 times.

Cons. Geode does not focus on the job

completion time and iterative machine learning

workflows.

SQL-style processing framework for user-

located geo-distributed data

A globally distributed data management

system. Database aspects, e.g., distributed query

execution in the presence of sharding / re-

sharding, query restarts upon transient failures,

and range/index extraction, of Spanner are

discussed. In Spanner, table interleaving is used

to keep tables in the database, i.e., rows of two

tables that will join based on a joining attribute

are kept co-located, and then, tables are

partitioned based on the key. Each partition is

called a shard that is replicated to multiple

locations. A new type of operation is introduced,

called Distributed Union that fetches results

from the entire shard according to a query.

However, performing the distributed union

before executing any other operations, e.g., scan,

filter, group by, join and top-k, will cause to

read multiple shards, which may not participate

in the final output. Hence, all such operators are

pushed to the table before the distributed union,

which takes place at the end to provide the final

answer. Three different mechanisms of index or

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 366

range retrieval are given, as follows: distribution

range extraction, seek range extraction, and lock

range extraction. A recent paper carries the same

flavor of the hybrid cloud computation, suggests

a general framework for executing SQL queries,

specifically, select, project, join, aggregation,

maximum, and minimum, while not revealing

any sensitive data to the public cloud during the

computation.

In the context of geo-data processing,

data locality refers to data processing at the

same site or nearby sites where the data is

located. However, the current

Hadoop/Spark/SQL-style based geo distributed

data processing systems are designed on the

principle of data pulling from all the locations to

a single location, and hence, they do not regard

data locality . In addition, due to a huge amount

of raw data generated at different sites, it is

challenging to send the whole dataset to a single

location; hence, the design and development of

systems that take the data locality into account

are crucial for optimizing the system

performance. In contrast, sometimes a

framework regarding the data locality does not

work well in terms of performance and cost, due

to the limited number of resources or slow inter-

DC connections. Hence, it may be required to

access/process data in nearby DCs, which may

be faster than the local access. Thus, we find a

challenge in designing a system for accessing

local or remote (nearby) data, leading to

optimized job performance.

Scheduling In Geo-Distributed Systems

We present some methods/architectures

that preprocess a job before deploying it over

distributed locations to find the best way for data

distribution and/or the best node for the

computation. The main idea of the following

methods is in reducing the total amount of data

transfer among DCs. Note that the following

methods work offline and do not provide a way

for executing a geo distributed job on top of

Hadoop/Spark, unlike systems in §4.2 that

execute a job and may handle such offline tasks

too.

Scheduling for Geo-distributed Map-Reduce-

based Systems:-

WANalytics preprocesses a Map-

Reduce job before its real implementation and

consists of two main components, as follows:

Runtime analyzer: executes user’s job directed

acyclic graph (DAG), which is about job

execution flow, in a distributed way across DCs.

The runtime analyzer finds a physical plan that

specifies where does each stage of the job to be

executed and how will data be transferred across

DCs. The runtime layer consists of a centralized

coordinator, only with one DC that interacts

with all the other DCs. Users submit a DAG of

jobs to the coordinator that asks the workload

analyzer to provide a physical distributed

execution plan for the DAG.

Workload analyzer: continuously monitors and

optimizes the user’s DAG and finds a distributed

physical plan according to the DAG. The plan is

determined in a manner that minimizes the total

bandwidth usage by considering DC locations

and data replication factor.

Cons. Unlike Iridium, WANalytics does not

consider the network bandwidth and job latency,

and only focuses on the amount of data transfer

among DCs. In addition, WANalytics is not

designed to handle iterative machine learning

workflows.

Shuffle-aware data pushing at the map

phase. It finds all those mappers that affect the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 367

job completion in a DC, and hence, rejects those

mappers for a new job. In other words the

algorithm selects only mappers that can execute

a job and shuffle the intermediate data under a

time constraint. Mappers are selected based on

monitoring the most recent jobs. The algorithm

is presented for a single DC and can be extended

to geo-distributed settings. It is assumed that the

same mappers have appeared in previous jobs;

otherwise, it is hard to have a prior knowledge

of mappers.

CONCLUSION

The classical parallel computing

systems cannot efficiently process a huge

amount of massive data, because of fewer

resiliencies to faults and limited scalability of

systems. Map-Reduce, developed by Google,

provide efficient, fault-tolerant, and scalable

large-scale data processing at a single site.

Hadoop and Spark were not designed for on-site

geographically distributed data processing;

hence, all the sites send their raw data to a single

site before a computation proceeds. In this

survey, we discussed requirements and

challenges in designing geo-distributed data

processing using Map-Reduce and Spark.

Hadoop and HMR require a global reducer at a

pre-defined location. However, the selection of a

global reducer has been considered separately

while it directly affects the job completion time.

Hence, a global reducer may be selected

dynamically while respecting several real-time

parameters. Though not each site sends its

complete datasets, there still exists open

questions to deal with, e.g., should all the DCs

send their outputs to a single DC or to multiple

DCs that eventually converge, should a DC send

its complete output to a single DC or partition its

outputs and send them to multiple DCs, and

what are the parameters to select a DC to send

outputs.

The existing work proposes frameworks

that allow a limited set of operations. However,

it is necessary to find answers to the following

question: how to perform many operations like

the standard Map-Reduce on geographically

distributed Map-Reduce based framework. Also,

we did not find a system that can process secure

SQL-queries on geo-distributed data, but they

focus on the hybrid cloud and store a significant

amount of non-sensitive data in the private cloud

too. Most reviewed frameworks do not deal with

the job completion time. In a geo-distributed

computation, the job completion time is affected

by distance and the network bandwidth among

DCs, the outputs at each DC, and the type of

applications. However, there is no other

framework that jointly optimizes job completion

time and inter-DC transfer while regarding

variable network bandwidth. Thus, there is a

need to design a framework that optimizes

several real-time parameters and focuses on the

job completion time. In addition, the system

must dynamically learn and decide whether the

phase-to-phase or the end-to-end job completion

time is crucial? Answering this question may

also require us to find straggling mappers or

reducers in the partial or entire computation. We

also discussed critical limitations of using

Hadoop and Spark in geo-distributed data

processing. We can conclude that geo-

distributed big-data processing is highly

dependent on the following five factors: task

assignment, data locality, data movement,

network bandwidth, and security and privacy.

REFERENCES

[1] A. Jonathan and et al., “Aswan: Locality-

aware resource manager for geo-distributed

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 368

data-intensive applications,” in IC2E, 2016, pp.

32–41.

[2] A. Vulimiri and et al., “WANalytics:

analytics for a geo-distributed data-intensive

world,” in CIDR, 2015.

[3] D. A. Reed and J. Dungaree, “Exascale

computing and big data,” Common. ACM, vol.

58, no. 7, pp. 56–68, 2015.

[4] K. A. Harwich and et al., “Distributed

frameworks and parallel algorithms for

processing large-scale geographic data,” Parallel

Computing, vol. 29, no. 10, pp. 1297–1333,

2003.

[5] K. Clouds and et al., “PIXIDA: optimizing

data parallel jobs in wide-area data analytics,”

PVLDB, vol. 9, no. 2, pp. 72–83, 2015.

[6]

http://www.computerworld.com/article/2834193

/cloud-computing/5-tips-for-building-a-

successful-hybrid-cloud.html.

[7]

http://www.computerworld.com/article/2834193

/cloud-computing/5-tips-for-building-a-

successful-hybrid-cloud.html.

[8] R. Tudor an and et al., “Bridging data in the

clouds: An environment-aware system for

geographically distributed data transfers,” in

Sigrid, 2014, pp. 92–101.

[9] R. Tudor an, G. Antonio, and L. Bough,

“SAGE: geo-distributed ́ streaming data

analysis in clouds,” in IPDPS Workshops, 2013,

pp. 2278–2281.

[10] Q. Up and et al., “Low latency geo-

distributed data analytics,” in SIGCOMM, 2015,

pp. 421–434.

[11] Q. Zhang and et al., “Improving Hadoop

service provisioning in a geographically

distributed cloud,” in IEEE Cloud, 2014, pp.

432–439.

[12] A. Rabin, M. Are, S. Sen., V. S. Pay, and

M. J. Freedman, “Making every bit count in

wide-area analytics,” in Hoots, 2013.

[13] M. Cardoso and et al., “Exploring Map

Reduce efficiency with highly-distributed data,”

in Proceedings of the Second International

Workshop on Map Reduce and Its Applications,

2011, pp. 27–34.

[14] B. Heinz, A. Chandra, R. K. Sitar man, and

J. B. Weismann, “End to-end optimization for

geo-distributed Map Reduce,” IEEE Trans.

Cloud Computing, vol. 4, no. 3, pp. 293–306,

2016.

[15] B. Tang, H. He, and G. Freda, “Hybrid: a

new approach for hybrid Map Reduce

combining desktop grid and cloud

infrastructures,” Concurrency and Computation:

Practice and Experience, vol. 27,

no. 16, pp. 4140–4155, 2015.

[16] L. Wang and et al., “G-Hadoop: Map

Reduce across distributed data centers for data-

intensive computing,” FGCS, vol. 29, no. 3, pp.

739–750, 2013.

[17] A. P. Sheath and J. A. Larson, “Federated

database systems for managing distributed,

heterogeneous, and autonomous databases,”

ACM Compute. Surd., vol. 22, no. 3, pp. 183–

236, 1990.

[18] J. Dean and S. Ghemawat, “Map Reduce:

Simplified data processing on large clusters,” in

OSDI, 2004, pp. 137–150.

[19] Apache Hadoop. Available at:

http://hadoop.apache.org/.

[20] M. Zaharias and et al., “Spark: Cluster

computing with working

sets,” in Hot Cloud, 2010.

[21] M. Izard and et al., “Dryad: distributed

data-parallel programs from sequential building

blocks,” in Neurosis, 2007, pp. 59–72.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 10

September 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 369

[22] G. Malefic and et al., “Pregl: a system for

large-scale graph processing,” in SIGMOD,

2010, pp. 135–146.

[23] Apache Graph. Available at:

http://giraph.apache.org/.

[24] C. Jay lath, J. J. Stephen, and P. Easter,

“From the cloud to the atmosphere: Running

Map Reduce across data centers,” IEEE Trans.

Computers, vol. 63, no. 1, pp. 74–87, 2014.

[25] H. Garden, I. Rodeo, and M. Parishes,

“Investigating Map Reduce framework

extensions for efficient processing of

geographically scattered datasets,”

SIGMETRICS Performance Evaluation Review,

vol. 39, no. 3, pp. 116–118, 2011.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

