

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 577

Fast Algorithms for Mining Interesting Frequent Itemsets
Mudhafar Fadhil Abbas

Assistant Lecturer Thi-qar University, Iraq

Email:- mudhefar@yahoo.com

ABSTRACT

Certifiable datasets are inadequate,

dirty and contain hundreds of things. In

such situations, discovering interesting

standards (comes about) using traditional

frequent itemset mining approach by

specifying a client defined input bolster

edge is not fitting. Since with no domain

knowledge, setting bolster edge little or

substantial can yield nothing or a huge

number of redundant uninteresting

outcomes. Recently a novel approach of

mining only N-most/Top-K interesting

frequent itemsets has been proposed, which

finds the top N interesting outcomes without

specifying any client defined help edge. Be

that as it may, mining interesting frequent

itemsets without minimum help limit are all

the more exorbitant as far as itemset look

space exploration and processing cost. In

this way, the efficiency of their mining

profoundly depends upon three main

components (1) Database representation

approach utilized for itemset frequency

counting, (2) Projection of relevant

transactions to bring down level nodes of

inquiry space and (3) Algorithm

implementation technique. Thusly, to

enhance the efficiency of mining process, in

this paper we present two novel algorithms

called (N-MostMiner and Top-K-Miner)

using the bit-vector representation

approach which is extremely efficient as far

as itemset frequency counting and

transactions projection. In addition to this,

few efficient implementation techniques of

N-MostMiner and Top-K-Miner are

additionally present which we experienced

in our implementation. Our experimental

outcomes on benchmark datasets propose

that the N-MostMiner and Top-K-Miner are

extremely efficient as far as processing time

when contrasted with current best

algorithms BOMO and TFP.

Keywords:- Datasets, Itemsets, N-

MostMiner and Top-K-Miner

INTRODUCTION

Since the introduction of association rules

mining by Agrawal et al., it has now turned

out to be one of the main mainstays of

information mining and knowledge

revelation tasks and has been effectively

connected in many interesting association

rules mining issues, for example, sequential

pattern mining, emerging pattern mining ,

classification, maximal and shut itemset

mining. Using the help confidence

framework presented in, the issue of mining

the entire association rules from

transactional dataset is isolated into two

sections – (a) finding complete frequent

itemsets with help (an itemset's occurrence

in the dataset) more prominent than

minimum help edge, (b) generating

association rules from frequent itemsets

with confidence more noteworthy than

minimum confidence limit. By and by, the

primary stage is the most tedious task,

which requires the heaviest frequency

counting operation for every candidate

itemset.

Give TDS a chance to be our transactional

dataset and I be an arrangement of distinct

things in the TDS. Every individual

transaction t in TDS consists a subset of

single things, for example, tI ⊆ I. We call X

an itemset, on the off chance that it contains

X ⊆ I. Give min-a chance to sup be our

minimum help edge, we call an itemset X

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 578

frequent if its help (support(X)) is more

prominent than min-sup; generally

infrequent. By following the Apriori

property [1] an itemset X cannot be a

frequent itemset, on the off chance that one

of its subset is infrequent. We denote the

arrangement of all frequent itemset by FI. In

the event that X is frequent and no superset

of X is frequent, we say that X is a maximal

frequent itemset, the arrangement of all

maximal frequent itemsets is denoted by

MFI. On the off chance that X is frequent

and no superset of X is as frequent as X, we

say that X is a shut frequent itemset;

likewise the arrangement of all shut

frequent itemset is denoted by FCI. In this

way the following condition is straight-

forward holds: MFI ⊆ FCI ⊆ FI.

The frequent itemsets mining algorithms

take a transactional dataset (TDS) and min-

sup as an input and yield every one of those

itemsets which show up in any event min-

sup number of transactions in TDS.

Notwithstanding, the genuine datasets are

meager, dirty and contain hundreds of

things. In such situations, clients confront

troubles in setting this min-sup edge to

obtain their coveted outcomes. On the off

chance that min-sup is set too huge, then

there might be few frequent itemsets, which

does not give any attractive outcome. On

the off chance that the min-sup is set too

little, then there might be a huge number of

redundant short uninteresting itemsets,

which not only takes a vast processing time

for mining.

Han et al. in [18], proposed an another

variation of mining Top-K frequent shut

itemsets with length more prominent than a

minimum client indicated limit min_l,

where K is a client wanted number of

frequent shut itemsets to be mined. Their

work is different from [9] in this sense, if an

itemset X is found infrequent at any node n,

then all the supersets of X, or the subtree of

n can be securely pruned away, which

diminishes the general processing time.

MOTIVATION BEHIND OUR WORK

As clear from the Definition 2 depicted

over, the Apriori property presented by

Agrawal et al. in [1] can not be connected in

mining N-most interesting frequent itemset

algorithm for pruning un-interesting

itemsets. Since the superset of any

uninteresting k-itemset might be the N-most

interesting itemset of any level h with the

end goal that 1≤ h≤ kmax. In this manner, a

huge territory of itemset seek space is

investigated when contrasted with

traditional

frequent itemset mining approach. In our

different computational experiments on a

few inadequate and dense benchmark

datasets, we found that the efficiency of

mining interesting frequent itemsets without

minimum help limit exceedingly depends

upon three main elements. (1) Dataset

representation approach utilized for

frequency counting [10]. (2) Projection of

relevant transactions to bring down level

nodes of pursuit space, and (3).

 Algorithm implementation

technique. The projection of relevant

transactions at any node n, are those

transactions of dataset which contain the

node n's itemset as subset [11]. In this

manner, to increase the efficiency of mining

interesting frequent itemsets (N-Most or

Top-K), in this paper we present novel

efficient algorithms (N-MostMiner and

Top-K-Miner) using Bit-vector dataset

representation approach. The real advantage

of using Bit-vector dataset representation

approach in our algorithms is that, it

advances the itemset frequency counting

cost with a factor of 1/32, in the event that

we represent 32 lines for every single

vertical piece vector region [17].

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 579

Prior to our work, Bit-vector dataset

representation approach has been effectively

connected in many complex association

rules issues, for example, maximal frequent

itemsets mining [6], sequential patterns

mining [4] and blame tolerant frequent

itemsets mining [12]. In addition to dataset

representation approach, this paper likewise

presents a novel piece vector projection

technique which we named as anticipated

piece regions (PBR).

The main advantage of using PBR in N-

MostMiner and Top-K-Miner is that, it

consumes a little processing expense and

memory space for projection. In section 5

we additionally present some efficient

implementation techniques of N-MostMiner

and Top-K-Miner, which we experienced in

our implementation. Our different

experiments on benchmark datasets

recommend that mining interesting frequent

itemsets without minimum help edge using

our algorithms are quick and efficient than

the currently best algorithms BOMO [7] and

TFP [18].

ALGORITHMIC DESCRIPTION

In this section, we depict our N-most

interesting itemset mining algorithm (N-

MostMiner) with its few techniques utilized

for quick itemset frequency counting and

projection. For k-itemset representation at

any node, the N-MostMiner utilizes the

transaction of dataset. In the event that thing

I shows up in transaction j, then the bit j of

bit-vector I is set to one; generally the bit is

set to zero. In Figure1 (an) a dataset is

shown along with its vertical piece vector

representation in Figure1 (b). vertical piece

vector representation approach [6]. In a

vertical piece vector representation, there is

one piece for every To count the frequency

of a k-itemset e.g. {AB} we need to play out

a bitwise-AND operation on bit-vector {A}

and bit-vector {B}, and resulting ones in

bit-vector {AB} denotes the frequency of k-

itemset {AB}.

TDS The given transactional dataset

maxk Upper bound on the size of interesting itemsets to be found

 Current support threshold for all the itemsets

k Current support threshold for the k-itemsets

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 580

ITEMSET GENERATION

Give < a chance to be some lexicographical

request of things in Transactional Dataset

(TDS) with the end goal that for each two

things an and b, a ≠ b: a < b or a > b. The

inquiry space of mining N-most interesting

itemset mining can be considered as a

lexicographical request [16], where root

node contains an exhaust itemset, and each

lower level k contains all the k-itemsets.

Every node of pursuit space is made out of

head and tail elements. Head denotes the

itemset of node, and things of tail are the

conceivable extensions of new youngster

itemsets. For instance with four things {A,

B, C, D}, in Figure 2 root's head is unfilled

〈()〉 and tail is made with hard and fast of

things 〈(A, B, C, D)〉, which generates four

conceivable youngster nodes {head 〈(A)〉:
tail 〈(BCD)〉}, {head 〈(B)〉: tail

〈(CD)〉},{head 〈(C)〉: tail 〈(D)〉}, {head

〈(D)〉: tail 〈{}〉}. At any node n, the

candidate N-most k-itemset or tyke nodes of

n are generated by performing join operation

on n's head itemset with every thing of n's

tail, and checked for frequency or bolster

counting. This itemset seek space can be

navigated either by profundity initially

request or expansiveness initially look. At

every node, infrequent things from tail are

evacuated by dynamic reordering heuristic

[5] by comparing their help with all the

itemsets bolster (ξ) and k-itemsets bolster

(ξk) edges [7]. In addition to this, our

algorithm additionally arrange the tail things

by decreasing space is more beneficial and

helpful.

k-ITEMSETFREQUENCY

CALCUATION

To check, regardless of whether any tail

thing X of node n at level k is N-most

interesting k-itemset or not, we should check

its frequency (bolster) in TDS. Calculating

itemset frequency in bit-vector

representation requires applying bitwise-∧

operation on n.head and X bit-vectors,

which can be implemented by a circle;

which we

call straightforward circle, where every

iteration of basic circle apply bitwise-∧

operation on some region of n.head with X

bit-vectors. Since 32-bit CPU bolsters 32-bit

∧ per operation, hence every region of X bit-

vector is made out of 32-bits (represents 32

transactions). In this manner calculating

frequency of each itemset by using basic

circle requires applying bitwise-∧ on all

regions of n.head with X bit-vectors. Be that

as it may, when the dataset is meager, and

every thing is present in couple of

transactions, then

counting itemset frequency by using basic

circle and applying bitwise-∧ on those

regions of bit-vectors which contain zero

involves many unnecessary counting

operations. Since the regions which contain

zero, will contribute nothing to the

frequency of any itemset, which will be

superset of k-itemset. Hence, removing

these regions from head bit-vectors (using

projection) in prior phases of inquiryspace is

more beneficial and helpful.

BIT-VECTOR PROJECTION USING

PROJECTED-BIT-REGIONS (PBR)

For efficient projection of bit-vectors, the

objective of projection ought to be, for

example, to bitwise-∧ only those regions of

head bit-vector 〈bitmap(head)〉 with tail

thing X bit-vector 〈bitmap(X)〉 that contain

an esteem more noteworthy than zero and

skip all others. Clearly to do this, our

counting strategy must be so effective and

have some information which guides it, that

which regions are important and which ones

it can skip. To accomplish this objective, we

propose a novel piece vector projection

technique PBR (Projected-Bit-Regions).

With projection using PBR, every node Y of

pursuit space contains a variety of legitimate

region indexes PBR〈Y〉 which controls the

frequency counting system to navigate only

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 581

those regions which contain an index in

cluster and skip all others.

Figure 3 demonstrates the code of itemset

frequency calculation using PBR technique.

In Figure 3, the line 1 is retrieving a

substantial region index ℓ in 〈bitmap

(head)〉, while the line 2 is applying a

bitwise-∧ on 〈bitmap (head)〉 with 〈bitmap

(X)〉 on region ℓ. One main advantage of bit-

vector projection using PBR is that, it

consumes a little processing cost for its

creation, and hence can be effectively

connected on all nodes of hunt space. The

projection of tyke nodes at any node n can

be made either at the season of frequency

calculation if unadulterated profundity

initially seek is utilized, or at the season of

creating head bit-vector if dynamic

reordering is utilized. The system of creating

PBR〈X〉 at node n for tail thing X is as;

when the PBR of 〈bitmap(n)〉 are bitwise-∧

with 〈bitmap(X)〉 a basic check is perform

on each bitwise-∧ result. On the off chance

that the estimation of result is more

prominent than zero, then an index is

assigned in PBR〈n.head ∪ X〉. The

arrangement of all indexes which contain an

esteem more prominent than zero makes the

projection of {n.head ∪ X} node.

MEMORY REQUIREMENT

Some different advantages of projection

using PBR are that, it is an extremely

versatile approach and consumes little

amount of memory during projection and

can be material on huge inadequate datasets.

Versatility is accomplished as; we know that

by traversing seek space top to bottom

initially arrange; a single tree way is

investigated whenever. In this way a single

PBR exhibit for each level of way needs to

remain in memory. As a preprocessing step

a PBR cluster for each level of greatest way

is made and stored in memory. At k-itemset

generation time different ways of inquiry

space (tree) can share this most extreme way

memory and don't need to make any

additional projection memory during itemset

mining.but also increases the complexity of

filtering un-interesting itemsets. In both

situations, the ultimate goal of mining

interesting frequent itemsets is undermined.

We refer the readers [7] for further reading

about the problem of setting this user

defined min-sup threshold without any

previous domain knowledge about the

dataset. For handling such situations, Fu et

al. in [9] presents a novel technique of

mining only N-most interesting frequent

itemsets without specifying any min-sup

threshold. The problem of mining N-most

interesting frequent itemsets of size k at each

level of 1≤ k≤ kmax, given N and kmax can be

considered from the following definitions.

MINING TOP-K FRQUENT CLOSED

ITEMSET

In mining Top-K frequent shut itemsets, we

incorporate a similar system for itemset

generation, frequency counting and

projection, as we have portrayed for N-Most

all frequent itemset mining in above

sections. The only one major difference is

that, a frequent shut itemset is considered to

be Top-K only when none of its superset

found to be Top-K frequent shut itemset.

This shut frequent itemset superset checking

can be implementation using a clear

sequential searching technique, and could

take vast processing time if the K estimate is

given to be substantial. In mining Top-K

frequent shut itemset there is no concept of

k-itemset bolster edge at each level,

consequently only the minimum help limit

of all the itemset ξ is set to zero. With ξ = 0

we would blindly include any itemsets in

our current arrangement of Top-k frequent

itemset with minimum length more

prominent than min_l. Once the algorithm

encountered any k-th itemset, we can

securely set the minimum help edge of ξ by

assigning to it the minimum incentive

among the help of the Top-k frequent

itemsets found up until now. Next only that

itemset will be included the Top-k frequent

itemsets result, which will contain the help

and minimum length more prominent than ξ

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 582

and min_l. Figure 6 demonstrates the pseudo-code of mining Top-K-Miner
Top-k-ClosedMiner (Node n)

(1) for each item X in n.tail

(2) for each region index ℓ in PBR〈 n〉

(3) AND-result = bit-vector[ℓ] ∧ head_bit_vector of n [ℓ]

(4) Support[X] = Support[X] + number_of_ones(AND-result)
(5) Remove infrequent items from n.tail, if support less thanξ
(6) Reorder them by decreasing support
(7) for each item X in n.tail

(8) m.head = n.head ∪ X

(9) m.tail = n.tail – X

(10) for each region index ℓ in PBR〈 n〉

(11) AND-result = bit-vector[ℓ] ∧ head-bit-vector[ℓ]

(12) If AND-result > 0

(13) Insert ℓ in PBR〈 m〉

(14) head bit-vector of m [ℓ] = AND- result
(15) Top-k-ClosedMiner (m)
(16) if none of (n.head) superset itemset is frequent closed Top-K itemset

(18) Top_k_List = Top_k_List ∪ n.head

(19) if Top_k_List == kth itemset
increase the support ξ by assigning minimum value support of Top_k_Lis

EFFICIENT IMPLENATION

TECHNIQUES

In this section, we give some efficient

implementations thoughts, which we

experienced in our N-MostMiner and Top-

K-Miner implementations. ELIMINATION

REDUNDANT FREQUENT COUNTING

OPERATIONS (ERFCO) The codes which

we depict in Figure 5 and Figure 6 performs

precisely two frequency counting operations

for each frequent tail thing X at any node n

of pursuit space. To begin with, at the

season of performing dynamic reordering,

and second, to create {X∪ n.head} bit-

vector. The itemset frequency calculation

process which is considered to be the most

expensive task (penalty) in general itemset

mining [10], the bit-vector representation

approach languishes this penalty twice over

each frequent k-itemset. The second

counting operation which we can state is

redundant, happens because of gain

efficiency in 32-bit CPU and can be

eliminated with some efficient

implementation, which we portray beneath.

In N-MostMiner, toward the begin of

algorithm two vast piles, one for head bit-

vectors and one for PBR are made (with 32-

bit per stack space estimate). Next, at the

season of calculating frequency of k-itemset

X a straightforward check is performed to

ensure that is there sufficient space left in

the two stores. On the off chance that the

response is "yes" then the head bit-vector of

X and PBR〈X〉 are made in the meantime

when dynamic reordering is performed,

generally normal technique is taken after.

The main difference is that, with the

efficient implementation bitwise-∧ results

and regions indexes are written in piles

instead of tree way levels recollections. The

span of piles ought to be enough to the point

that it can store any frequent thing subtree.

From our implementation point of view, we

propose that stack measure twofold the

aggregate number of transactions is enough

for expansive inadequate datasets. In our N-

MostMiner and Top-K-Miner

implementations we found that it totally

eliminates the second frequency counting

operation while requiring almost no amount

of memory.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 583

INCREASING PROJECTED BIT-

REGIONS DENISTY (IPBRD)

The bit-vector projection technique which

we depicted in section 3.3 does not give any

compaction or compression mechanism for

increasing the density in things bit-vector

regions. Accordingly, on the inadequate

dataset only one or two bits in every region

of thing bit-vector are set to one, which not

only increases the projection length yet in

addition with this, it is not conceivable to

accomplish genuine 32-bit CPU

performance. In this way, to increase the

density in bit-vector regions the N-

MostMiner and Top-K-Miner begins with a

cluster list [15]. Next at root node, a

bit-vector representation for each frequent

thing is made which gives sufficient

compression and compaction in bit-vectors

regions. Sufficient improvements are

obtained in our algorithms by using this

approach.

2-ITEMSET PAIR

There are two techniques to check whether

current candidate k-itemset is frequent or

infrequent. To begin with, to

straightforwardly register its frequency from

TDS. Second one, which is more efficient, is

known as 2-Itemset combine. On the off

chance that any 2-Itemset match of any

candidate k-itemset is found infrequent, then

by following Apriori property [1], the

candidate k-itemset will be additionally

infrequent. We know any k-itemset which

contains a length more than two, is the

superset of its entire 2-Itemset sets. In this

way, before counting its frequency from

transactional dataset, our algorithms check

its 2-Itemset sets. On the off chance that any

match is found infrequent (bolster not

exactly ξk or ξ), then that k-itemset is

naturally considered to be infrequent

without checking its frequency in TDS.

PERFORMANCE EVALUATION

In this section we report our performance

aftereffects of N-MostMiner and Top-K-

Miner on a number of benchmark datasets.

For experimental reason we utilized the

original source code of BOMO, which is

unreservedly accessible at

http://www.cse.cuhk.edu.hk/~kdd/program.h

tml. Unfortunately, there is no freely

accessible implementation of TFP, so in

experiments we utilized our own

implementation which is written in C

language. All the source codes of N-

MostMiner and Top-K-Miner are written in

C language. The experiments are performed

on 3.2 GHz processor with main memory of

size 512 MB, running windows XP 2005

professional. For experiments, we utilized

the benchmark datasets accessible at

http://fimi.hi.cs.datasets. These datasets are

frequently utilized as a part of many

frequent itemset mining algorithms. For

definite performance evaluation we ordered

the datasets into four different gatherings

and select one or two datasets from each

gathering. Our first gathering is made out of

BMS-WebView1, BMS-WebView2 and

Retail datasets. These datasets have a huge

number of things yet modest number of

transactions and are inadequate. We pick

BMS-WebView2 for performance

comparison. Our second gathering is made

out of BMS-POS and Kosarak datasets.

These datasets have many things and

additionally substantial number of

transactions. In the event that the minimum

help is given to be little, these datasets

generates immense number of frequent

itemsets. We picked BMS-POS for

performance comparison. Our third

gathering is made out of Chess, Connect,

Pumsb, Pumsb-star, accidents and

Mushroom datasets. These datasets are

exceptionally dense and right around 90% of

time is spend on writing frequent itemsets to

yield record, if the minimum help is given to

be little. We pick Mushroom and Chess for

performance comparison. Our last gathering

is made out of T10I4D100K and

T40I10D100K. These datasets are

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 584

exceptionally scanty and have vast number

of things. We select both datasets for

performance comparison. Table 1

demonstrates the description of datasets that

we utilized as a part of our experiments.

 Figure 7: Efficient Implementation Components Performance Results T1014D100K dataset

 Figure 8: Efficient Implementation ComponentsPerformance Results Of On Chess Dataset

Dataset Items Average Transaction Length Records

T10I4D100K 1000 10 100,000

T40I10D100K 1000 40 100,000

Chess 75 35 3196

Mushroom 119 23 8124

BMS-POS 1658 7.5 515,597

BMS-WebView2 3341 5.6 77,512

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 585

Table 1: Computational Experiments in .

Figure 14: Results of performance on BMS-POS

dataset

PERFORMANCE EVALUATION OF N-

Most-Miner

We play out our computational experiments

using the different N-most esteems 10, 20,

30, 40, 50, 60, 70 and 80 under two kmax

limits esteems, kmax = 5 ((1≤ k≤ 5) and

kmax = 10 ((1≤ k≤ 10). The performance

measure is the execution time of the

algorithms under different N and kmax edge

esteems. Figures 9-14 comes about

demonstrate that the N-MostMiner beats the

BOMO on both all and shut frequent

itemsets mining issues, on all levels of

mining edges on a wide range of meager

and dense datasets. This is expected to its

quick frequency counting of k-itemset,

projection and efficient implementation

techniques. While the BOMO requires a few

indirect memory gets to during every k-

itemset frequency counting, which

moderates down the entire mining process.

Figure 9 and 10 demonstrate the

performance consequences of two

algorithms on dense sort datasets (chess and

mushroom). These datasets contain a couple

of numbers of things however a maximal

transactional length which is same in all

transactions. Because of the modest number

of transactions, the performance

consequence of kitemset frequency counting

using bit-vector representation approach is

more efficient when contrasted with pattern-

development approach. In spite of the fact

that in these datasets a substantial number of

transactions share a common way in FP-

tree. Figure 11 to 14 demonstrate the

performance aftereffects of two algorithms

on four meager sort datasets both genuine

and synthesized. Again the N-MostMiner

outflanks the BOMO algorithms on all kind

of mining edges on all sort of scanty

datasets. On experiments with meager sort

datasets we note that BOMO takes a

substantially bigger time for its initial FP-

tree construction, when ξk (1≤ k≤ kmax)

and ξ are both equivalent to zero. Actually,

on meager sort datasets N-MostMiner (in

the vast majority of the cases) finishes its

execution, when BOMO occupied in its

initial FP-tree construction. The reason is

that, on meager datasets with substantial

number of things and little normal

transaction length, the greater part of the

transactions can't share a common prefix

way in FP-Tree that outcomes in a

substantial initial FP-Tree construction,

which backs off the itemset frequency

counting. The performance consequences of

our efficient implementation techniques of

N-MostMiner particularly 2-Itemset Pair

and IPBRD are all the more encouraging on

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 586

inadequate sort datasets when contrasted

with dense sort datasets.

Figure 17: Performance results of Top-K-Miner on

T1014D100K dataset

PERFORMANCE EVLATUATION OF

TOP-K-MINER

Our second arrangement of experiments

were on mining Top-K shut frequent

itemsets mining with minimum length more

noteworthy than min_l edge. The

experiments were performed on each dataset

using two different scenarios. In to start

with, we settled the minimum length and

fluctuated the K esteem. While in second,

the K esteem was kept settled and minimum

length was changed. Figure 15 and 16

demonstrate the performance aftereffect of

TFP and Top-K-Miner on two dense sort

datasets (Chess and Mushroom). Because of

modest number of things and extensive

normal transactional length, TFP makes a

minimal initial FP-Tree, in which parcel of

transactions shares a common prefix way,

which helps in quick itemset frequency

counting. On dense sort datasets, we note

that the efficient implementation techniques

of Top-K-Miner particularly 2-Itemset Pair

and IPBRD does not make any significant

performance impact, only frequency

counting dominates the entire algorithm

execution result. Figure 17 to 20

demonstrate the performance comes about

on two algorithms on scanty sort datasets.

As clear from the figure comes about the

Top-K-Miner outflank the TFP on all levels

of mining limit esteems, due to its efficient

piece vector projection and implementation

techniques particularly 2-Itemset Pair and

IPBRD. On save datasets with huge number

of things and transactions, TFP faces an

indistinguishable issue from BOMO of ts

initial FP-Tree construction, when ξ

equivalent to zero, which backs off the

entire algorithm execution.

CONCLUSION

Mining interesting frequent itemsets without

minimum help limit are all the more

exorbitant regarding processing time

because of huge range of itemset look space

exploration when contrasted with traditional

frequent itemset approach. Because of huge

number of candidate itemsets generation,

the efficiency of mining interesting (N-Most

or Top-K) frequent itemsets algorithm very

depends upon the two main elements – (a)

Dataset representation approach for quick

frequency counting – (b) Projection of

relevant transactions to bring down level

nodes of pursuit space. In this paper we

present two novel algorithms for mining

interesting frequent itemset (N-MostMiner

and Top-K-Miner) using bit-vector

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 587

representation approach, which is

exceptionally efficient regarding candidate

itemset frequency counting. For projection

we present a novel piece vector projection

technique PBR (anticipated piece regions),

which is exceptionally efficient regarding

processing time and memory requirement.

A few efficient implementation techniques

of N-MostMiner and Top-K-Miner are

likewise presented, which we experienced

in our implementation. Our experimental

outcomes on benchmark datasets propose

that mining interesting frequent itemsets

without minimum help edge using N-

MostMiner or Top-K-Miner is very efficient

as far as processing time when contrasted

with currently best algorithms BOMO and

TFP. This demonstrates the effectiveness of

our algorithm.

REFERENCE
[1] R. Agrawal and R. Srikant, “Fast Algorithms

for Mining Association Rules”, In Proceedings
of international conference on Very Large Data

Bases (VLDB), pp. 487-499, Sept. 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential

Patterns”, In proceedings of international

conference on Data Engineering (ICDE), pp. 3-

14, Mar. 1995.

[3] R. Agrawal, C. Agrawal, and V. Prasad, “Depth

first generation of long patterns”, In SIGKDD,

2000.

[4] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick,

“Sequential Pattern Mining Using Bitmaps”, In
Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining, Edmonton,

Alberta, Canada, July, 2002.

[5] R. J. Bayardo, “Efficiently mining long patterns

from databases”, In SIGMOD 1998: 85-93.

[6] D. Burdick, M. Calimlim, and J. Gehrke,

“Mafia: A maximal frequent itemset algorithm

for transactional databases”, In proceedings of

International Conference of Data Engineering,

pp. 443-452, 2001.

[7] Y. L. Cheung, A. W. Fu, “An FP-tree
Approach for Mining N-most Interesting

Itemsets”, In Proceedings of the SPIE

Conference on Data Mining, 2002.

[8] G. Dong, J. Li, “Efficient mining of emerging

patterns: Discovering trends and differences”,

In proceedings of 5th ACM SIGKDD

international conference on Knowledge

Discovery and Data Mining (KDD'99), San

Diego, CA, USA, pp. 43-52, 1999.

[9] A. W. C. Fu, R. W. W. Kwong, and J. Tang,

“Mining N-most Interesting Itemsets”, In

proceedings of international symposium on
Methodologies for Intelligent Systems (ISMIS),

2000.

[10] Proc. IEEE ICDM Workshop Frequent Itemset

Mining Implementations, B. Goethals and M.J.

Zaki, eds., CEUR Workshop Proc., vol. 80,

Nov. 2003, http://CEUR-WS.org/Vol-90.

[11] J. Han, J. Pei, and Y. Yin, “Mining frequent

patterns without candidate generation”, In

proceedings of SIGMOD, pages 1–12, 2000.

[12] J. L. Koh, P. Yo, “An Efficient Approach for

Mining Fault-Tolerant Frequent Patterns based
on Bit Vector Representations”, In proceedings

of 10th International Conference DASFAA

2005, Beijing, China, April 17-20, 2005.

[13] B. Liu, W. Hsu, and Y. Ma, “Integrating

classification and association rule mining”, In

proceedings of KDD’98, New York, NY, Aug.

1998.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L.

Lakhal, “Discovering frequent closed itemsets

for association rules”, In 7
th

 international

conference on Database Theory, January 1999.

[15] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang
and D. Yang, “H-Mine: Hyper-structure

mining of frequent patterns in large

databases”, In proceedings of international

conference on Data Mining (ICDM), pp.

441.448, 2001.

[16] R. Rymon, “Search through Systematic Set

Enumeration”, In proceedings of third

international conference on Principles of

Knowledge Representation and Reasoning,

1992, pp. 539 –550.

[17] T. Uno, M. Kiyomi, H. Arimura, “LCM
ver 3: Collaboration of Array, Bitmap and

Prefix Tree for Frequent Itemset Mining”,

In 1
st

 International Workshop on Open

Source Data Mining (in conjunction with

SIGKDD-2005), 2005.

[18] J. Wang, J. Han, Y. Lu, P. Tzvetkov,

“TFP: An Efficient Algorithm for Mining

Top-K Frequent Closed Itemsets”, IEEE

Transaction on Knowledge and Data
Engineering, Vol. 17, No. 5, May 2005,

pp. 652-664.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

