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ABSTRACT 

Certifiable datasets are inadequate, 

dirty and contain hundreds of things. In 

such situations, discovering interesting 

standards (comes about) using traditional 

frequent itemset mining approach by 

specifying a client defined input bolster 

edge is not fitting. Since with no domain 

knowledge, setting bolster edge little or 

substantial can yield nothing or a huge 

number of redundant uninteresting 

outcomes. Recently a novel approach of 

mining only N-most/Top-K interesting 

frequent itemsets has been proposed, which 

finds the top N interesting outcomes without 

specifying any client defined help edge. Be 

that as it may, mining interesting frequent 

itemsets without minimum help limit are all 

the more exorbitant as far as itemset look 

space exploration and processing cost. In 

this way, the efficiency of their mining 

profoundly depends upon three main 

components (1) Database representation 

approach utilized for itemset frequency 

counting, (2) Projection of relevant 

transactions to bring down level nodes of 

inquiry space and (3) Algorithm 

implementation technique. Thusly, to 

enhance the efficiency of mining process, in 

this paper we present two novel algorithms 

called (N-MostMiner and Top-K-Miner) 

using the bit-vector representation 

approach which is extremely efficient as far 

as itemset frequency counting and 

transactions projection. In addition to this, 

few efficient implementation techniques of 

N-MostMiner and Top-K-Miner are 

additionally present which we experienced 

in our implementation. Our experimental  

 

outcomes on benchmark datasets propose 

that the N-MostMiner and Top-K-Miner are  

 

extremely efficient as far as processing time 

when contrasted with current best 

algorithms BOMO and TFP.  

 

Keywords:- Datasets, Itemsets, N-

MostMiner and Top-K-Miner 

 

INTRODUCTION 

Since the introduction of association rules 

mining by Agrawal et al., it has now turned 

out to be one of the main mainstays of 

information mining and knowledge 

revelation tasks and has been effectively 

connected in many interesting association 

rules mining issues, for example, sequential 

pattern mining, emerging pattern mining , 

classification, maximal and shut itemset 

mining. Using the help confidence 

framework presented in, the issue of mining 

the entire association rules from 

transactional dataset is isolated into two 

sections – (a) finding complete frequent 

itemsets with help (an itemset's occurrence 

in the dataset) more prominent than 

minimum help edge, (b) generating 

association rules from frequent itemsets 

with confidence more noteworthy than 

minimum confidence limit. By and by, the 

primary stage is the most tedious task, 

which requires the heaviest frequency 

counting operation for every candidate 

itemset. 

 

Give TDS a chance to be our transactional 

dataset and I be an arrangement of distinct 

things in the TDS. Every individual 

transaction t in TDS consists a subset of 

single things, for example, tI ⊆ I. We call X 

an itemset, on the off chance that it contains 

X ⊆ I. Give min-a chance to sup be our 

minimum help edge, we call an itemset X 
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frequent if its help (support(X)) is more 

prominent than min-sup; generally 

infrequent. By following the Apriori 

property [1] an itemset X cannot be a 

frequent itemset, on the off chance that one 

of its subset is infrequent. We denote the 

arrangement of all frequent itemset by FI. In 

the event that X is frequent and no superset 

of X is frequent, we say that X is a maximal 

frequent itemset, the arrangement of all 

maximal frequent itemsets is denoted by 

MFI. On the off chance that X is frequent 

and no superset of X is as frequent as X, we 

say that X is a shut frequent itemset; 

likewise the arrangement of all shut 

frequent itemset is denoted by FCI. In this 

way the following condition is straight-

forward holds: MFI ⊆ FCI ⊆ FI.  

 

The frequent itemsets mining algorithms 

take a transactional dataset (TDS) and min-

sup as an input and yield every one of those 

itemsets which show up in any event min-

sup number of transactions in TDS. 

Notwithstanding, the genuine datasets are 

meager, dirty and contain hundreds of 

things. In such situations, clients confront 

troubles in setting this min-sup edge to 

obtain their coveted outcomes. On the off 

chance that min-sup is set too huge, then 

there might be few frequent itemsets, which 

does not give any attractive outcome. On 

the off chance that the min-sup is set too 

little, then there might be a huge number of 

redundant short uninteresting itemsets, 

which not only takes a vast processing time 

for mining. 

 

Han et al. in [18], proposed an another 

variation of mining Top-K frequent shut 

itemsets with length more prominent than a 

minimum client indicated limit min_l, 

where K is a client wanted number of 

frequent shut itemsets to be mined. Their 

work is different from [9] in this sense, if an 

itemset X is found infrequent at any node n, 

then all the supersets of X, or the subtree of 

n can be securely pruned away, which 

diminishes the general processing time. 

 

MOTIVATION BEHIND OUR WORK  

As clear from the Definition 2 depicted 

over, the Apriori property presented by 

Agrawal et al. in [1] can not be connected in 

mining N-most interesting frequent itemset 

algorithm for pruning un-interesting 

itemsets. Since the superset of any 

uninteresting k-itemset might be the N-most 

interesting itemset of any level h with the 

end goal that 1≤ h≤ kmax. In this manner, a 

huge territory of itemset seek space is 

investigated when contrasted with 

traditional  

 

frequent itemset mining approach. In our 

different computational experiments on a 

few inadequate and dense benchmark 

datasets, we found that the efficiency of 

mining interesting frequent itemsets without 

minimum help limit exceedingly depends 

upon three main elements. (1) Dataset 

representation approach utilized for 

frequency counting [10]. (2) Projection of 

relevant transactions to bring down level 

nodes of pursuit space, and (3). 

 

 Algorithm implementation 

technique. The projection of relevant 

transactions at any node n, are those 

transactions of dataset which contain the 

node n's itemset as subset [11]. In this 

manner, to increase the efficiency of mining 

interesting frequent itemsets (N-Most or 

Top-K), in this paper we present novel 

efficient algorithms (N-MostMiner and 

Top-K-Miner) using Bit-vector dataset 

representation approach. The real advantage 

of using Bit-vector dataset representation 

approach in our algorithms is that, it 

advances the itemset frequency counting 

cost with a factor of 1/32, in the event that 

we represent 32 lines for every single 

vertical piece vector region [17].  

 

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/


   

International Journal of Research 
Available at 

https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 04 Issue 10 

September 2017 
 

Available online: http://edupediapublications.org/journals/index.php/IJR/  P a g e  | 579  
 

Prior to our work, Bit-vector dataset 

representation approach has been effectively 

connected in many complex association 

rules issues, for example, maximal frequent  

 

 

itemsets mining [6], sequential patterns 

mining [4] and blame tolerant frequent 

itemsets mining [12]. In addition to dataset 

representation approach, this paper likewise 

presents a novel piece vector projection 

technique which we named as anticipated 

piece regions (PBR).  

 

The main advantage of using PBR in N-

MostMiner and Top-K-Miner is that, it 

consumes a little processing expense and 

memory space for projection. In section 5 

we additionally present some efficient 

implementation techniques of N-MostMiner 

and Top-K-Miner, which we experienced in 

our implementation. Our different 

experiments on benchmark datasets 

recommend that mining interesting frequent 

itemsets without minimum help edge using 

our algorithms are quick and efficient than 

the currently best algorithms BOMO [7] and 

TFP [18]. 

 

ALGORITHMIC DESCRIPTION 

 

In this section, we depict our N-most 

interesting itemset mining algorithm (N-

MostMiner) with its few techniques utilized 

for quick itemset frequency counting and 

projection. For k-itemset representation at 

any node, the N-MostMiner utilizes the  

 

 
transaction of dataset. In the event that thing 

I shows up in transaction j, then the bit j of 

bit-vector I is set to one; generally the bit is 

set to zero. In Figure1 (an) a dataset is 

shown along with its vertical piece vector 

representation in Figure1 (b). vertical piece 

vector representation approach [6]. In a 

vertical piece vector representation, there is 

one piece for every To count the frequency 

of a k-itemset e.g. {AB} we need to play out 

a bitwise-AND operation on bit-vector {A} 

and bit-vector {B}, and resulting ones in 

bit-vector {AB} denotes the frequency of k-

itemset {AB}. 

TDS The given transactional dataset 

maxk  Upper bound on the size of interesting itemsets to be found 

  Current support threshold for all the itemsets 

k  Current support threshold for the k-itemsets 
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ITEMSET GENERATION  

Give < a chance to be some lexicographical 

request of things in Transactional Dataset 

(TDS) with the end goal that for each two 

things an and b, a ≠ b: a < b or a > b. The 

inquiry space of mining N-most interesting 

itemset mining can be considered as a 

lexicographical request [16], where root 

node contains an exhaust itemset, and each 

lower level k contains all the k-itemsets. 

Every node of pursuit space is made out of 

head and tail elements. Head denotes the 

itemset of node, and things of tail are the 

conceivable extensions of new youngster 

itemsets. For instance with four things {A, 

B, C, D}, in Figure 2 root's head is unfilled 

〈()〉 and tail is made with hard and fast of 

things 〈(A, B, C, D)〉, which generates four 

conceivable youngster nodes {head 〈(A)〉: 
tail 〈(BCD)〉}, {head 〈(B)〉: tail 

〈(CD)〉},{head 〈(C)〉: tail 〈(D)〉}, {head 

〈(D)〉: tail 〈{}〉}. At any node n, the 

candidate N-most k-itemset or tyke nodes of 

n are generated by performing join operation 

on n's head itemset with every thing of n's 

tail, and checked for frequency or bolster 

counting. This itemset seek space can be 

navigated either by profundity initially 

request or expansiveness initially look. At 

every node, infrequent things from tail are 

evacuated by dynamic reordering heuristic 

[5] by comparing their help with all the 

itemsets bolster (ξ) and k-itemsets bolster 

(ξk) edges [7].  In addition to this, our 

algorithm additionally arrange the tail things 

by decreasing space is more beneficial and 

helpful. 

 

k-ITEMSETFREQUENCY 

CALCUATION  

To check, regardless of whether any tail 

thing X of node n at level k is N-most 

interesting k-itemset or not, we should check 

its frequency (bolster) in TDS. Calculating 

itemset frequency in bit-vector 

representation requires applying bitwise-∧ 

operation on n.head and X bit-vectors, 

which can be implemented by a circle; 

which we  

 

call straightforward circle, where every 

iteration of basic circle apply bitwise-∧ 

operation on some region of n.head with X 

bit-vectors. Since 32-bit CPU bolsters 32-bit 

∧ per operation, hence every region of X bit-

vector is made out of 32-bits (represents 32 

transactions). In this manner calculating 

frequency of each itemset by using basic 

circle requires applying bitwise-∧ on all 

regions of n.head with X bit-vectors. Be that 

as it may, when the dataset is meager, and 

every thing is present in couple of 

transactions, then  

counting itemset frequency by using basic 

circle and applying bitwise-∧ on those 

regions of bit-vectors which contain zero 

involves many unnecessary counting 

operations. Since the regions which contain 

zero, will contribute nothing to the 

frequency of any itemset, which will be 

superset of k-itemset. Hence, removing 

these regions from head bit-vectors (using 

projection) in prior phases of inquiryspace is 

more beneficial and helpful. 

 

BIT-VECTOR PROJECTION USING 

PROJECTED-BIT-REGIONS (PBR)  

For efficient projection of bit-vectors, the 

objective of projection ought to be, for 

example, to bitwise-∧ only those regions of 

head bit-vector 〈bitmap(head)〉 with tail 

thing X bit-vector 〈bitmap(X)〉 that contain 

an esteem more noteworthy than zero and 

skip all others. Clearly to do this, our 

counting strategy must be so effective and 

have some information which guides it, that 

which regions are important and which ones 

it can skip. To accomplish this objective, we 

propose a novel piece vector projection 

technique PBR (Projected-Bit-Regions). 

With projection using PBR, every node Y of 

pursuit space contains a variety of legitimate 

region indexes PBR〈Y〉 which controls the 

frequency counting system to navigate only 
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those regions which contain an index in 

cluster and skip all others.  

Figure 3 demonstrates the code of itemset 

frequency calculation using PBR technique. 

In Figure 3, the line 1 is retrieving a 

substantial region index ℓ in 〈bitmap 

(head)〉, while the line 2 is applying a 

bitwise-∧ on 〈bitmap (head)〉 with 〈bitmap 

(X)〉 on region ℓ. One main advantage of bit-

vector projection using PBR is that, it 

consumes a little processing cost for its 

creation, and hence can be effectively 

connected on all nodes of hunt space. The 

projection of tyke nodes at any node n can 

be made either at the season of frequency 

calculation if unadulterated profundity 

initially seek is utilized, or at the season of 

creating head bit-vector if dynamic 

reordering is utilized. The system of creating 

PBR〈X〉 at node n for tail thing X is as; 

when the PBR of 〈bitmap(n)〉 are bitwise-∧ 

with 〈bitmap(X)〉 a basic check is perform 

on each bitwise-∧ result. On the off chance 

that the estimation of result is more 

prominent than zero, then an index is 

assigned in PBR〈n.head ∪ X〉. The 

arrangement of all indexes which contain an 

esteem more prominent than zero makes the 

projection of {n.head ∪ X} node. 

 

MEMORY REQUIREMENT  

Some different advantages of projection 

using PBR are that, it is an extremely 

versatile approach and consumes little 

amount of memory during projection and 

can be material on huge inadequate datasets. 

Versatility is accomplished as; we know that 

by traversing seek space top to bottom 

initially arrange; a single tree way is 

investigated whenever. In this way a single 

PBR exhibit for each level of way needs to 

remain in memory. As a preprocessing step 

a PBR cluster for each level of greatest way 

is made and stored in memory. At k-itemset 

generation time different ways of inquiry 

space (tree) can share this most extreme way 

memory and don't need to make any 

additional projection memory during itemset 

mining.but also increases the complexity of 

filtering un-interesting itemsets. In both 

situations, the ultimate goal of mining 

interesting frequent itemsets is undermined. 

We refer the readers [7] for further reading 

about the problem of setting this user 

defined min-sup threshold without any 

previous domain knowledge about the 

dataset. For handling such situations, Fu et 

al. in [9] presents a novel technique of 

mining only N-most interesting frequent 

itemsets without specifying any min-sup 

threshold. The problem of mining N-most 

interesting frequent itemsets of size k at each 

level of 1≤ k≤ kmax, given N and kmax can be 

considered from the following definitions. 

MINING TOP-K FRQUENT CLOSED 

ITEMSET  

In mining Top-K frequent shut itemsets, we 

incorporate a similar system for itemset 

generation, frequency counting and 

projection, as we have portrayed for N-Most 

all frequent itemset mining in above 

sections. The only one major difference is 

that, a frequent shut itemset is considered to 

be Top-K only when none of its superset 

found to be Top-K frequent shut itemset. 

This shut frequent itemset superset checking 

can be implementation using a clear 

sequential searching technique, and could 

take vast processing time if the K estimate is 

given to be substantial. In mining Top-K 

frequent shut itemset there is no concept of 

k-itemset bolster edge at each level, 

consequently only the minimum help limit 

of all the itemset ξ is set to zero. With ξ = 0 

we would blindly include any itemsets in 

our current arrangement of Top-k frequent 

itemset with minimum length more 

prominent than min_l. Once the algorithm 

encountered any k-th itemset, we can 

securely set the minimum help edge of ξ by 

assigning to it the minimum incentive 

among the help of the Top-k frequent 

itemsets found up until now. Next only that 

itemset will be included the Top-k frequent 

itemsets result, which will contain the help 

and minimum length more prominent than ξ 
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and min_l. Figure 6 demonstrates the pseudo-code of mining Top-K-Miner 
Top-k-ClosedMiner (Node n) 

 
(1) for each item X in n.tail 

(2) for each region index ℓ in PBR〈 n〉 

(3) AND-result = bit-vector[ℓ] ∧ head_bit_vector of n [ℓ] 

(4) Support[X] = Support[X] + number_of_ones(AND-result) 
(5) Remove infrequent items from n.tail, if support less thanξ 
(6) Reorder them by decreasing support 
(7) for each item X in n.tail 

(8) m.head = n.head ∪ X 

(9) m.tail = n.tail – X 

(10) for each region index ℓ in PBR〈 n〉 

(11) AND-result = bit-vector[ℓ] ∧ head-bit-vector[ℓ] 

(12) If AND-result > 0 

(13) Insert ℓ in PBR〈 m〉 

(14) head bit-vector of m [ℓ] = AND- result 
(15) Top-k-ClosedMiner (m) 
(16) if none of (n.head) superset itemset is frequent closed Top-K itemset 

(18) Top_k_List = Top_k_List ∪ n.head 

 
(19) if Top_k_List == kth itemset 
increase the support ξ by assigning minimum value support of Top_k_Lis 

 

EFFICIENT IMPLENATION 

TECHNIQUES  

In this section, we give some efficient 

implementations thoughts, which we 

experienced in our N-MostMiner and Top-

K-Miner implementations. ELIMINATION 

REDUNDANT FREQUENT COUNTING 

OPERATIONS (ERFCO) The codes which 

we depict in Figure 5 and Figure 6 performs 

precisely two frequency counting operations 

for each frequent tail thing X at any node n 

of pursuit space. To begin with, at the 

season of performing dynamic reordering, 

and second, to create {X∪ n.head} bit-

vector. The itemset frequency calculation 

process which is considered to be the most 

expensive task (penalty) in general itemset 

mining [10], the bit-vector representation 

approach languishes this penalty twice over 

each frequent k-itemset. The second 

counting operation which we can state is 

redundant, happens because of gain 

efficiency in 32-bit CPU and can be 

eliminated with some efficient 

implementation, which we portray beneath.  

In N-MostMiner, toward the begin of 

algorithm two vast piles, one for head bit-

vectors and one for PBR are made (with 32-

bit per stack space estimate). Next, at the 

season of calculating frequency of k-itemset 

X a straightforward check is performed to 

ensure that is there sufficient space left in 

the two stores. On the off chance that the 

response is "yes" then the head bit-vector of 

X and PBR〈X〉 are made in the meantime 

when dynamic reordering is performed, 

generally normal technique is taken after. 

The main difference is that, with the 

efficient implementation bitwise-∧ results 

and regions indexes are written in piles 

instead of tree way levels recollections. The 

span of piles ought to be enough to the point 

that it can store any frequent thing subtree. 

From our implementation point of view, we 

propose that stack measure twofold the 

aggregate number of transactions is enough 

for expansive inadequate datasets. In our N-

MostMiner and Top-K-Miner 

implementations we found that it totally 

eliminates the second frequency counting 

operation while requiring almost no amount 

of memory. 
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INCREASING PROJECTED BIT-

REGIONS DENISTY (IPBRD)  

The bit-vector projection technique which 

we depicted in section 3.3 does not give any 

compaction or compression mechanism for 

increasing the density in things bit-vector 

regions. Accordingly, on the inadequate 

dataset only one or two bits in every region 

of thing bit-vector are set to one, which not 

only increases the projection length yet in 

addition with this, it is not conceivable to 

accomplish genuine 32-bit CPU 

performance. In this way, to increase the 

density in bit-vector regions the N-

MostMiner and Top-K-Miner begins with a 

cluster list [15]. Next at root node, a 

bit-vector representation for each frequent 

thing is made which gives sufficient 

compression and compaction in bit-vectors 

regions. Sufficient improvements are 

obtained in our algorithms by using this 

approach. 

2-ITEMSET PAIR  

There are two techniques to check whether 

current candidate k-itemset is frequent or 

infrequent. To begin with, to 

straightforwardly register its frequency from 

TDS. Second one, which is more efficient, is 

known as 2-Itemset combine. On the off 

chance that any 2-Itemset match of any 

candidate k-itemset is found infrequent, then 

by following Apriori property [1], the 

candidate k-itemset will be additionally 

infrequent. We know any k-itemset which 

contains a length more than two, is the 

superset of its entire 2-Itemset sets. In this 

way, before counting its frequency from 

transactional dataset, our algorithms check 

its 2-Itemset sets. On the off chance that any 

match is found infrequent (bolster not 

exactly ξk or ξ), then that k-itemset is 

naturally considered to be infrequent 

without checking its frequency in TDS. 

 

PERFORMANCE EVALUATION  

In this section we report our performance 

aftereffects of N-MostMiner and Top-K-

Miner on a number of benchmark datasets. 

For experimental reason we utilized the 

original source code of BOMO, which is 

unreservedly accessible at 

http://www.cse.cuhk.edu.hk/~kdd/program.h

tml. Unfortunately, there is no freely 

accessible implementation of TFP, so in 

experiments we utilized our own 

implementation which is written in C 

language. All the source codes of N-

MostMiner and Top-K-Miner are written in 

C language. The experiments are performed 

on 3.2 GHz processor with main memory of 

size 512 MB, running windows XP 2005 

professional. For experiments, we utilized 

the benchmark datasets accessible at 

http://fimi.hi.cs.datasets. These datasets are 

frequently utilized as a part of many 

frequent itemset mining algorithms. For 

definite performance evaluation we ordered 

the datasets into four different gatherings 

and select one or two datasets from each 

gathering. Our first gathering is made out of 

BMS-WebView1, BMS-WebView2 and 

Retail datasets. These datasets have a huge 

number of things yet modest number of 

transactions and are inadequate. We pick 

BMS-WebView2 for performance 

comparison. Our second gathering is made 

out of BMS-POS and Kosarak datasets. 

These datasets have many things and 

additionally substantial number of 

transactions. In the event that the minimum 

help is given to be little, these datasets 

generates immense number of frequent 

itemsets. We picked BMS-POS for 

performance comparison. Our third 

gathering is made out of Chess, Connect, 

Pumsb, Pumsb-star, accidents and 

Mushroom datasets. These datasets are 

exceptionally dense and right around 90% of 

time is spend on writing frequent itemsets to 

yield record, if the minimum help is given to 

be little. We pick Mushroom and Chess for 

performance comparison. Our last gathering 

is made out of T10I4D100K and 

T40I10D100K. These datasets are 
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exceptionally scanty and have vast number 

of things. We select both datasets for 

performance comparison. Table 1 

demonstrates the description of datasets that 

we utilized as a part of our experiments. 

     

 
                     Figure 7: Efficient Implementation Components Performance      Results T1014D100K dataset 

                             Figure 8: Efficient Implementation ComponentsPerformance Results Of On Chess Dataset 

  

Dataset Items Average Transaction Length Records 

T10I4D100K 1000 10 100,000 

T40I10D100K 1000 40 100,000 

Chess 75 35 3196 

Mushroom 119 23 8124 

BMS-POS 1658 7.5 515,597 

BMS-WebView2 3341 5.6 77,512 
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Table 1: Computational Experiments in . 

 
Figure 14: Results of performance on BMS-POS 

dataset 

PERFORMANCE EVALUATION OF N-

Most-Miner  

We play out our computational experiments 

using the different N-most esteems 10, 20, 

30, 40, 50, 60, 70 and 80 under two kmax 

limits esteems, kmax = 5 ((1≤ k≤ 5) and 

kmax = 10 ((1≤ k≤ 10). The performance 

measure is the execution time of the 

algorithms under different N and kmax edge 

esteems. Figures 9-14 comes about 

demonstrate that the N-MostMiner beats the 

BOMO on both all and shut frequent 

itemsets mining issues, on all levels of 

mining edges on a wide range of meager 

and dense datasets. This is expected to its 

quick frequency counting of k-itemset, 

projection and efficient implementation 

techniques. While the BOMO requires a few 

indirect memory gets to during every k-

itemset frequency counting, which 

moderates down the entire mining process. 

Figure 9 and 10 demonstrate the 

performance consequences of two 

algorithms on dense sort datasets (chess and 

mushroom). These datasets contain a couple 

of numbers of things however a maximal 

transactional length which is same in all 

transactions. Because of the modest number 

of transactions, the performance 

consequence of kitemset frequency counting 

using bit-vector representation approach is 

more efficient when contrasted with pattern-

development approach. In spite of the fact 

that in these datasets a substantial number of 

transactions share a common way in FP-

tree. Figure 11 to 14 demonstrate the 

performance aftereffects of two algorithms 

on four meager sort datasets both genuine 

and synthesized. Again the N-MostMiner 

outflanks the BOMO algorithms on all kind 

of mining edges on all sort of scanty 

datasets. On experiments with meager sort 

datasets we note that  BOMO takes a 

substantially bigger time for its initial FP-

tree construction, when ξk (1≤ k≤ kmax) 

and ξ are both equivalent to zero. Actually, 

on meager sort datasets N-MostMiner (in 

the vast majority of the cases) finishes its 

execution, when BOMO occupied in its 

initial FP-tree construction. The reason is 

that, on meager datasets with substantial 

number of things and little normal 

transaction length, the greater part of the 

transactions can't share a common prefix 

way in FP-Tree that outcomes in a 

substantial initial FP-Tree construction, 

which backs off the itemset frequency 

counting. The performance consequences of 

our efficient implementation techniques of 

N-MostMiner particularly 2-Itemset Pair 

and IPBRD are all the more encouraging on 
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inadequate sort datasets when contrasted 

with dense sort datasets.  

 
Figure 17: Performance results of Top-K-Miner on 

T1014D100K dataset 

PERFORMANCE EVLATUATION OF 

TOP-K-MINER  

Our second arrangement of experiments 

were on mining Top-K shut frequent 

itemsets mining with minimum length more 

noteworthy than min_l edge. The 

experiments were performed on each dataset 

using two different scenarios. In to start 

with, we settled the minimum length and 

fluctuated the K esteem. While in second, 

the K esteem was kept settled and minimum 

length was changed. Figure 15 and 16 

demonstrate the performance aftereffect of 

TFP and Top-K-Miner on two dense sort 

datasets (Chess and Mushroom). Because of 

modest number of things and extensive 

normal transactional length, TFP makes a 

minimal initial FP-Tree, in which parcel of 

transactions shares a common prefix way, 

which helps in quick itemset frequency 

counting. On dense sort datasets, we note 

that the efficient implementation techniques 

of Top-K-Miner particularly 2-Itemset Pair 

and IPBRD does not make any significant 

performance impact, only frequency 

counting dominates the entire algorithm 

execution result. Figure 17 to 20 

demonstrate the performance comes about 

on two algorithms on scanty sort datasets. 

As clear from the figure comes about the 

Top-K-Miner outflank the TFP on all levels 

of mining limit esteems, due to its efficient 

piece vector projection and implementation 

techniques particularly 2-Itemset Pair and 

IPBRD. On save datasets with huge number 

of things and transactions, TFP faces an 

indistinguishable issue from BOMO of ts 

initial FP-Tree construction, when ξ 

equivalent to zero, which backs off the 

entire algorithm execution. 

CONCLUSION  

Mining interesting frequent itemsets without 

minimum help limit are all the more 

exorbitant regarding processing time 

because of huge range of itemset look space 

exploration when contrasted with traditional 

frequent itemset approach. Because of huge 

number of candidate itemsets generation, 

the efficiency of mining interesting (N-Most 

or Top-K) frequent itemsets algorithm very 

depends upon the two main elements – (a) 

Dataset representation approach for quick 

frequency counting – (b) Projection of 

relevant transactions to bring down level 

nodes of pursuit space. In this paper we 

present two novel algorithms for mining 

interesting frequent itemset (N-MostMiner 

and Top-K-Miner) using bit-vector 
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representation approach, which is 

exceptionally efficient regarding candidate 

itemset frequency counting. For projection 

we present a novel piece vector projection 

technique PBR (anticipated piece regions), 

which is exceptionally efficient regarding 

processing time and memory requirement. 

A few efficient implementation techniques 

of N-MostMiner and Top-K-Miner are 

likewise presented, which we experienced 

in our implementation. Our experimental 

outcomes on benchmark datasets propose 

that mining interesting frequent itemsets 

without minimum help edge using N-

MostMiner or Top-K-Miner is very efficient 

as far as processing time when contrasted 

with currently best algorithms BOMO and 

TFP. This demonstrates the effectiveness of 

our algorithm. 
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