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Abstract 
 

A quantum error-correcting code is defined to be a unitary mapping (encod-ing) of kqubits 

(2-state quantum systems) into a subspace of the quantum state space of nqubits such that if 

any t of the qubits undergo arbitrary decoherence, not necessarily independently, the 

resulting nqubits can be used to faithfully reconstruct the original quantum state of the k 

encoded qubits. Quantum error-correcting codes are shown to exist with asymp-totic rate k/n 

= 1 −2H2(2t/n) where H2(p) is the binary entropy function 

 

−p log2 p − (1 − p) log2(1 − p).  Upper bounds on this asymptotic rate are 
 
given. 
 
PACS numbers: 03.65.Bz 
 
 
 
I. INTRODUCTION 
 

 

With the realization that computers that use the interference and superposition principles of 

quantum mechanics might be able to solve certain problems, including prime factorization, 

exponentially faster than classical computers  [1], interest has been growing in the feasibility of 

these quantum computers, and several methods for building quantum gates and quantum 

computers have been proposed  [2,3]. One of the most cogent arguments against the feasi-bility 

of quantum computation appears to be the difficulty of eliminating error caused by inaccuracy 

and decoherence [4]. Whereas the best experimental implementations of quan-tum gates 

accomplished so far have less than 90% accuracy  [5], the accuracy required for factorization of 

numbers large enough to be difficult on conventional computers appears to be closer to one part 



    

 

International Journal of Research (IJR)   Vol-1, Issue-10 November 2014   ISSN 2348-6848 

EXISTENCE OF GOOD QUANTUM ERROR-CORRECTING CODES Ankit Kumar, Kartik Chhabra &Lakshay 

Sethi 

 

P a g e  | 844 

in billions. We hope that the techniques investigated in this paper can eventually be extended so 

as to reduce this quantity by several orders of magnitude. 

 
In the storage and transmission of digital data, errors can be corrected by using error-

correcting codes  [6]. In digital computation, errors can be corrected by using redundancy; in 

fact, it has been shown that fairly unreliable gates could be assembled to form a reliable 

computer  [7]. It has widely been assumed that the quantum no-cloning theorem  [8] makes error 

correction impossible in quantum communication and computation because redun-dancy cannot 

be obtained by duplicating quantum bits. This argument was shown to be in error for quantum 

communication in Ref.  [9], where a code was given that mapped one qubit (two-state quantum 

system) into nine qubits so that the original qubit could be recovered perfectly even after 

arbitrary decoherence of any one of these nine qubits. This gives a quantum code on 9 qubits 

with rate 
1
9 that protects against one error. Here we show the existence of better quantum error-

correcting codes, having higher information transmission rates and better error-correction 

capacity. Specifically, we show the existence of quantum error-correcting codes encoding 

kqubits into nqubits that correct t errors and have asymp-totic rate 1 −2H2(2t/n) as n→ ∞. These 

codes work not by duplicating the quantum state of the encoded kqubits, but by spreading it out 

over all nqubits so that if t or fewer ofthese qubits are measured, no information about the 

quantum state of the encoded bits is revealed and, in fact, the quantum state can be perfectly 

recovered from the remaining n−tqubits. 

 

Suppose that we have a coherent quantum state of kqubits that we wish to store using a 

physical quantum system which is subject to some decoherence process. For example, during 

computation on the quantum computer proposed by Cirac and Zoller [3], we would need to store 

quantum information in entangled electronic states of ions held in an ion trap. The decoherence 

time of the quantum state of k entangled qubits is in general 1/k of the decoherence time of one 

qubit (this makes the optimistic assumption that coherence between different qubits is as stable 

as coherence of a single qubit). Thus, one might expect that the best way to store the state of k 
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entangled qubits is to store them in k physical qubits. Our results show that if we use quantum 

error-correcting codes, it is possible to store the kqubits in n > kqubits so that the decoherence 

time for the encoded quantum state is a small constant fraction of the decoherence time of one 

qubit. These results thus show that some measurable non-local properties of entangled systems 

are much more stable under decoherence than is the entire entangled system. 
 

 

Physical quantum channels will be unlikely to leave n−tqubits perfectly untouched and 

subject the remaining tqubits to decoherence. To analyze the behavior of our error-correcting 

code for physical quantum channels, we must make some assumptions about the decoherence 

process. In Section  VI, we will show that our error correction method performs well if the 

decoherence of different qubits occurs independently, i.e., if each of the qubits is coupled to a 

separate environment. Our error-correction method will actually work for more general 

channels, as it can tolerate coupled decoherencebehavior among small groups of qubits. 
 
 

The lower bound of 1−2H2(2t/n) shown in our paper should be compared with theoretical 

upper bounds of 

q 

h _ _imin 1 −H2(2t/3n), H2
1
2 + (1 −t/n)t/n 

 
 

 

fort/n <
1
2 , and 0 for t/n≥

1
2 . These are obtained from bounds on the quantum information 

capacity of a quantum channel, which we derive in Section  VI from results of Refs.  [10,11]. 

These bounds are plotted in Fig.  1 in Section  VI. 
 
 
 

II. DEFINITIONS 
 

 

Our constructions of quantum error-correcting codes rely heavily on the properties of 

classical error-correcting codes. We will thus first briefly review certain definitions and 
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properties related to binary linear error-correcting codes. We only consider vectors and codes 

over F2, the field of two elements, so we have 1 + 1 = 0. A binary vector v∈F2 with d 1’s is 

said to haveHamming weight d, denoted by wt(v) = d. TheHamming distancedH(v, w) between 

two binary vectors v and w is wt(v + w). Thesupportof a vector v,denoted by supp(v), is the set 

of coordinates of v where the corresponding entry is not 0, that is, supp(v) = {i : vi =6 0}. 

Suppose that S is a set of coordinates. Then v|S denotes the projection of v onto S, i.e., the 

vector that agrees with v on the coordinates in S and is 0 on the remaining coordinates. For a 

binary vector E we use v|E to mean v|supp(E). We 
 

also use e    E to mean that supp(e) ⊆supp(E). 
 

A code C of length n is a set of binary vectors of length n, called codewords. In a linear code 

the codewords are those vectors in a subspace of F
n

2 (the n-dimensional vector space over the 

field F2 on two elements). The minimum distance d = d(C) of a binary code C is the minimum 

distance between two distinct codewords. If C is linear then this minimum distance is just the 

minimum Hamming weight of a nonzero codeword. 

 

A linear code with length n, dimension k, and minimum distance d is called an [n, k, d] 

code. For a code C with minimum distance d, any binary vector in F
n

2 is within Hamming 

distance t = ⌊
d−

2
1
⌋ of at most one codeword; thus, a code with minimum distance d can correct t 

errors made in the bits of a codeword; such a code is thus said to be a t error-correcting code. 

The rate R of a linear code of length n is dim(C)/n; this is the ratio of the information content of 

a codeword to the information content of an arbitrary string of length 

n. Thedual codeC⊥of a codeCis the set of vectors of perpendicular to all codewords, thatis, C⊥ = 

{v∈F
n

2 :v·c = 0 ∀c∈ C}. From linear algebra, dim(C) + dim(C⊥) = n. 
 

In this paper, we will use the [7, 4, 3] Hamming code as an example to illustrate our 

construction of quantum error-correcting codes. This code contains the following 16 binary 

vectors of length 7: 

 
0000000,  0001011,  0010110,  0011101, 

 
0100111,  0101100,  0110001,  0111010, 

(1) 
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1000101,  1001110,  1010011,  1011000, 
 

1100010,  1101001,  1110100,  1111111. 
 
The minimum distance is the minimum Hamming weight of a non-zero codeword, which is 3, so 

this is a one-error correcting code. It is easily verified that the dual code consists of all vectors in 

the Hamming code with an even weight. 

The quantum Hilbert space H2
n

 over nqubits is the complex space generated by basis vectors 

|b0i, |b1i, . . .,|b2N−1i where bi is the representation of the number i in binary. This Hilbert 

space has a natural representation as a tensor product of n copies of H2, with the ith copy 

corresponding to theith bit of the basis vectors. We refer to each of these copiesof H2 as a qubit. 

 

We define a quantum error-correcting code Q with rate k/n to be a unitary mapping of 
 

H2
k
 into H2

n
. Strictly speaking, this is actually a unitary mapping of H2

k
 into a 2

k
 -dimensional 

subspace of H2
n

; it can alternatively be viewed as a unitary mapping of H2
k
⊗H2

n−k
 into H2

n
, 

where the quantum state in H2
n−k

 is taken to be that where all the qubits have quantum state 

|0i. In our model of error analyzed in Section  IV, we will assume that the decoherence process 

affects only t bits; that is, the decoherence is modeled by first applying an arbitrary unitary 

transformation D to the space consisting of the tensor product H2
t
⊗Henv of any t of the qubits and 

some arbitrary Hilbert space Henv designating the environment, and then tracing over the 

environment Henv to obtain the output of the channel, which will thus in general be an ensemble 

of states in H2
k
 . We say that a quantum code can correct t errors if the original state |xi ∈ H2

k
 

can be recovered from the decohered encoded state DQ|xi 
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by applying a unitary transformation R (independent of D) to H2
n
⊗Hanc, where Hanc is a Hilbert 

space representing the state of an ancilla (i.e., a supplementary quantum system). It turns out that 

if our quantum code will correct an arbitrary decoherence of t or fewer qubits, it will also be able 

transmit information with high fidelity for a large class of channels with physically plausible 

decoherence processes; this is discussed in Section  VI. 

 

Since the error correction must work for any encoded state Q|xi, the property of being a 

quantum error-correcting code depends only on the subspace QH2
k
 of H2

n
, and not on the actual 

mapping Q. However, for ease of explanation, we will nonetheless define an orthogonal basis of 

this subspace of H2
n

, which can be used to obtain an explicit mapping 
 
Q, and call the elements of this basis codewords. 
 
 
 

III. QUANTUM CODES 
 
 

We will now define our quantum code. Suppose that we have a linear code C1⊂F
n

2. We let 

HC1 be the subspace of H2
n

 generated by vectors |ci with c∈ C1. Let M be a generator matrix 

for C1; this means that C1 is the row space of M , so that vM ranges over all the codewords in C1 

as v ranges over all vectors in F
dim(

2
C1)

. For w∈F
n

2 , we define a quantum state |cwi by 
 

|cwi= 2− dim(C1 )/2      

X
(−1)vM w|vMi. (2) 

v∈F
dim(

2
C

1
)
 

 

Note that if w1 + w2∈ C1
⊥

, then |cw1i = |cw2i, since vM w1 = vM w2 for all v∈F
dim(

2
C1)

. Further 

note that hcw1|cw2i = 0 if w1 + w26∈1
⊥
C. This follows since 

P
v (−1)

vM w
 = 0 unless vM w = 0 for all 

v ∈ F2
dim(C1)

Thus, for w ∈ F
n

2/C1
⊥

the vectors|cwiform a basis for the space 

HC1 . (Here F2
n
/C1

⊥
 stands for the cosets of C1

⊥
 in F

n
2, which are the sets C1

⊥
 + w 

where w∈F
n

2; 
 
of these cosets and they form the natural index set for the quantum states 
 
 

 

 
there are 2dim(C1 ) 
 

|cwi.) 
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Suppose now that we have another linear code C2 with {0}⊂C2⊂C1⊂F
n

2. Our quantum 

code will be constructed using codes C1 and C2. We define the codewords of ourquantum code 

QC1,C2  as the set of |cwi for all w∈C2
⊥

, Recall that two codewords|cwi and|cw′iare equal if w + 

w
′
∈ C

⊥
. The natural index set for the codewords is thus over C2

⊥
/C1

⊥
, 

 

thecosets of C1
⊥

 in C2
⊥

.  This code thus contains 2
dim(C1)−dim(C2)

  orthogonal vectors.  Since 
 

its length is nqubits, it has rate (dim(C1) − dim(C2))/n. To construct a quantum error-correcting 

code from the Hamming code given in Eq.  (1), we will take C1 to be this code and C2 to be 

C1
⊥

. Thus, dim(C1) = 4 and dim(C2) = 3, so our quantum error-correcting code will map 4 − 3 

= 1 qubit into 7 qubits. There are thus two codewords. The first is 
 

|c0i = 

1 

_ |0000000i + |0011101i + |0100111i + |0111010i 

 
 

   

4  
 

  +|1001110i + |1010011i + |1101001i + |1110100i (3) 
 

  +|0001011i + |0010110i + |0101100i + |0110001i  
 

  +|1000101i + |1011000i + |1100010i + |1111111i
_
,  

 

and the second is     
 

|c1i = 

1 

_ |0000000i + |0011101i + |0100111i + |0111010i 

 
 

   

4  
 

  +|1001110i + |1010011i + |1101001i + |1110100i (4) 
 

 
−|0001011i − |0010110i − |0101100i − |0110001i  

_  
−|1000101i − |1011000i − |1100010i − |1111111i  . 

 

Note that in |c1i all the codewords of the Hamming code with an odd weight have a negative 

amplitude, and all the codewords with even weight have positive amplitude. This is the effect of 

the (−1)
vM w

 term in Eq.  (2).  

We will show that if C1 and C2
⊥

 have minimum distance d, then the quantum code QC1,C2 

can correct t = ⌊
d−

2
1
⌋ errors. (For our example code, C1 = C2

⊥
 has minimum distance 3, so our 

quantum code will correct one error.) In the remainder of this section, we will give some 

intuition as to why this should be true; while in the next section, we will work out this 
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calculation in detail. 

 
To show why our codes are error-correcting, 

we must first give another representation of 

our codewords. If we perform the following 

change of basis,     
 

|0i → √ 

 

(|0i + |1i) (5) 

 

2 
 

1 

(|0i − |1i), 

 
 

|1i → √ 

   

2  
 

to each of the bits of our codeword|cwi we obtain the state  
 

|swi= 2(dim(C1 )−n)/2 u ⊥ |u +wi. (6) 
 

X 
∈C1 

 
We can see this since if |xi is any basis state in the rotated basis given by Eq.  (5), then 
 

hx|cvi= 2−(n+dimC1 )/2  
dim( C 

 (−1)vM(w+x), (7) 
 

v   

1 )  
 

∈ 
F

X    
 

 2     
  

and this sum is 0 unless w + x∈C1
⊥

. Letting u = w + x, we get Equation  (6). For our example 

quantum code, 
 
 1  

_ 

  
 

|s0i = 2
√

 
 

|0000000i + |0011101i + |0100111i + |0111010i (8) 

 

2 
 

   +|1001110i + |1010011i + |1101001i + |1110100i
_
 

 

and      
 

 1  

_ 

  
 

|s1i = 2
√

 
 

|0001011i + |0010110i + |0101100i + |0110001i (9) 

 

2 
 

   +|1000101i + |1011000i + |1100010i + |1111111i _ . 
  

We can now see how these codes are able to correct errors. In the |cwi representation, all the 

codewords are superpositions of basis vectors |vi with v∈C1. Thus, any t bit errors (those errors 

taking |0i → |1i and |1i → |0i) can be corrected by performing a classical error-correction 

process for the code C1 in the original basis. In the |swi representation, all the codewords are 

superpositions of basis vectors |vi with v∈C2
⊥

. Thus, any t bit errors in the rotated basis can be 
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corrected by performing a classical error-correction process for the code C2
⊥

 in the rotated 

basis. However, phase errors in the original basis (errors taking 
 
|0i → |0i and |1i → −|1i) are bit errors in the rotated basis and vice versa. Thus, ourquantum 

code can correct t bit errors and t phase errors in the original basis. 

 
The correction process we use for our quantum error-correcting codes is indeed to first 

correct bit errors in the |cvi basis classically and then to correct bit errors in the |svi basis 

 
classically. It remains to be shown that the correction process for the bit errors does not interfere 

with the correction process for the phase errors, and that arbitrary non-unitary errors on t or 

fewer quantum bits of our code will also be corrected by this procedure. This is done through 

calculations which are performed in Section  IV of our paper. 

 
As in Ref.  [9], we correct the error by measuring the decoherence without disturbing the 

encoded information. Intuitively, what we do is to measure the decoherence without observing 

the encoded state; this then lets us correct the decoherence while leaving the encoded state 

unchanged. In our decoding procedure, we thus learn which qubits had bit errors and which had 

phase errors, which tells us something about the decoherence process but which gives no 

information about our encoded state. Linear codes are very well suited for this application: each 

codeword has the same relation to all the other words in the code, and this property is what 

enables us to measure the error without learning which codeword it is that is in error. 

 

 

Since this paper was submitted, we learned that related work has been done by Steane 

[12].Steane generates his quantum code using codewords 
 

|sw′i= 2− dim(C2 )/2 |v +wi, (10) 
v 2  

X
∈C  

wherew is chosen from C1/C2. This is the same as our |swi basis if the codes C1 and C2
⊥

 are 

interchanged. It should also be noted that these codewords|s
′

wi generate exactly the same 

subspace of H2
n

 as the codewords|cwi given by Eq.  2, and thus effectively give a different basis 
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for the same quantum code. 
 
 
 

IV. DECODING QUANTUM CODES 
 

 

In this section we will show that errors in any tqubits of our quantum codes can be corrected 

by first correcting bit errors in the |ci basis, and then correcting bit errors in the 
 
|sibasis. For this section and the remainder of this paper, we will assume for simplicity 

thatdim(C1) = n−k and dim(C2) = k; thus, the rate of our codes will be 1−2k/n. However, all of 

our results are easily extendable to quantum codes derived from classical codes C2⊂C1⊂F
n

2 

of any dimension. 
 

In order to prove that errors in quantum codes can be corrected, we first need a lemma 
 
about purely classical codes. 
 

Lemma 1. Suppose that C is a binary linear code of length n. Let e, E∈F
n

2, with e_E 
 

andwt(E) < d(C
⊥

). Then there exists a vector ve∈C such that ve|supp(E)  = e. 
 

Proof.  The projection of C onto E has to have full rank, because otherwise C
⊥

 would  

contain a vector w with wt(w) ≤wt(E) < d(C
⊥

). 2 

We now need the following lemma about the states |cwi.  

Lemma 2.  Suppose that C1  has minimum distance d.  Let e, E∈F2
n

  withe_E.  Let  

P  be the projection onto the subspace of H2
n

 generated by all |vi where v  is in the set 
 

{v∈ F2
n

:v|E= e}, that is, with v equal toeon supp(E). Then 
 

hcw1 |P |cw2i= 2
−(n−k)

 (−1)vM(w1+w2) (11a) 
 

v: 
vME=e   

X|  
 

(−1)e·(c+w1+w2)/2wt(E) 
 
= 

0 

 

if∃c∈C1
⊥

 such that c + w1 + w2_E, 
 
otherwise. 

 

(11b) 
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Proof. From the definition of |cwi in Eq.  (2), it is straightforward to show Eq.  (11a). We 

must now show that this is equal to Eq.  (11b). Since wt(e) < d(C1
⊥

), by Lemma 1 there is a 

vector ve such that veM|E = e. We can obtain the linear space {v∈F
n

2
−k

 :v|E = e} by taking 

every vector in the set {v∈F
n

2
−k

 : v|E = 0} and adding the vector ve. Using this 
 
substitution in Eq.  (11a) gives    

 

hcw1 |P |cw2i= 2
−(n−k)

 (−1)(v+vE )M (w1 +w2 ) (12a) 
 

v: 
vME=0    X

|   
 

= 2−(n−k)(−1)vEM (w1 +w2) (−1)vM(w1+w2). (12b) 
 

  vME=0   

 v: 
X

|  
 

Now, because the set {vM :vM|E  = 0} is an n−k−wt(E) dimensional subspace of  

F
k
2, the sum  (12b) is0 unlessvM(w1+ w2) = 0 for allvMin this subspace. It is clear that of 

there is a c∈ C1
⊥

 such that w1 + w2 + c E, then vM (w1 + w2) = 0 if vM|E = 0, and veM(w1+ w2) 

= e ·(c + w1+ w2). This shows the first part of Eq.  (11b).  

We now prove the other direction. Suppose that vM (w1 + w2) = 0 for all v with vM|E= 0. 

Letejbe the vector that is 1 on thejth coordinate of E and 0 on the othercoordinates. We know 

from Lemma  1 that there is a vector vj∈F
n

2
−k

 such that vjM|E = ej . 
wt(E) 

σjej; we will show 

 

Let σj  =vjM (w1 + w2).  We consider the vector c
′

 = w1 + w2 + 
P

j=1 
 

that this vector satisfies the conditions for the c in Eq.  (11b). Clearly, w1 + w2 + c
′

E. We need 

also to show that c
′
∈ C1

⊥
. Consider any vector v∈F

n
2
−k

 . We can decompose it into 
wt(E) 

αiviwhere v0M |E= 0, and αiis 0 or 1. Note that vi M ej= δ(i, j) where δ 

 

v = v0+
P

i=1 
 

is the Kronecker delta function. Now,    
 

   wt(E)  wt(E)  
 

 vM c
′

= (v0+ αivi)M (w1+ w2+ σjej) (13a) 
 

   i=1  j=1   

   X  X  
 

 wt(E)  wt(E)   
 

 = (  αivi)M (w1+ w2+ σjej) (13b) 
 

 i=1   j=1    

 X   X   
 

 wt(E)   wt(E)   
 

 = αivi M (w1+ w2) + αiσi (13c) 
 

 i=1   i=1    

 X   X   
 

 = 0,      
 

 

proving the second part of Eq.  (11b). The terms containing v0 vanish in Eq.  (13a) because 
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v0M (w1+w2) = 0 since v0M |E= 0, and v0M ei= 0 sinceei≺ E. The two terms in Eq.  (13c) 

cancel because of the definition of σi .   2 

We are now ready to prove the following theorem.    

Theorem 1.  If C1  and C2
⊥

 are both linear [n, n−k, d] codes with {0}⊂C2⊂C1 ⊂ F2
n

, 

then the quantum code QC1,C2  is a t-error correcting code, where t = ⌊ d−2 1 ⌋.  

Proof. We show how to correct any t errors. Let us start with a codeword|cwi for w∈ 

C2
⊥

. Now, let E be the binary vector such that supp(E) is the set of qubits that have decohered. 

By our hypothesis that at most tqubitsdecohere, we can take wt(E) = t. We denote states of the 

environment by |aii. Since the decoherence only operates on those qubits in supp(E), the 

most general decoherenceD is a unitary process operating on a binary vector u and the initial 

state of the environment |a0i as follows: 

D|u, a0i = |u +ei|au|E,ei, (14) 
e E  

X_  

where the states of the environment |aii are not necessarily normalized. Now, we let this 

decoherence act on |cwi|a0i. We get 
 

D|cw , a0i = 2
−(n−k)/2

 v N−K (−1)
vM w

 |vM+ei|avM|E,ei. (15) 
 

 F2 e   E   

 X X_   

 ∈    
 

Now, we know vM∈C1, which is a code with minimum distance d >2wt(e). Thus, we can 

restore vM + e to a unique codewordvM∈C1. Intuitively, this corrects bits that have  

flipped from 0 to 1 or vice versa. We can do this using a unitary operator Rf  provided we 
 
make the operation reversible; to do this we record the error e in a set of ancillaqubitsA. After 

this process, the quantum state of our system is 

 

RfD|cwi= 2
−(n−k)/2

 v (−1)
vM w

 |vMi|avM|E,ei|Aei. (16) 
 

 

X 
 e   E   

  X_  
 

Note that since vM∈C1, we have now corrected our state to some state in the Hilbert space 
 

HC1. Recall that the vectors |cui with u ∈ F
n

2generatedHC1. What we do now is to 

considerthe Hilbert space HC1 in terms of the basis elements |cui for u∈F
n

2/C1
⊥

 instead of 

the basis elements |vMi. We do this by substituting the identity 
 

|vMi= 2
−(n−k)/2X

(−1)
vM u

 |cui (17) 
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u∈F2
N

 /C1
⊥
  

 

in Eq.  (16). This gives the same type of effect as the change of basis in Eq.  (5) in that it 

produces a representation in which it is easier to deal with phase errors. The substitution  (17) 

gives the equation 

 

RfD|cwi= 2
−(n−k)

 v (−1)
vM w

 u (−1)
vMu

|cui  
|a

vM|E ,e

i|A
e

i,
 (18) 

 

  

X 
    

X 
  

e E 
  

        X_  
 

which can be rewritten as              
 

RfD|cwi= 2
−(n−k)

 e   E |Aei e ′ |ae′,ei u |cui 
E =e ′(−1)

vM w
 (−1)

vM u
 (19) 

 

    E  

X 
v:vM    

 X_   X_  
X

|    
 

Now, by Lemma 2, the inner sum is 0 unless there exists c∈C1
⊥

 for which c + w + u_E. 

This means that |cwi can only decohere to |cui if there is a c∈C1
⊥

 such that wt(u+w +c) 

≤t.We now show this means that for each |cui there is a unique |cwi with w∈C2
⊥

/C1
⊥

 which 

it could have arisen from. Suppose that we have two such w’s, w1 and w2 with w1 + u + c1 = e1 

and w2 + u + c2 = e2. Then, 

 

e1+e2= w1+ w2+ c1+ c2∈C2
⊥

. (20) 

However,  

wt(e1 + e2) ≤wt(e1) + wt(e2) ≤ 2t. (21) 
 

But C2
⊥

 has minimum distance d > 2t; thus e1  =e2, so w1 + w2∈C1
⊥

 and |cw1i = |cw2i.  

This means that we can unitarily express the state in Eq.  (19) in terms of |cui, where u 

∈F
n

2 /C1
⊥

, and then correct the state|cuito|cwi, since there is at most one w with  

dH(w, u)< t. As before, to unitarily correct|cuito|cwiwe need to use a second ancilla A
′
to record 

which bits we needed to flip to get from u to w. These flipped bits correspond to phase errors 

in the original basis. Denoting this correction operator by Rp, we get 
 

RpRfD|cwi= 2
−(n−k)

 |Aei ′ E |ae′,ei vM E ′ e ′′ (−1)
vM w

 (−1)
vM(w+e′′)|cwi|Ae

′
′′i 

 
e E e     

v: 
=e  E     

X_ X_    
X
|   X_  

′(−1)
vM e′′

 

 
 

= 2
−(n−k)

|cwi |Aei e ′ E |ae′,ei  ′′ E |Ae′′i vME=e (22) 
 

 e E     e    

v: 
   

 X_   X_    
X
_   X|   
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= 2
−wt(E)

|cwi |Aei 
e ′′ E |Ae

′
′′i  ′ (−1)

e′·e′′|ae′,ei,  
 

 e E        E        

 X_    X_  e
X
_       

 

which is just |cwitensored with a state of the ancillae and the environment that does not 

depend on w. We have thus unitarily restored the original state and corrected tdecohered 
 

bits. 2 
 
 
 

V. WEAKLY SELF-DUAL CODES 
 

 

To show that a family of codes contains codes that meet the Gilbert-Varshamov bound we 

can often employ a very simple greedy argument; this argument appears in Ref.  [6], pp. 557–

558 (proof of Thm. 31 of Chap. 17). 

Lemma 3. Let φi  be a set of [ni, ki] codes such that 

1. ki/ni> R  
 

2. each nonzero vector of length ni  belongs to the same number of codes in φi.  

 

Then there are codes in the family that asymptotically meet the Gilbert-Varshamov bound: 

 

R ≥1− H2(n
d

)   as n → ∞ (23) 
 

 

Proof.  Let Wi  be the number of codes in φi  that contain a particular vector v.  By 
 
hypothesis,     

 

 (2
nI− 1)Wi  = (2

kI− 1)|φi|. (24) 
 

The number of vectors with weight less than d is  
 

  d−1n  
 

  j=0 ji
!
. (25) 

 

  X   
 

If     
 

d−1 n !
< Wi(2

nI−1)/(2
kI−1) =|φi| 

 
 

Wi j
i (26) 

 

j=0      

X     
 

then there is a code in φi  with minimum distance ≥d. 2 
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This proof is not constructive in that it does not produce codes satisfying this bound, but 

merely shows that they exist. In fact, explicit constructions for classical codes that 
 
attain the Gilbert–Varshamov bound asymptotically are not known. 
 

Consider towers of codes as shown below:     
 

    {0} ⊆ hh1
n
ii ⊆ C ⊆ C

⊥
⊆F2

n
 (27) 

 

where dim 
C 

= k and dim 
C 

⊥
 = n 

− 
k. Here 

hh 
1

n
 
ii 

denotes the subspace of F
n

  generated by 
 

      2 
 

the vector 1
n

 containing all ones. The codes C and C
⊥

 correspond to C2 and C1, 

respectively, in the Section  III; we have now added the requirement that C1
⊥

 = C2. We 

follow MacWilliams et al.  [13]. They call a code weakly self-dual if 

hh1
n
ii ⊆ C ⊆ C

⊥
. (28) 

 

Given a vector v with even weight we need that the number of k-dimensional weakly self-dual 

codes for which v∈C
⊥

 is independent of v. In other words, the number of k-dimensional  

weakly self-dual codes C contained in a given hyperplanev
⊥

 is independent of v.  
We apply Theorem 2.1 of Ref.  [13] (actually a stronger statement established in the 

 
proof). 
 

Let σn,k,s be the number of k-dimensional weakly self-dual codes C[n,k] that contain a 

given s-dimensional code C[n,s]. Then the numbers σn,k,s are independent of the code C[n,s] 

that was chosen. 
 

We separate the case v∈C[n,k]⊆C[
⊥

n,k] from the case v∈C[
⊥

n,k]\C[n,k]. The number of 

k-dimensional weakly self-dual codesC[n,k]for which v ∈C[n,k]is just σn,k,2, the number 

ofcodes containing the 2-dimensional space hh1
n

, vii. Next we consider pairs (C[n,k], v) where 

C[n,k]is ak-dimensional weakly self-dual code andv∈ C[
⊥

n,k]\C[n,k]. In this 

caseC[n,k]andvgenerate a (k− 1)-dimensional weakly self-dual code C[n,k+1] containing the 2-

dimensional space hh1
n

, vii. The number of choices for C[n,k+1] is σn,k+1,2. Every code 

C[n,k+1] contains 2
k

k-dimensional weakly self-dual codes of which 2
k−1

do not contain the 2-

dimensional spacehh1
n

, vii. Hence given a vectorvwith even Hamming weight, the number 

ofk-dimensionalweakly self-dual codes contained in v
⊥

 is independent of v. This is all that is 
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needed to 
 
apply the greedy argument used to establish the Gilbert-Varshamov bound. 
 

The statement that there are codes meeting the Gilbert–Varshamov bound is that given  

a ratio d/n (where d denotes minimum distance), we may achieve a rate 
 

(n−k)/n≥ 1 −H2 

d 

_ . (29) 

 

_ n 
 

The redundancy k/n satisfies k/n≤H2(d/n), so that the quantum codes achieve a rate 

R = (n −2k)/n ≥1−2H2 

d 

_ . (30) 

 

_ n 
 

This function is plotted in Fig.  1. 
 

VI. QUANTUM CHANNELS 
 

 

In order to carry Shannon’s theory of information to the quantum regime, it is necessary 

to have some reasonable definition of a noisy quantum channel. We will define a quantum 

channel W by a probability distribution P on unitary transformations UW mapping Hsig⊗ 

Henv. For any pure input state |xi the channel produces as output a mixed state by 

firstobtaining an ensemble of states in Hsig⊗Henv by applying the transformation UW to |xi 

with probability distribution P, and secondly tracing over Henv . While the initial state of  

Henvcould be given by an ensemble of states, it may also without loss of generality be 

takento be a fixed pure state, as the probability distribution given by an ensemble of initial 

states may be absorbed into the probability distribution on the unitary transformation UW . 

The probability distribution could also be concentrated entirely in the inital mixed state of 

Henv , and a fixed unitary transform U be used, but this leads to a slightly less intuitive 

description of the one quantum channel that we later discuss in detail. 

 

Actual quantum channels are unlikely to produce output that differs from the input exactly 

by the decoherence of at most tqubits, and thus are unlikely to be able to transmit quantum 

states perfectly using this scheme. However, if the average behavior of the channel results in 

the decoherence of fewer than tqubits, a channel may still be able to transmit quantum states 

very well. A measure of the success of transmission of quantum states that has previously 
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been successful applied in quantum information theory is fidelity  [15,11]. In this paper, we 

define fidelity slightly differently from the definition in Refs.  [15]; we make this change as 

these previous papers discuss channels that transmit some distribution of quantum states 

given a priori, whereas we want our channel to faithfully transmit any pure input state. 

Suppose that we have a noisy channel W that transmits quantum states in a Hilbert space 

Hsig. We define the fidelity of the channel to be 
 

min  Ehx|W|xi, (31) 
|xi∈Hsig  

where the expectation is taken over the output of the channel. In other words, we are 

measuring the fidelity of transmission of the pure state transmitted with least fidelity. We 

could also measure the fidelity of transmission of a typical state in Hsig; this average fideleity 

is a quantity which is closer to the previous definition, and may be more useful in some 

situations. 

 

Assume that a channel W transmits qubits with a fidelity of F and is that the decoherence 

process affects each qubit independently, i.e., each the decoherence of one qubit has no 

correlation with the decoherence of any other qubit. This would follow from the assumption 

that each qubit has a different environment, and this situation corresponds to memoryless 

channels in classical information theory. Then EWhx|W|xi ≥F for every state |xi∈H2. If the 

output of our channel is a pure state, our error-correction procedure RpRf will be successful 

with probability equal to the length of the projection of the state onto the subspace of H2
n

 

which results from decoherence of any t or fewer qubits. Since the decoherence process for 

each qubit is independent, we can use the binomial theorem to calculate the probability that 

the state W
n
|yi is projected onto the correctable subspace of H2

n
 , where |yi is in our 

quantum code C. We thus have a channel which transmits states |yi with fidelity 

t n !
F n−j (1−F)j  

 

Ehy|RpRfW
n
|yi ≥ j (32) 

 

j=0     

X    
 

for all |yi in our quantum code C. This quantity is close to 1 as long as t/n > 1 −F . Thus, if 

the fidelity F for each transmitted qubit is large enough, our quantum codes guarantee high 
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fidelity transmission for our encoding of kqubits. Our quantum codes will give good results 

for any channel W that transmits states |yi∈H2
n

 well enough that W|yi has an expected 

projection of length at least 1 −ǫ onto the subspace of H2
n

 obtained from |xi by the 

decoherence at most tqubits. Our encoding and decoding schemes then give a channel on the 

Hilbert space H2
k
 which has fidelity 1 −ǫ. We will next use this observation to obtain an 

upper bound on the channel capacity of quantum channels. 

 
An upper bound for the amount of classical information carried by a quantum channel is 

given by the Levitin–Holevo theorem  [10]. If the output of the channel is a signal that has 

density matrix ρa with probitilitypa, the Levitin–Holevo bound on the information content of 

this signal is 

H (ρ) −paH(ρa), (33) 
a  

X  

whereρ = 
P
apaρa  (the density matrix for the ensemble of signals), and where H (ρ) = 

 

−Tr(ρ log2 ρ) is the von Neumann entropy. Since quantum information can be used to 

carryclassical information, the Levitin–Holevo bound can be used to obtain an upper bound 

for the rate of a quantum error-correcting code. 

 
Consider the following quantum channel discussed in Ref.  [11]; this channel treats each 

qubit independently. With probability 1 −p, a qubit is unchanged, corresponding to the 

identity transformation _ 

1 0 
_
. Otherwise, with each possibility having probability p/3, the 

 

0 1 
 

qubit is acted on by the unitary transformation corresponding to one of the three matrices: 

_ 

0 1 

_, _ 

1 0 
_
, or _ 

0 1 
_
.That is, each of the following possibilities has probability 

 

1 0 0 −1 −1 0 
 

p/3: the qubit is negated, or its phase is changed, or it is both negated and its phase ischanged. 

If t/n > p + ǫ for ǫ > 0, the length projection of the output of this channel onto the subspace 

of H2
n

 with at most t errors approaches 1 as n grows, so the quantum error-correcting codes 

given earlier in this paper guarantee high fidelity. This channel can alternatively be described 

as transmitting a qubit error-free with probability 1 −
4
3p, and producing a random quantum 

state with probability 
4

3p. This description shows that the entropy of the output of the 

channel is at least H2( 
2
3p), so by the Levitin–Holevo theorem an upper bound on the 
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classical information capacity of this channel is 1 −H2( 
2
3p). This bound is plotted in Fig.  1. 

For this channel, the bound is achievable for classical information, but we believe it is 

unlikely to be tight for quantum information. 

 
Another question that has been studied is: how much entanglement can be transmitted 

over a quantum channel  [11]. Since any means of transmitting quantum states with high 

fidelity can also be used to transmit entanglement, upper bounds for entanglement transmis-

sion also apply to the quantum information capacity of a quantum channel. For the 

abovechannel, the upper bound proved in Ref.  [11] is H2(
1
2 + p(1 −p)) for p <

1
2 and 0 if 

p≥
1
2 . This bound is also plotted in Fig.  1. 
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