

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1158

User Level Simulation of Scheduling Algorithms in Multicore
1Mrs. Dhruva R. Rinku ; 2Dr. M. AshaRani ; 3N.Kavya,

1Associate Professor, Dept. of ECE, CVR College of Engineering, Hyderabad

2Professor, Dept. of ECE, JNT University, Hyderabad

3M.Tech Student, CVR College of Engineering, Hyderabad

rinkudhruva.ravi@gmail.com ; kavya.nalabolu@gmail.com ; ashajntu1@yahoo.com

Abstract:

Scheduler is an object of the kernel which

allocates available resources to the process. It works

differently for single core and multicore processors.

In single core, scheduler allots the processes to CPU

one at a time concurrently. In single core

architecture it is time consuming process for

execution of more number of processes. Performance

can be improved by executing the processes parallel

in multicore, scheduler allots simultaneously
processes to each core for execution. There are

different scheduling algorithms which are used to

schedule the processes in multicore. In multicore the

result of scheduling criteria is different for each

scheduling algorithms. In this project we have

proposed and observed the simulation of different

scheduling algorithms at user level for single core

and multicore and compared the different metrics

like average waiting time, turnaround time, CPU

utilization and number of context switches in

graphical manner and also observed the improved
performance of scheduler in multicore environment...

Keywords

Scheduler, Multicore, CPU utilization, Context

switch.

1. Introduction

The scheduler is an operating system module that

selects the next jobs to be admitted into the system
and the next process to run. Operating systems may

feature up to three distinct scheduler types: a long-

term scheduler (also known as an admission

scheduler or high-level scheduler), a mid-term or

medium-term scheduler, and a short-term scheduler.

The names suggest the relative frequency with which

their functions are performed.

It selects processes from the queue and loads them

into memory for execution. Process loads into the

memory for CPU scheduling. The primary objective

of the job scheduler is to provide a balanced mix of
jobs, such as I/O bound and processor bound.

In computing, scheduling is the method by which

work specified by some means is assigned to

resources that complete the work. The work may be

virtual computation elements such as threads,

processes or data flows, which are in turn scheduled

onto hardware resources such as processors, network

links or expansion cards.

A scheduler is what carries out the scheduling

activity. Schedulers are often implemented so they

keep all computer resources busy (as in load
balancing), allow multiple users to share system

resources effectively, or to achieve a target quality of

service. Scheduling is fundamental to computation

itself, and an intrinsic part of the execution model of

a computer system; the concept of scheduling makes

it possible to have computer multitasking with a

single central processing unit (CPU).

A scheduler may aim at one of many goals for ex,

maximizing throughput (the total amount of work

completed per time unit), minimizing response time

(time from work becoming enabled until the first
point it begins execution on resources), or

minimizing latency (the time between work

becoming enabled and its subsequent completion),

maximizing fairness (equal CPU time to each

process, or more generally appropriate times

according to the priority and workload of each

process). In practice, these goals often conflict (e.g.

throughput versus latency), thus a scheduler will

implement a suitable compromise. Preference is

given to any one of the concerns mentioned above,

depending upon the user's needs and objectives.

In real-time environments, such as embedded
systems for automatic control in industry (for

example robotics), the scheduler also must ensure

that processes can meet deadlines; this is crucial for

keeping the system stable. Scheduled tasks can also

be distributed to remote devices across a network and

managed through an administrative back end.

The long-term scheduler, or admission scheduler,

decides which jobs or processes are to be admitted to

the ready queue (in main memory); that is, when an

attempt is made to execute a program, its admission

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/
mailto:rinkudhruva.ravi@gmail.com
mailto:kavya.nalabolu@gmail.com
mailto:ashajntu1@yahoo.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1159

to the set of currently executing processes is either

authorized or delayed by the long-term scheduler.

Thus, this scheduler dictates what processes are to

run on a system, and the degree of concurrency to be

supported at any one time whether many or few

processes are to be executed concurrently, and how

the split between I/O-intensive and CPU-intensive

processes is to be handled. The long-term scheduler
is responsible for controlling the degree of

multiprogramming.

In general, most processes can be described as

either I/O-bound or CPU-bound. An I/O-bound

process is one that spends more of its time doing I/O

than it spends doing computations. A CPU-bound

process, in contrast, generates I/O requests

infrequently, using more of its time doing

computations. It is important that a long-term

scheduler selects a good process mix of I/O-bound

and CPU-bound processes. If all processes are I/O-

bound, the ready queue will almost always be empty,
and the short-term scheduler will have little to do. On

the other hand, if all processes are CPU-bound, the

I/O waiting queue will almost always be empty,

devices will go unused, and again the system will be

unbalanced. The system with the best performance

will thus have a combination of CPU-bound and I/O-

bound processes. In modern operating systems, this

is used to make sure that real-time processes get

enough CPU time to finish their tasks.

Long-term scheduling is also important in large-

scale systems such as batch processing systems,
computer clusters, supercomputers, and render farms.

For example, in concurrent systems, co-scheduling of

interacting processes is often required to prevent

them from blocking due to waiting on each other. In

these cases, special-purpose job scheduler software is

typically used to assist these functions, in addition to

any underlying admission scheduling support in the

operating system.

Scheduling of tasks is essential for every system.

Scheduler is one of the most important parts of an

Operating system[1]. Without scheduler, tasks may

not execute in that order which a user or operating
system itself want. Scheduling of tasks on single core

processor is much easy by choosing existing

scheduler programs like Round-Robin, Priority

based, First Come First Serve bases, Shortest job

First etc. Multi-core processors [2] have two or more

processing elements or cores on a single chip. These

cores could be of similar architecture (Synchronous

Multi-core Processors, SMPs) or of different

architecture (Asynchronous Multi-core Processors,

AMPs). All the cores necessarily use shared memory

architecture. Multi-core processors have existed
previously in the form of MPSoC (Multi-Processor

System on Chip) but they were limited to a segment

of applications such as networking.

The easy availability of multi -core has forced

software programmers to change the way they think

and write their applications. Unfortunately, the

applications written so far are sequential in nature.

Multi-core processors [8] do not automatically

provide performance improvements to applications
the way faster processors did. Instead applications

must be redesigned to increase their parallelism.

Similarly, CPU schedulers must be redesigned to

maximize the performance of this new application

parallelism. CPU scheduling policy (and in a large

part mechanism) is unimportant to a serial

application running on its own machine. An

important part of parallel processing in multi-core

reconfigurable systems is to allocate tasks to

processors to achieve the best performance.

 The objectives of task scheduling algorithms are

to maximize system throughput by assigning a task
to a proper processor, maximize resource utilization,

and minimize execution time. In a single-processor

system, only one process can run at a time; any

others must wait until the CPU is free and can be

rescheduled. The objective of multi-tasking is to

have some process running at all times, to maximize

CPU utilization. Scheduling is a fundamental

operating-system function. Almost all computer

resources are scheduled before use. The CPU is, of

course, one of the primary computer resources. Thus,

its scheduling is central to operating-system design.
CPU scheduling determines which processes run

when there are multiple run-able processes.

2. System Analysis

Scheduler selects processes from the queue and

loads them into memory for execution. Process loads

into the memory for CPU scheduling. The primary

objective of the job scheduler is to provide a
balanced mix of jobs, such as/O bound and processor

bound. Time-sharing operating systems have no long

term scheduler. It works differently for single core

and multicore.

 Single CPU systems use scheduling and can

achieve multi-tasking because the time of the

processor is time-shared by several processes so

allowing each process to advance in parallel as

shown in fig 1. So a process runs for some time and

another waiting gets a turn. Reassigning a CPU from

one task to another one is called a context switch. In
a synergy between hardware and operating system,

the CPU is allocated to different processes several

times per second and this act is called 'time-slicing'

so not to be confused with Multi-threading. Time-

slicing is older technology compared to Multi-

threading. There are lot of benefits in using

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1160

multithreading like more efficient cpu use, better

system reliability. The scheduler in operating system

will assign each task to core by priority.

Fig 1: single core function

In Multicore scheduling [4][5] each task is assigned

to the each core as shown in fig 2. Average waiting

time is decreases that increases the throughput,

improving scheduling criteria.

Fig 2: multicore function

Operating systems schedule threads either pre-

emptively or cooperatively. On multi-user operating

systems, pre-emptive multithreading is the more

widely used approach for its finer grained control

over execution time via context switching. However,

pre-emptive scheduling may context switch threads

at moments unanticipated by programmers therefore

causing lock convoy, priority inversion, or other

side-effects. In contrast, cooperative multithreading

relies on threads to relinquish control of execution
thus ensuring that threads run to completion. This

can create problems if a cooperatively multitasked

thread blocks by waiting on a resource or if it starves

other threads by not yielding control of execution

during intensive computation [7].

Until the early 2000s, most desktop computers

had only one single-core CPU, with no support for

hardware threads, although threads were still used on

such computers because switching between threads

was generally still quicker than full-process context

switches. In 2002, Intel added support for
simultaneous multithreading to the Pentium 4

processor, under the name hyper-threading; in 2005,

they introduced the dual-core Pentium D processor

and AMD introduced the dual-core Athlon 64 X2

processor.

Processors in embedded systems, which have

higher requirements for real-time behaviors, might

support multithreading by decreasing the thread-

switch time, perhaps by allocating a dedicated

register file for each thread instead of
saving/restoring a common register file.

Scheduling can be done at the kernel level or user

level, and multitasking can be done pre-emptively or

cooperatively. This yields a variety of related

concepts.

At the kernel level, a process contains one or

more kernel threads, which share the process's

resources, such as memory and file handles – a

process is a unit of resources, while a thread is a unit

of scheduling and execution. Kernel scheduling is

typically uniformly done pre-emptively or, less

commonly, cooperatively. At the user level a process
such as a runtime system can itself schedule multiple

threads of execution. If these do not share data, as in

Erlang, they are usually analogously called

processes, while if they share data they are usually

called (user) threads, particularly if pre-emptively

scheduled. Cooperatively scheduled user threads are

known as fibres; different processes may schedule

user threads differently. User threads may be

executed by kernel threads in various ways (one-to-

one, many-to-one, many-to-many). The term "light-

weight process" variously refers to user threads or to
kernel mechanisms for scheduling user threads onto

kernel threads.

A process is a "heavyweight" unit of kernel

scheduling, as creating, destroying, and switching

processes is relatively expensive. Processes own

resources allocated by the operating system.

Resources include memory (for both code and data),

file handles, sockets, device handles, windows, and a

process control block. Processes are isolated by

process isolation, and do not share address spaces or

file resources except through explicit methods such

as inheriting file handles or shared memory
segments, or mapping the same file in a shared way

see inter process communication. Creating or

destroying a process is relatively expensive, as

resources must be acquired or released. Processes are

typically pre-emptively multitasked, and process

switching is relatively expensive, beyond basic cost

of context switching, due to issues such as cache

flushing.

Kernel thread is a "lightweight" unit of kernel

scheduling. At least one kernel thread exists within

each process. If multiple kernel threads exist within a
process, then they share the same memory and file

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1161

resources. Kernel threads are pre-emptively

multitasked if the operating system's process

scheduler is pre-emptive. Kernel threads do not own

resources except for a stack, a copy of the registers

including the program counter, and thread-local

storage (if any), and are thus relatively cheap to

create and destroy. Thread switching is also

relatively cheap: it requires a context switch (saving
and restoring registers and stack pointer), but does

not change virtual memory and is thus cache-friendly

(leaving TLB valid). The kernel can assign one

thread to each logical core in a system (because each

processor splits itself up into multiple logical cores if

it supports multithreading, or only supports one

logical core per physical core if it does not), and can

swap out threads that get blocked. However, kernel

threads take much longer than user threads to be

swapped.

 Threads are sometimes implemented in user

space libraries, thus called user threads. The kernel is
unaware of them, so they are managed and scheduled

in user space. Some implementations base their user

threads on top of several kernel threads, to benefit

from multi-processor machines (M : N model). In

this article the term "thread" (without kernel or user

qualifier) defaults to referring to kernel threads. User

threads as implemented by virtual machines are also

called green threads. User threads are generally fast

to create and manage, but cannot take advantage of

multithreading or multiprocessing, and will get

blocked if all of their associated kernel threads get
blocked even if there are some user threads that are

ready to run.

For scheduling process in single core or multicore

scheduler must reach the scheduling criteria. The

scheduling criteria includes Parameters like

Scheduling Criteria

 CPU Utilization: It is the average fraction

of time, during which the processor is busy.

 Throughput: It refers to the amount of

work completed in a unit of time. The

number of processes the system can execute

in a period of time. The higher the number,
the more work is done by the system.

 Waiting Time: The average period of time

a process spends waiting. Waiting time may

be expressed as turnaround time less the

actual execution time.

 Turnaround time: The interval from the

time of submission of a process to the time

of completion is the turnaround time.

 Response time: Response time is the time

from submission of a request until the first

response is produced.

 Priority: give preferential treatment to

processes with higher priorities.

 Fairness: Avoid the process from

starvation. All the processes must be given

equal opportunity to execute.

 This project is implemented on Linux operating

system and simulated scheduling algorithms in single

and multicore and comparing the different metrics

and verifying improvement of scheduling criteria.

The block diagram is shown in fig 3.

 Fig 3: block diagram

3. Scheduling Algorithms

A Process Scheduler schedules different

processes to be assigned to the CPU based on
particular scheduling algorithms [3] [9]. There are

six popular process scheduling algorithms which we

are going to discuss in this chapter

 First-Come, First-Served (FCFS)

Scheduling.

 Shortest-Job-Next (SJN) Scheduling.

 Priority Scheduling.

 Shortest Remaining Time.

 Round Robin (RR) Scheduling.

 Multiple-Level Queues Scheduling.

These algorithms are either non-pre-emptive or
pre-emptive. Non-pre-emptive algorithms are

designed so that once a process enters the running

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1162

state, it cannot be pre-empted until it completes its

allotted time, whereas the pre-emptive scheduling is

based on priority where a scheduler may pre-empt a

low priority running process anytime when a high

priority process enters into a ready state.

First Come First Serve Scheduling

 Jobs are executed on first come, first serve

basis.

 It is a non-pre-emptive, pre-emptive

scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is

high.

Shortest Job Next Scheduling

 This is also known as shortest job first, or

SJF

 This is a non-pre-emptive, pre-emptive

scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where

required CPU time is known in advance.

 Impossible to implement in interactive

systems where required CPU time is not

known.

 The processer should know in advance how

much time process will take.

Priority Based Scheduling

 Priority scheduling is a non-pre-emptive

algorithm and one of the most common
scheduling algorithms in batch systems[10].

 Each process is assigned a priority. Process

with highest priority is to be executed first

and so on.

 Processes with same priority are executed

on first come first served basis.

 Priority can be decided based on memory

requirements, time requirements or any

other resource requirement.

Shortest Remaining Time Scheduling

 Shortest remaining time (SRT) is the pre-
emptive version of the SJN algorithm.

 The processor is allocated to the job closest

to completion but it can be pre-empted by a

newer ready job with shorter time to

completion.

 Impossible to implement in interactive

systems where required CPU time is not

known.

 It is often used in batch environments where

short jobs need to give preference.

Round Robin Scheduling

 Round Robin [6] is the pre-emptive process

scheduling algorithm.

 Each process is provided a fix time to

execute, it is called a quantum.

 Once a process is executed for a given time

period, it is pre-empted and other process

executes for a given time period.

 Context switching is used to save states of

pre-empted processes.

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent

scheduling algorithm. They make use of other

existing algorithms to group and schedule jobs with
common characteristics.

 Multiple queues are maintained for

processes with common characteristics.

 Each queue can have its own scheduling

algorithms.

 Priorities are assigned to each queue.

 For example, CPU-bound jobs can be

scheduled in one queue and all I/O-bound jobs in

another queue. The Process Scheduler then

alternately selects jobs from each queue and assigns

them to the CPU based on the algorithm assigned to
the queue.

 Simulation of scheduling algorithms

includes concept of enqueuer and dequeuer where

the number of process used for simulation follows

enqueuer and dequeuer concept. Enqueue is adding

the process into the queue for execution and dequeue

is removing the finished process from the queue as

shown in the fig 4.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1163

Fig 4: enqueue and dequeue

This project shows the simulation of first come first

served algorithm and round robin algorithm.

First come first served algorithm

 First come first served algorithm in which

process which will come first in queue will be

executed first, depending upon number of cores

which are used for execution the performance will be

changed. The number of cores on which process has

to execute will be selected manually at user level.

 The code written for the algorithm includes
sch-helper.h file which indicates about the maximum

number of process given as input, number of cores,

etc, It specifies different functions that can be shown

in flowchart.

4. Design and Implementation

Scheduling algorithms first come first served

,round robin and multilevel feedback queue
algorithms is simulated in single core and multicore

and dual core by changing the number of processors

at user level in sch-helper.h file which is included in

main program while simulation, and input is taken

from CPUdat.dat file which is created in the form of

process pid, arrival Time, start Time, end Time,

waiting time, current burst, no of burst, maximum

bursts, priority, quantum remaining, current queue.

Log file is also created which shows process of

execution. There are different cases of simulation.

First Come First Served Algorithm

The implementation of first come first served

algorithm is done in C programming language which

is more suitable for systems and provides an efficient

mapping to machine instructions. for implementation

of first come first serve a process that request the

CPU first is allocated to it first. Way the program

actually measures the progress is through a variable

step which is a part of process data structure. Each

iteration increases the step of a working CPU until

the cpu burst length or i/o burst length is reached. If

that condition is satisfied the program fetches the

next burst and repeat the whole process until there is

no more process to be fed into the CPU.

After simulation of algorithm each process is

sorted based on their arrival time and execution time

for each process and average waiting time, total

context switches, CPU utilization, average

turnaround time, last process to finish is observed as

shown fig 5 and fig 6. From above simulation it is
observed that average waiting time is less that

means waiting time for process to get CPU is very

less that increases the throughput. Average

turnaround time is less and CPU utilization is

increased.

From all simulation cases it is clear that average

waiting for each process is increased as number of

processors decreased, CPU utilization time also

decreases, average turnaround time is increases, and

this improves the scheduling criteria as shown in fig

7. This project is implemented by taking any number

of process as input. All these results comparison is
shown in the form of charts shown below.

Algorithm

Avg

waiting

time

Avg

turnaround

time

Cpu%

FCFS 23.2 40492.6
78.9

1

RR 20.43 40489.83
78.9

2

MFBQ 20.17 40494.97
78.9
0

Fig 5: Algorithms comparison in multicore

Fig 6: comparison of algorithms quad core

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1164

Fig 7: CPU% of algorithms in quad core

5. Conclusion and Future Scope

User level simulation of scheduling algorithms in

single core and multicore has done. The results of

scheduling algorithms in different cores are observed
in different cases. Comparison of different metrics

like average waiting time, CPU utilization, total

turnaround time and number of context switches

have observed and compared in different cores with

graphs. It is observed that simulation of scheduling

algorithms in multicore shows the improved

scheduling criteria. By this observation it is

concluded that the performance metrics of scheduler

i.e. scheduling criteria is increases by increasing

number of cores.

In this project scheduler performance for different

scheduling algorithms is observed. Future scope of
this project is designing scheduler to implement

earliest deadline first algorithm to achieve execution

of task with least deadline first. This project can be

implement at kernel level and observe metrics in real

time in bare metal hardware board with embedded

cores.

6. References

1. Pankaj Gupta, Piyush Kumar, Sandeep,

Saksham Wason, Vishal Yadav “Operating System”

“International Journal of Computer Science and

Information Technology Research ISSN 2348-120X

(online) Vol. 2, Issue 2, pp: (37-46), Month: April-

June 2014.

2. Anil Sethi1, Himanshu Kushwah2

“Multicore Processor Technology- Advantages and

Challenges” International Journal of Research in

Engineering and Technology Volume: 04 Issue: 09 |

September-2015.

3. Mahima Shrivastava, “Analysis and Review

of CPU Scheduling Algorithms”, International

Journal of Scientific Engineering and Research

(IJSER) ISSN (Online): 2347‐3878 Volume 2 Issue

3, March 2014.

4. Suresh Siddha “Process Scheduling

Challenges in the Era of Multi-core Processors”

Volume 11 Issue 04 Published, November 15, 2007
ISSN 1535-864X DOI: 10.1535/itj.1104.0 Intel

journals

5. Arpacci -Dusseau Multiprocessor

scheduling (Advanced) 2014.

6. Debashee Tarai, “Enhancing Cpu

Performance Using Subcontrary Mean Dynamic

Round Robin (Smdrr) Scheduling Algorithm”,

International Journal of Scientific Engineering and

Research (IJSER) Volume 2 Issue 3, March 2011.

7. Ravinder Jeet1, Upasna Garg2 “Selective

Scheduling Based on Number of Processor Cores for
Parallel Processing” International Journal of Science

and Research (IJSR) ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor

(2013): 4.438 Volume 4 Issue 1, January 2015

8. Venkata Siva Prasad Ch. and S. Ravi

“Scheduling Of Shared Memory With Multi - Core

Performance In Dynamic Allocator Using Arm

Processor “VOL. 11, NO. 9, MAY 2016 ISSN 1819-

6608 ARPN Journal of Engineering and Applied

Sciences ©2006-2016 Asian Research Publishing

Network (ARPN).

9. Imran Qureshi, “CPU Scheduling
Algorithms: A Survey”, Int. J. Advanced Networking

and Applications Volume: 05, Issue: 04, Pages:

1968-1973 (2014) ISSN: 0975-0290.

10. Ms. Rukhsar Khan1 , Mr. Gaurav Kakhani2

“Analysis of Priority Scheduling Algorithm on the

Basis of FCFS & SJF for Similar Priority Jobs”

International Journal of Computer Science and

Mobile Computing Vol. 4, Issue. 9, September 2015.

Author details:

Author 1:

Mrs. Dhruva R. Rinku

Associate Professor

Dept. of ECE
CVR College of Engg.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 10

September 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1165

Email: rinkudhruva.ravi@gmail.com

Author 2:

Dr. M. AshaRani

Professor
Dept. of ECE

JNTU, Hyderabad

Email: ashajntu1@yahoo.com

Author 3:

N.Kavya

Mtech-IIyr Embedded systems

Cvr College of engineering, Hyderabad.

Email: kavya.nalabolu@gmail.com

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/
mailto:rinkudhruva.ravi@gmail.com
mailto:ashajntu1@yahoo.com
mailto:kavya.nalabolu@gmail.com

