

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

REMOTE PROCEDURE CALL: LIMITATIONS AND DRAWBACKS Raghav Kukreja & Nitin Garg

P a g e | 914

Remote Procedure Call: Limitations and
Drawbacks

Raghav Kukreja&Nitin Garg

Department of Information Technology, Dronacharya College of Engineering, Gurgaon,
India

Email: nitingarg2015@gmail.com

ABSTRACT

The remote procedure calls are broadly used
in distributed operating systems. Since it is
easy and simple to implement, its usage is
wide in the distributed operating systems. It
also has some drawbacks and limitations.
Though very subtle, these drawbacks are of
utmost importance. In this paper we discuss
problems with Remote Procedure Call (RPC)
in the area of the concept of the model
itself, technical problems with its
implementation, and problems of client and
server crashes and some of the performance
issues. The paper discusses these problems
and the proposed solutions of the problems.

INTRODUCTION

RPC is assumed to be apt paradigm for
creating the distributed operating system.
Itis a way of communication between the
two parties, the clientand the server. For
example, assuming that computation
consists of main program, running on client
machine, and the procedure being called,
runs on server machine. When main
program calls a procedure, what happens is
that the call is made to a procedure called
client stub on client’s machine. The client
stubcollectsparameters into the message,
and then sends that message to

Server machine where it is being received
by server stub. The server stub unpacks
parameters from that message, and then
calls the server procedure using standard
calling sequence. In this way, both main
program and called procedure see ordinary,
and local procedure calls, using regular
calling conventions. Only those stubs, which
are automatically generated by compiler,
know that call is remote. We discuss various
problem shere that researchers have
observed with RPC.

CONCEPTUAL PROBLEMS IN RPC
Conceptual problems of the RPC are given
as follows:
Which is Server and which is Client?
RPC is inappropriate for all computations.
The example where it is inappropriate,
assume this UNIX pipeline:
Sort<infile1 | unit | wk. -l >outfile1
Thatsort’sinfile1, ASCII file having one word
in a line, removes the duplicates, and prints
word count in outfile1.It’s hard to know
which is client and which is server here. A
possible configuration is to have each of
three programs to be client and server,
divide in two processes if needed. The client
parts of sort wouldsend read requests to
the file server in order to acquire blocks of
input file. Client part of unitwould send

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

REMOTE PROCEDURE CALL: LIMITATIONS AND DRAWBACKS Raghav Kukreja & Nitin Garg

P a g e | 915

requests to server part of the sort in order
to provide the sorted data as it becomes
available. Client part ofthawwould send
request to server part ofthionic in
ordertoprovidethe duplicate less data as it
becomes available.

Unexpected Messages
Many situations may exist where one of the
process may have an important information
for the otherprocess, but a client, is not
expectingsuch information. It remains hard
for holder of information to transmit it.In
virtual circuit model having full duplex
connections, any party may send the
highprioritymessage at any given moment.
Though, problem arises when the user at
the terminal issues command and then
afterwards realizes that command has to be
aborted, for example, if the givenprogram
starts up is debugged and has got in the
infinite loop. If user presses there or the
BREAK key, the character might be held by
terminal server till someone asks for it,
which never really happens. What needed
here is a way for server, which is usually
passive, to initiate the action in order to
signal runaway command or shell that was
used to start it. Here isanexample of a
process which is usually a server but in
special cases needs to act like client and
communicate with the other processes
which might notbe expectingany
communication. While there are various ad
hoc solutionswhich may be devised, so
RPCmodel is faulty here.

Multicast

Situations usually exist where one process
may want to send message to other
processes. Local area networks are usually
able to support thebroadcast or the

multicast in the hardware. Packet
transmitted in the broadcast or the
multicast mode mightbereceived by the
multiple machines. Hence, there is a
situation where the processes mayneed to
do the multicasting and hardware doing it.
An RPC approach Isa two party
communication, hence, thereis no way to
use the facilities of the hardware.

TECHNICAL PROBLEMS
Technical problems regarding the RPC are
as follows:
Parameter Marshalling
In order to arrange the parameters, client
stub needs to know the number and type of
them. Forstrong languages, they do not
cause trouble, though in case the union
type is permitted, stub does not deduce
which union member is
passed.Forlanguages like C, which is not
type safe, problems are worse. The
keyword print, can be called with number of
different parameters. In caseprintis called
remotely, client stub does not have easy
way offending out about the number of
parameters there are or the types of these
parameters.

Parameter Passing
When client calls the stub, call is made by
normal calling procedure. Stub collects
parameters and inserts them into message
that is being sent to server. In case, all
parameters are the value parameters,
problems do not arise. They get copied in
the message. But, if reference parameters
or pointers are there, things get
complicated. It is easy to copy pointers in
message, while the server wants to use
them, it would not work right because
object pointed would not be available.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

REMOTE PROCEDURE CALL: LIMITATIONS AND DRAWBACKS Raghav Kukreja & Nitin Garg

P a g e | 916

Global Variables
The programming languages may offer
programmer ways to declarea
globalvariable. Some of the procedures
might access global variables simply by
using them. In case, procedure which
originally was build to run locally is forced
to run remote may have references to
global variable, this wouldfail and
procedure would not work. Such problem is
same as that of the pointer variables and is
as hard to deal with.

ABNORMAL SITUATIONS
Till now we have assumed that client or
server never crashes. That would be very
optimistic of us to believe so. Lots of
distributed systems are build to be tolerant
to faults, so they try to reboot crashed
processors by themselves.

EXCEPTION HANDLING
Usually when a main program wants to calls
procedure, in case, code is correct the
procedure returns to caller. In case, the
machine crashes, main program and
procedure die and whole program needs to
run again. Hence, there are two modes of
operation: whole program works or whole
program fails.

Repeated Execution Semantics
When local procedures recalled, they are
executed only one time. RPC having one
execution semantics is notpossible to
achieve in real case, it is also complicated
and expensive in various cases.

Loss of State

When a server crashes between RPCs and
reboots before next RPC, severe problems
may occur. Such problems are because of
fact that server has a long term state data
or information of client. File server might
have the information of the open files,
position of current files etc, will be lost after
reboot of the server. When client tries to
read the file 0, server would not have any
ideaof whatfile is to be read or how far the
was the program.

Orphans
In case, the client crashes and server is not
idle, computations of the server become
orphan. Virtual circuit systems do not have
to suffer with this problem because when
the client crashed, the circuits get broken
and this is found out by the server, which
kills all the computations initiated by client.

PERFORMANCE PROBLEMS

Performance problems regarding the RPC
are given as follows:
Lack of Parallelism
In RPCeither the server is active or the
client is active at a time. Hence, there is no
parallelism which is possible. Clients and
the servers areco-routines. In other models
it might be possible to run the
computations simultaneously between
server and client but not in RPC.

Lack of Streaming
In database a client requests a server to
perform the operation in order to look up
data in the database that meet some
conditions. Using this model, a server
should wait till all information are found
before replying. In case operation of
searching all data is time consuming, client

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

REMOTE PROCEDURE CALL: LIMITATIONS AND DRAWBACKS Raghav Kukreja & Nitin Garg

P a g e | 917

remains idle for some time, waiting for last
tuple to be searched.

Bad Assumptions
In some cases, programmers may utilize
procedures rather than inline code
becauseit is much more modular and will
not affect performance. For example,some
programs have negligible routine to
exchange element with element I. In case,
such a procedureis run remotely, it will slow
down whole computation by the ratio of
probably a factor of thousand. With no
transparentcommunication procedure
would never run remote.

Conclusion
The remote procedure calls though easy to
implement, have many limitations and
drawbacks. Even though the drawbacks and
limitations are subtle and negligible in
comparison to its advantages and
importance, it cannot be neglected.
Different issues such as technical problems
and performance issues were discussed in
this paper. The paper has discussed these
problem areas in brief and these problems
shall be looked upon by the researchers in
the future.

References

[1] Nelson, B. J. (1981). Remote

procedure call (No. CSL-81-9).

Carnegie-Mellon Univ. Dept.

Comput. Sci..

[2] Bershad, Brian N., et al.

"Lightweight remote procedure call."

ACM Transactions on Computer

Systems (TOCS) 8.1 (1990): 37-55.

[3] Seymour, Keith, et al. "Overview of

GridRPC: A remote procedure call

API for Grid computing." Grid

Computing—GRID 2002. Springer

Berlin Heidelberg, 2002. 274-278.

[4] Srinivasan, Raj. "RPC: Remote

procedure call protocol specification

version 2." (1995).

