

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 403

Modelling And Analysis Of Hybrid Lut/Multiplexer Fpga Logic

Architectures
Anitha Banoth

Department of ECE, CITS, Warangal, Telangana

Email id: anitha.banoth86@gmail.com
ABSTRACT: Hybrid configurable logic block

architectures for field-programmable gate arrays

that contain a mixture of lookup tables and hardened

multiplexers are evaluated toward the goal of higher

logic density and area reduction. Multiple hybrid

configurable logic block architectures, both

nonfracturable and fracturable with varying
MUX:LUT logic element ratios are evaluated across

two benchmark suites (VTR and CHStone) using a

custom tool flow consisting of LegUp-HLS, Odin-II

front-end synthesis, ABC logic synthesis and

technology mapping, and VPR for packing,

placement, routing, and architecture exploration.

Technology mapping optimizations that target the

proposed architectures are also implemented within

ABC. Experimentally, we show that for non

fracturable architectures, without any mapper

optimizations, we naturally save up to ∼8% area
postplace and route; both accounting for complex

logic block and routing area while maintaining

mapping depth. With architecture-aware technology

mapper optimizations in ABC, additional area is

saved, post-place-and-route. For fracturable

architectures, experiments show that only marginal

gains are seen after place-and-route up to ∼2%. For

both nonfracturable and fracturable architectures,

we see minimal impact on timing performance for the

architectures with best area-efficiency.

INTRODUCTION:

THROUGHOUT the history of field-programmable

gate arrays (FPGAs), lookup tables (LUTs) have

been the primary logic element (LE) used to realize
combinational logic. A K-input LUT is generic and

very flexible—able to implement any K -input

Boolean function. The use of LUTs simplifies

technology mapping as the problem is reduced to a

graph covering problem. However, an exponential

area price is paid as larger LUTs are considered. The

value of K between 4 and 6 is typically seen in

industry and academia, and this

range has been demonstrated to offer a good

area/performance compromise [4], [5]. Recently, a

number of other works have explored alternative
FPGA LE architectures for performance

improvement [6]–[10] to close the large gap between

FPGAs and application-specific integrated circuits

(ASICs) [11]. In this paper, we propose incorporating

(some) hardened multiplexers (MUXs) in the FPGA

logic blocks as a means of increasing silicon area

efficiency and logic density. The MUX-based logic

blocks for the FPGAs have seen
success in early commercial architectures, such as the

Actel ACT-1/2/3 architectures, and efficient mapping

to these structures has been studied [12] in the early

1990s.However, their use in commercial chips has

waned, perhaps partly due to the ease with which

logic functions can be mapped into LUTs,

simplifying the entire computer aided design (CAD)

flow. Nevertheless, it is widely understood that the

LUTs are inefficient at implementing MUXs, and

that MUXs are frequently used in logic circuits. To

underscore the inefficiency of LUTs implementing

MUXs, consider that a sixinput LUT (6-LUT) is
essentially a 64-to-1 MUX (to select 1 of 64 truth-

table rows) and 64-SRAM configuration cells, yet it

can only realize a 4-to-1 MUX (4 data + 2 select = 6

inputs). In this paper, we present a six-input LE based

on a 4-to-1 MUX, MUX4, that can realize a subset of

six-input Boolean logic functions, and a new hybrid

complex logic block (CLB) that contains a mixture of

MUX4s and 6-LUTs. The proposed MUX4s are

small compared with a 6-LUT

(15% of 6-LUT area), and can efficiently map all {2,

3}-input functions and some {4, 5, 6}-input
functions. In addition, we explore fracturability of

LEs—the ability to split the LEs into multiple smaller

elements—in both LUTs and MUX4s to increase

logic density. The ratio of LEs that should be LUTs

versus MUX4s is also explored toward optimizing

logic density for both nonfracturable and fracturable

FPGA architectures.

To facilitate the architecture exploration, we
developed a CAD flow for mapping into the

proposed hybrid CLBs, created using ABC [13] and

VPR [14], and describe technology

mapping techniques that encourage the selection of

logic functions that can be embedded into the MUX4

elements. The main contributions in this paper are as

follows.

1) Two hybrid CLB architectures (nonfracturable and

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 404

fracturable) that contain a mixture of MUX4 LEs and

the traditional LUTs yielding up to 8% area savings.

2) Mapping techniques called NaturalMux and

MuxMap targeted toward the hybrid CLB

architecture that optimize for area, while preserving

the original mapping depth.
3) A full post-place-and-route architecture evaluation

with VTR7 [1], and CHStone [2] benchmarks

facilitated by LegUp-HLS [3], the Verilog-to-

Routing project [1] showing impact on both area and

delay.

 Compared with the preliminary publication [15], we

have performed transistor level modelling of the
MUX4 LE, further studied the fracturable

architectures, and unified the open source tool-flow

from C through LegUp-HLS to the VTR flow. Sparse

crossbars (versus full crossbars in the previous work)

have also been included in our CLBs, increasing

modelling accuracy. The new transistor-level

modelling of the MUX4 also provides more accurate

results as compared with the previous work. Results

have also been expanded with

the inclusion of timing results as well as larger

architectural ratio sweeps. The remainder of this

paper is organized as follows. Section II outlines
related work. Section III discusses the proposed

MUX4 LE, the variant used in the fracturable

architecture and the design of the hybrid complex

logic block. Section IV presents the technology

mapping approaches to target the proposed hybrid

architecture. Section V shows how we modeled the

hybrid complex logic blocks for both the

nonfracturable and fracturable architectures in VPR.

Section VI discusses our evaluation methodology and

provides the evaluation results. Finally, we conclude

with final remarks in Section VII.

Recent works have shown that the heterogeneous

architectures and synthesis methods can have a

significant impact on improving logic density and

delay, narrowing the ASIC–FPGA gap. Works by

Anderson and Wang with “gated” LUTs [7], then

with asymmetric LUT LEs [8], show that the LUT

elements present in commercial FPGAs provide

unnecessary flexibility. Toward improved delay and
area, the macrocell-based FPGA architectures have

been proposed [9], [10]. These studies describe

significant changes to the traditional

FPGA architectures, whereas the changes proposed

here build on architectures used in industry and

academia [4]. Similarly, and-inverter cones have

been proposed as replacements for the LUTs,

inspired by and-inverter graphs (AIGs) [6].

Purnaprajna and Ienne [16] explored the possibility

of repurposing the existing MUXs contained within

the Xilinx Logic Slices [17]. Similar to this work,

they use the ABC priority cut mapper as well as VPR

for packing, place, and route. However, their work is
primarily delay-based showing an average speedup of

16% using only ten of 19 VTR7 benchmarks.

2 RELATED WORK:

In this section, the circuit scheme of conventional

RCA, CLA, ETAII in [4] and ACSA in [5] will be

analyzed in detail.

As pointed out in [6], RCA is a common type of

adder in digital circuit design, in which a series of

one-bit full adders are connected in sequence and the

higher output depends on lower carry signals. The

delay of RCA is () and the critical path starts

from the lowest bit to the last one. However, the

probability to activate this critical path is very small

[6], [7], which provides the foundation to design

speculative-based adder in following researches. In

order to obtain the carry signal in advance, for CLA,
the real value of carry signals for higher computation

block is calculated using signal generation method.

The critical path can be reduced efficiently. However,

the process of carry signal generation is complicated

in CLA, which could produce large logic area and

will result in a big power consumption. Based on the

idea of CLA, ETAII in [4] makes a full use of

paralleling calculation and introduced approximation

to reduce the power overhead as shown in Fig.2. The

adder is divided into several stages. Each of the

stages has a carry generator and a sum generator. The

output of one stage comes from its sum generator
with the previous carry signal. Thus, the critical path

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 405

is composed of one sum stage and carry signal

generator. However, the carry signal generator

involves only parts of the lower input data, which

could cause large error when a wrong prediction

happens in the upper stage of the adder. For 32-bits

ETAII with 4 bits for each stage, the maximum error
magnitude could be 228, which is too large that the

adder have little practical value in real application.

In [5], an approximate adder with carry skip

technique (ACSA) is proposed based on ETAII, in

which a multiplexor is used to choose the carry signal

for the sum generator in each stage. Different from
ETAII, this adder detects the property of carry

propagation in previous stage. When all the bits in

previous (− 1)ℎ-stage is in carry propagation

mode, it will select the carry signal from (− 2)ℎ-

stage. In this way, the error rate of the adder will be

decreased. Furthermore, a method for error

compensation is also used. However, the error

magnitude of this adder is still large. Take 32-bits

adder with 4 bits for each stage, the maximum error

magnitude could be 220. Meanwhile, the extra

multiplexors could consume more area, energy and

delay as well.

3 PROJECT DESCRIPTION

MUX4: 4-to-1 Multiplexer Logic Element The

MUX4 LE shown in Fig. 1 consists of a 4-to-1 MUX

with optional inversion on its inputs that allow the

realization of any {2, 3}-input function, some {4, 5}-

input functions, and one 6-input function—a 4-to-1
MUX itself with optional inversion on the data

inputs. A 4-to-1 MUX matches the input pin count of

a 6-LUT, allowing for fair comparisons with respect

to the connectivity and intracluster routing.

spect to the connectivity and intracluster routing.

Naturally, any two-input Boolean function can be

easily implemented in the MUX4: the two function

inputs can be tied to the select lines and the truth

table values (logic-0 or logic-1) can be routed to the

data inputs accordingly. Or alternately, a Shannon

decomposition can be performed about one of the

two variables—the variable can then feed a select
input. The Shannon cofactors will contain at most

one variable and can, therefore, be fed to the data

inputs (the optional inversion may be needed). For

three-input functions, consider that a Shannon

decomposition about one variable produces cofactors

with at most two variables. A second decomposition

of the cofactors about one of their two remaining

variables produces cofactors with at most one

variable. Such single-variable cofactors can be fed to

the data inputs (the optional inversion may be

needed), with the decomposition variables feeding
the select inputs. Likewise, functions of more than

four inputs can be implemented in the MUX4 as long

as Shannon decomposition with respect to any two

inputs produce cofactors with at most one input.

Observe that input inversion on each select input is

omitted as this would only serve to permute the four

MUX data inputs. While this could help routability

within the CLB’s internal crossbar, additional

inversions on the select inputs would not increase the

number of Boolean functions that are able to map to

the MUX4 LE.

Logic Elements, Fracturability, and MUX4-Based

Variants

Two families of architectures were created: 1)
without fracturable LEs and 2) with fracturable LEs.

In this paper, the fracturable LEs refer to an

architectural element on which one or more logic

functions can be optionally mapped. Nonfracturable

LEs refer to an architectural element on which only

one logic function is mapped. In the nonfracturable

architectures, the MUX4 element shown in Fig. 1 is

used together with nonfracturable 6-LUTs. This

element shares the same number of inputs as a 6-LUT

lending for fair comparison with respect to the input

connectivity.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 406

For the fracturable architecture, we consider an eight-

input LE, closely matched with the adaptive logic

module in recent Altera Stratix FPGA families. A 6-

LUT that can be fractured into two 5-LUTs using

eight inputs is shown in Fig. 2. Two five-input

functions can be mapped into this LE if two inputs

are shared between the two functions. If no inputs are

shared, two four-input functions can be mapped to

each 5-LUT. For the MUX4 variant, Dual MUX4, we

use two MUX4s within a single eight-input LE. In
the configuration, shown in Fig. 3, the two MUX4s

are wired to have dedicated select inputs and shared

data inputs. This configuration allows this structure

to map two independent (no shared inputs) three-

input functions, while larger functions may be

mapped dependent on the shared inputs between both

functions.

An architecture in which a 4-to-1 MUX (MUX4) is
fractured into two smaller 2-to-1 MUXs was first

considered. However, since a 2-to-1 MUX’s mapping

flexibility is quite limited (can only map two-input

functions and the three-input 2-to-1 MUX itself),

little benefit was added compared with the overheads

of making the MUX4 fracturable and poor area

results were observed.

4 Hybrid Complex Logic Block

A variety of different architectures were
considered—the first being a nonfracturable

architecture. In the nonfracturable architecture, the

CLB has 40 inputs and ten basic LEs (BLEs), with

each BLE having six inputs and one output following

empirical data in prior work [4]. Fig. 4 shows this

nonfracturable CLB architecture with BLEs that

contain an optional register. We vary the ratio of

MUX4s to LUTs within the ten element CLB from

1:9 to 5:5 MUX4s:6-LUTs. The MUX4 element is

proposed to work in conjunction with

6-LUTs, creating a hybrid CLB with a mixture of 6-
LUTs and MUX4s (or MUX4 variants). Fig. 4 shows

the organization of our CLB and internal BLEs.

For fracturable architectures, the CLB has 80 inputs

and ten BLEs, with each BLE having eight inputs and

two outputs emulating an Altera Stratix Adaptive-

LUT [18]. The same sweep of MUX4 to LUT ratios

was also performed. Fig. 5 shows the fracturable

architecture with eight inputs to each BLE that

contains two optional registers. We evaluate

fracturability of LEs versus nonfracturable LEs in the

context of MUX4 elements since fracturable LUTs
are common in commercial architectures. For

example, Altera Adaptive 6-LUTs in Stratix IV and

Xilinx Virtex 5 6-LUTs can be fractured into two

smaller LUTs with some limitations on

inputs.

The crossbar for fracturable architectures are larger

than the nonfracturable architectures for two reasons.

Due to the virtual increase of LEs, a larger number of
CLB inputs are required,

which increases crossbar size. Since there are now

twice as many outputs from the LEs, these additional

outputs need to also be fed back into the crossbar,

also increasing its size. Due to this disparity in

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 407

crossbar size, fair comparisons cannot be made

between fracturable and nonfracturable architectures.

Therefore, in this paper, we compare nonfracturable

hybrid

CLB architectures to a baseline LUT only

nonfracturable architecture and we compare
fracturable hybrid CLB architectures to a baseline

LUT-only fracturable architecture. Sparse crossbars

have been previously studied [19] and in this paper,

we model a 50% depopulated crossbar within the

CLB for intracluster routing for both nonfracturable

and fracturable architectures as compared with the

preliminary publication [15] that only modeled a full

input crossbar

5 CONCLUSION

We have proposed a new hybrid CLB architecture

containing MUX4 hard MUX elements= and shown

techniques for efficiently mapping to these

architectures. Weighting of MUX4-embeddable

functions with our MuxMap technique combined

with a select mapping strategy provided aid to
circuits with low natural MUX4-embeddable ratios.

We also provided analysis of the benchmark suites

postmapping, discussing the distribution of functions

within each benchmark suite. From our first set of

experiments with nonfracturable architectures, area

reductions of up to 8% were seen for a 4:6

MUX4:LUT architecture in the CHStone suite with a

2:8 architecture most viable for the VTR suites with

∼5% area savings. Our second set of experiments

with fracturable architectures showed that the

flexibility of a fracturable LUT is very powerful,
reducing the impact of the MUX4 LEs, yielding

smaller ∼2%–3% area savings over the VTR7 and

CHStone benchmark suites with less aggressive 2:8

and 1:9 architectures, respectively. Interestingly, we

again found that different architectural conclusions

can be made based on the benchmark circuits

employed in an architecture study [24], since

CHStone benchmarks generally preferred more

aggressive MUX4:LUT architecture ratios. The

CHStone benchmarks being high-level synthesized
with LegUp-HLS also showed marginally better

performance and this could be due to the way LegUp

performs HLS on the CHStone benchmarks

themselves. Overall, the addition

of MUX4s to FPGA architectures minimally impact

FMax and show potential for improving logic-density

in nonfracturable architectures and modest potential

for improving logicdensity in fracturable

architectures.

REFERRENCES

[1] J. Rose et al., “The VTR project: Architecture and
CAD for FPGAs from verilog to routing,” in Proc.

ACM/SIGDA FPGA, 2012, pp. 77–86.

[2] Y. Hara, H. Tomiyama, S. Honda, and H. Takada,

“Proposal and quantitative analysis of the CHStone

benchmark program suite for practical C-based high-

level synthesis,” J. Inf. Process., vol. 17, pp. 242–

254, Oct. 2009.

[3] A. Canis et al., “LegUp: High-level synthesis for

FPGA-based processor/accelerator systems,” in Proc.

ACM/SIGDA FPGA, 2011, pp. 33–36.

[4] E. Ahmed and J. Rose, “The effect of LUT and
cluster size on deepsubmicron FPGA performance

and density,” IEEE Trans. Very Large Scale Integr.

(VLSI), vol. 12, no. 3, pp. 288–298, Mar. 2004.

[5] J. Rose, R. Francis, D. Lewis, and P. Chow,

“Architecture of fieldprogrammable gate arrays: The

effect of logic block functionality on area efficiency,”

IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1217–

1225, Oct. 1990.

[6] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P.

Ienne, “Rethinking FPGAs: Elude the flexibility

excess of LUTs with and-inverter cones,” in Proc.

ACM/SIGDA FPGA, 2012, pp. 119–128.
[7] J. Anderson and Q. Wang, “Improving logic

density through synthesisinspired architecture,” in

Proc. IEEE FPL, Aug./Sep. 2009, pp. 105–111.

[8] J. Anderson and Q. Wang, “Area-efficient FPGA

logic elements: Architecture and synthesis,” in Proc.

ASP DAC, 2011, pp. 369–375.

[9] J. Cong, H. Huang, and X. Yuan, “Technology

mapping and architecture evalution for k/m-

macrocell-based FPGAs,” ACM Trans. Design

Autom. Electron. Syst., vol. 10, no. 1, pp. 3–23, Jan.

2005.
[10] Y. Hu, S. Das, S. Trimberger, and L. He,

“Design, synthesis and evaluation of heterogeneous

FPGA with mixed LUTs and macro-gates,” in Proc.

IEEE ICCAD, Nov. 2007, pp. 188–193.

[11] I. Kuon and J. Rose, “Measuring the gap

between FPGAs and ASICs,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp.

203–215, Feb. 2007.

[12] K. Karplus, “Amap: A technology mapper for

selector-based fieldprogrammable gate arrays,” in

Proc. 28th ACM/IEE DAC, Jun. 1991, pp. 244–247.

[13] A. Mishchenko, S. Chatterjee, and R. Brayton,
“DAG-aware AIG rewriting a fresh look at

combinational logic synthesis,” in Proc. 43rd Annu.

DAC, 2006, pp. 532–535.

[14] V. Betz and J. Rose, “VPR: A new packing,

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 408

placement and routing tool for FPGA research,” in

Proc. 7th Int. Workshop FPL, 1997, pp. 213–222.

[15] S. A. Chin and J. H. Anderson, “A case for

hardened multiplexers in FPGAs,” in Proc. FPT, Dec.

2013, pp. 42–49.

[16] M. Purnaprajna and P. Ienne, “A case for
heterogeneous technologymapping: Soft versus hard

multiplexers,” in Proc. IEEE 21st Annu. Int. Symp.

FCCM, Apr. 2013, pp. 53–56.

[17] (2011). Virtex-6 FPGA User Guide. [Online].

Available: http://www.xilinx.com

[18] (2011). Stratix IV Device Handbook. [Online].

Available: http://www.altera.com
[19] G. Lemieux and D. Lewis, “Using sparse

crossbars within LUT,” in Proc. 9th Int. Symp.

ACM/SIGDA FPGA, 2001, pp. 59–68.

[20] C. Chiasson and V. Betz, “COFFE: Fully-

automated transistor sizing for FPGAs,” in Proc. Int.

Conf. FPT, Dec. 2013, pp. 34–41.

[21] Predictive Technology Model. [Online].

Available: http://ptm.asu.edu/, accessed 2015.

[22] Altera, private communication, Mar. 2014.
[23] A. Mishchenko, S. Cho, S. Chatterjee, and R.

Brayton, “Combinational and sequential mapping

with priority cuts,” in Proc. IEEE/ACM Int. Conf.

ICCAD, Nov. 2007, pp. 354–361.

[24] A. Yan, R. Cheng, and S. J. E. Wilton, “On the

sensitivity of FPGA architectural conclusions to

experimental assumptions, tools, and techniques,” in

Proc. 10th Int. Symp. ACM/SIGDA FPGA, 2002,

pp. 147–156.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://ptm.asu.edu/

