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ABSTRACT: Hybrid configurable logic block 

architectures for field-programmable gate arrays 

that contain a mixture of lookup tables and hardened 

multiplexers are evaluated toward the goal of higher 

logic density and area reduction. Multiple hybrid 

configurable logic block architectures, both 

nonfracturable and fracturable with varying 
MUX:LUT logic element ratios are evaluated across 

two benchmark suites (VTR and CHStone) using a 

custom tool flow consisting of LegUp-HLS, Odin-II 

front-end synthesis, ABC logic synthesis and 

technology mapping, and VPR for packing, 

placement, routing, and architecture exploration. 

Technology mapping optimizations that target the 

proposed architectures are also implemented within 

ABC. Experimentally, we show that for non 

fracturable architectures, without any mapper 

optimizations, we naturally save up to ∼8% area 
postplace and route; both accounting for complex 

logic block and routing area while maintaining 

mapping depth. With architecture-aware technology 

mapper optimizations in ABC, additional area is 

saved, post-place-and-route. For fracturable 

architectures, experiments show that only marginal 

gains are seen after place-and-route up to ∼2%. For 

both nonfracturable and fracturable architectures, 

we see minimal impact on timing performance for the 

architectures with best area-efficiency. 

 

INTRODUCTION: 

THROUGHOUT the history of field-programmable 

gate arrays (FPGAs), lookup tables (LUTs) have 

been the primary logic element (LE) used to realize 
combinational logic. A K-input LUT is generic and 

very flexible—able to implement any K -input 

Boolean function. The use of LUTs simplifies 

technology mapping as the problem is reduced to a 

graph covering problem. However, an exponential 

area price is paid as larger LUTs are considered. The 

value of K between 4 and 6 is typically seen in 

industry and academia, and this 

range has been demonstrated to offer a good 

area/performance compromise [4], [5]. Recently, a 

number of other works have explored alternative 
FPGA LE architectures for performance 

improvement [6]–[10] to close the large gap between 

FPGAs and application-specific integrated circuits 

(ASICs) [11]. In this paper, we propose incorporating 

(some) hardened multiplexers (MUXs) in the FPGA 

logic blocks as a means of increasing silicon area 

efficiency and logic density. The MUX-based logic 

blocks for the FPGAs have seen 
success in early commercial architectures, such as the 

Actel ACT-1/2/3 architectures, and efficient mapping 

to these structures has been studied [12] in the early 

1990s.However, their use in commercial chips has 

waned, perhaps partly due to the ease with which 

logic functions can be mapped into LUTs, 

simplifying the entire computer aided design (CAD) 

flow. Nevertheless, it is widely understood that the 

LUTs are inefficient at implementing MUXs, and 

that MUXs are frequently used in logic circuits. To 

underscore the inefficiency of LUTs implementing 

MUXs, consider that a sixinput LUT (6-LUT) is 
essentially a 64-to-1 MUX (to select 1 of 64 truth-

table rows) and 64-SRAM configuration cells, yet it 

can only realize a 4-to-1 MUX (4 data + 2 select = 6 

inputs). In this paper, we present a six-input LE based 

on a 4-to-1 MUX, MUX4, that can realize a subset of 

six-input Boolean logic functions, and a new hybrid 

complex logic block (CLB) that contains a mixture of 

MUX4s and 6-LUTs. The proposed MUX4s are 

small compared with a 6-LUT 

(15% of 6-LUT area), and can efficiently map all {2, 

3}-input functions and some {4, 5, 6}-input 
functions. In addition, we explore fracturability of 

LEs—the ability to split the LEs into multiple smaller 

elements—in both LUTs and MUX4s to increase 

logic density. The ratio of LEs that should be LUTs 

versus MUX4s is also explored toward optimizing 

logic density for both nonfracturable and fracturable 

FPGA architectures. 

To facilitate the architecture exploration, we 
developed a CAD flow for mapping into the 

proposed hybrid CLBs, created using ABC [13] and 

VPR [14], and describe technology 

mapping techniques that encourage the selection of 

logic functions that can be embedded into the MUX4 

elements. The main contributions in this paper are as 

follows. 

1) Two hybrid CLB architectures (nonfracturable and 
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fracturable) that contain a mixture of MUX4 LEs and 

the traditional LUTs yielding up to 8% area savings. 

2) Mapping techniques called NaturalMux and 

MuxMap targeted toward the hybrid CLB 

architecture that optimize for area, while preserving 

the original mapping depth. 
3) A full post-place-and-route architecture evaluation 

with VTR7 [1], and CHStone [2] benchmarks 

facilitated by LegUp-HLS [3], the Verilog-to-

Routing project [1] showing impact on both area and 

delay. 

 Compared with the preliminary publication [15], we 

have performed transistor level modelling of the 
MUX4 LE, further studied the fracturable 

architectures, and unified the open source tool-flow 

from C through LegUp-HLS to the VTR flow. Sparse 

crossbars (versus full crossbars in the previous work) 

have also been included in our CLBs, increasing 

modelling accuracy. The new transistor-level 

modelling of the MUX4 also provides more accurate 

results as compared with the previous work. Results 

have also been expanded with 

the inclusion of timing results as well as larger 

architectural ratio sweeps. The remainder of this 

paper is organized as follows. Section II outlines 
related work. Section III discusses the proposed 

MUX4 LE, the variant used in the fracturable 

architecture and the design of the hybrid complex 

logic block. Section IV presents the technology 

mapping approaches to target the proposed hybrid 

architecture. Section V shows how we modeled the 

hybrid complex logic blocks for both the 

nonfracturable and fracturable architectures in VPR. 

Section VI discusses our evaluation methodology and 

provides the evaluation results. Finally, we conclude 

with final remarks in Section VII. 

Recent works have shown that the heterogeneous 

architectures and synthesis methods can have a 

significant impact on improving logic density and 

delay, narrowing the ASIC–FPGA gap. Works by 

Anderson and Wang with “gated” LUTs [7], then 

with asymmetric LUT LEs [8], show that the LUT 

elements present in commercial FPGAs provide 

unnecessary flexibility. Toward improved delay and 
area, the macrocell-based FPGA architectures have 

been proposed [9], [10]. These studies describe 

significant changes to the traditional 

FPGA architectures, whereas the changes proposed 

here build on architectures used in industry and 

academia [4]. Similarly, and-inverter cones have 

been proposed as replacements for the LUTs, 

inspired by and-inverter graphs (AIGs) [6]. 

Purnaprajna and Ienne [16] explored the possibility 

of repurposing the existing MUXs contained within 

the Xilinx Logic Slices [17]. Similar to this work, 

they use the ABC priority cut mapper as well as VPR 

for packing, place, and route. However, their work is 
primarily delay-based showing an average speedup of 

16% using only ten of 19 VTR7 benchmarks. 

2 RELATED WORK: 

In this section, the circuit scheme of conventional 

RCA, CLA, ETAII in [4] and ACSA in [5] will be 

analyzed in detail. 

 

As pointed out in [6], RCA is a common type of 

adder in digital circuit design, in which a series of 

one-bit full adders are connected in sequence and the 

higher output depends on lower carry signals. The 

delay of RCA is () and the critical path starts 

from the lowest bit to the last one. However, the 

probability to activate this critical path is very small 

[6], [7], which provides the foundation to design 

speculative-based adder in following researches. In 

order to obtain the carry signal in advance, for CLA, 
the real value of carry signals for higher computation 

block is calculated using signal generation method. 

The critical path can be reduced efficiently. However, 

the process of carry signal generation is complicated 

in CLA, which could produce large logic area and 

will result in a big power consumption. Based on the 

idea of CLA, ETAII in [4] makes a full use of 

paralleling calculation and introduced approximation 

to reduce the power overhead as shown in Fig.2. The 

adder is divided into several stages. Each of the 

stages has a carry generator and a sum generator. The 

output of one stage comes from its sum generator 
with the previous carry signal. Thus, the critical path 
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is composed of one sum stage and carry signal 

generator. However, the carry signal generator 

involves only parts of the lower input data, which 

could cause large error when a wrong prediction 

happens in the upper stage of the adder. For 32-bits 

ETAII with 4 bits for each stage, the maximum error 
magnitude could be 228, which is too large that the 

adder have little practical value in real application. 

 

In [5], an approximate adder with carry skip 

technique (ACSA) is proposed based on ETAII, in 

which a multiplexor is used to choose the carry signal 

for the sum generator in each stage. Different from 
ETAII, this adder detects the property of carry 

propagation in previous stage. When all the bits in 

previous ( − 1)ℎ-stage is in carry propagation 

mode, it will select the carry signal from ( − 2)ℎ-

stage. In this way, the error rate of the adder will be 

decreased. Furthermore, a method for error 

compensation is also used. However, the error 

magnitude of this adder is still large. Take 32-bits 

adder with 4 bits for each stage, the maximum error 

magnitude could be 220. Meanwhile, the extra 

multiplexors could consume more area, energy and 

delay as well. 

3 PROJECT DESCRIPTION 

MUX4: 4-to-1 Multiplexer Logic Element The 

MUX4 LE shown in Fig. 1 consists of a 4-to-1 MUX 

with optional inversion on its inputs that allow the 

realization of any {2, 3}-input function, some {4, 5}-

input functions, and one 6-input function—a 4-to-1 
MUX itself with optional inversion on the data 

inputs. A 4-to-1 MUX matches the input pin count of 

a 6-LUT, allowing for fair comparisons with respect 

to the connectivity and intracluster routing. 

 

spect to the connectivity and intracluster routing. 

Naturally, any two-input Boolean function can be 

easily implemented in the MUX4: the two function 

inputs can be tied to the select lines and the truth 

table values (logic-0 or logic-1) can be routed to the 

data inputs accordingly. Or alternately, a Shannon 

decomposition can be performed about one of the 

two variables—the variable can then feed a select 
input. The Shannon cofactors will contain at most 

one variable and can, therefore, be fed to the data 

inputs (the optional inversion may be needed). For 

three-input functions, consider that a Shannon 

decomposition about one variable produces cofactors 

with at most two variables. A second decomposition 

of the cofactors about one of their two remaining 

variables produces cofactors with at most one 

variable. Such single-variable cofactors can be fed to 

the data inputs (the optional inversion may be 

needed), with the decomposition variables feeding 
the select inputs. Likewise, functions of more than 

four inputs can be implemented in the MUX4 as long 

as Shannon decomposition with respect to any two 

inputs produce cofactors with at most one input. 

Observe that input inversion on each select input is 

omitted as this would only serve to permute the four 

MUX data inputs. While this could help routability 

within the CLB’s internal crossbar, additional 

inversions on the select inputs would not increase the 

number of Boolean functions that are able to map to 

the MUX4 LE. 

 

Logic Elements, Fracturability, and MUX4-Based 

Variants 

Two families of architectures were created: 1) 
without fracturable LEs and 2) with fracturable LEs. 

In this paper, the fracturable LEs refer to an 

architectural element on which one or more logic 

functions can be optionally mapped. Nonfracturable 

LEs refer to an architectural element on which only 

one logic function is mapped. In the nonfracturable 

architectures, the MUX4 element shown in Fig. 1 is 

used together with nonfracturable 6-LUTs. This 

element shares the same number of inputs as a 6-LUT 

lending for fair comparison with respect to the input 

connectivity. 
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For the fracturable architecture, we consider an eight-

input LE, closely matched with the adaptive logic 

module in recent Altera Stratix FPGA families. A 6-

LUT that can be fractured into two 5-LUTs using 

eight inputs is shown in Fig. 2. Two five-input 

functions can be mapped into this LE if two inputs 

are shared between the two functions. If no inputs are 

shared, two four-input functions can be mapped to 

each 5-LUT. For the MUX4 variant, Dual MUX4, we 

use two MUX4s within a single eight-input LE. In 
the configuration, shown in Fig. 3, the two MUX4s 

are wired to have dedicated select inputs and shared 

data inputs. This configuration allows this structure 

to map two independent (no shared inputs) three-

input functions, while larger functions may be 

mapped dependent on the shared inputs between both 

functions. 

An architecture in which a 4-to-1 MUX (MUX4) is 
fractured into two smaller 2-to-1 MUXs was first 

considered. However, since a 2-to-1 MUX’s mapping 

flexibility is quite limited (can only map two-input 

functions and the three-input 2-to-1 MUX itself), 

little benefit was added compared with the overheads 

of making the MUX4 fracturable and poor area 

results were observed. 

 

4 Hybrid Complex Logic Block 

A variety of different architectures were 
considered—the first being a nonfracturable 

architecture. In the nonfracturable architecture, the 

CLB has 40 inputs and ten basic LEs (BLEs), with 

each BLE having six inputs and one output following 

empirical data in prior work [4]. Fig. 4 shows this 

nonfracturable CLB architecture with BLEs that 

contain an optional register. We vary the ratio of 

MUX4s to LUTs within the ten element CLB from 

1:9 to 5:5 MUX4s:6-LUTs. The MUX4 element is 

proposed to work in conjunction with 

6-LUTs, creating a hybrid CLB with a mixture of 6-
LUTs and MUX4s (or MUX4 variants). Fig. 4 shows 

the organization of our CLB and internal BLEs. 

 

For fracturable architectures, the CLB has 80 inputs 

and ten BLEs, with each BLE having eight inputs and 

two outputs emulating an Altera Stratix Adaptive-

LUT [18]. The same sweep of MUX4 to LUT ratios 

was also performed. Fig. 5 shows the fracturable 

architecture with eight inputs to each BLE that 

contains two optional registers. We evaluate 

fracturability of LEs versus nonfracturable LEs in the 

context of MUX4 elements since fracturable LUTs 
are common in commercial architectures. For 

example, Altera Adaptive 6-LUTs in Stratix IV and 

Xilinx Virtex 5 6-LUTs can be fractured into two 

smaller LUTs with some limitations on 

inputs. 

The crossbar for fracturable architectures are larger 

than the nonfracturable architectures for two reasons. 

Due to the virtual increase of LEs, a larger number of 
CLB inputs are required, 

which increases crossbar size. Since there are now 

twice as many outputs from the LEs, these additional 

outputs need to also be fed back into the crossbar, 

also increasing its size. Due to this disparity in 
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crossbar size, fair comparisons cannot be made 

between fracturable and nonfracturable architectures. 

Therefore, in this paper, we compare nonfracturable 

hybrid 

CLB architectures to a baseline LUT only 

nonfracturable architecture and we compare 
fracturable hybrid CLB architectures to a baseline 

LUT-only fracturable architecture. Sparse crossbars 

have been previously studied [19] and in this paper, 

we model a 50% depopulated crossbar within the 

CLB for intracluster routing for both nonfracturable 

and fracturable architectures as compared with the 

preliminary publication [15] that only modeled a full 

input crossbar 

5 CONCLUSION 

We have proposed a new hybrid CLB architecture 

containing MUX4 hard MUX elements= and shown 

techniques for efficiently mapping to these 

architectures. Weighting of MUX4-embeddable 

functions with our MuxMap technique combined 

with a select mapping strategy provided aid to 
circuits with low natural MUX4-embeddable ratios. 

We also provided analysis of the benchmark suites 

postmapping, discussing the distribution of functions 

within each benchmark suite. From our first set of 

experiments with nonfracturable architectures, area 

reductions of up to 8% were seen for a 4:6 

MUX4:LUT architecture in the CHStone suite with a 

2:8 architecture most viable for the VTR suites with 

∼5% area savings. Our second set of experiments 

with fracturable architectures showed that the 

flexibility of a fracturable LUT is very powerful, 
reducing the impact of the MUX4 LEs, yielding 

smaller ∼2%–3% area savings over the VTR7 and 

CHStone benchmark suites with less aggressive 2:8 

and 1:9 architectures, respectively. Interestingly, we 

again found that different architectural conclusions 

can be made based on the benchmark circuits 

employed in an architecture study [24], since 

CHStone benchmarks generally preferred more 

aggressive MUX4:LUT architecture ratios. The 

CHStone benchmarks being high-level synthesized 
with LegUp-HLS also showed marginally better 

performance and this could be due to the way LegUp 

performs HLS on the CHStone benchmarks 

themselves. Overall, the addition 

of MUX4s to FPGA architectures minimally impact 

FMax and show potential for improving logic-density 

in nonfracturable architectures and modest potential 

for improving logicdensity in fracturable 

architectures. 
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