

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 505

Proficient Cache-Promoted Direction System On Drive
K. Srilakshmi & N. Sujata Kumari

1M.tech Student,2Associate Professor,Departmentof CSE, Sridevi Women’s Engineering College,

Vatinagullapally(v), Rajendranagar(m), Ranga Reddy(d), Telangana state, India.

Abstract: Inferable from the wide accessibility of the

worldwide situating framework (GPS) and computerized

mapping of streets, street arrange route administrations

have turned into an essential application on numerous cell

phones. Way arranging, a key capacity of street organize

route administrations, finds a course between the predefined

begin area and goal. The productivity of this way arranging

capacity is basic for portable clients on streets because of

different dynamic situations, for example, a sudden alter in

driving course, startling activity conditions, lost or flimsy

GPS signs, et cetera. In these situations, the way arranging

administration should be conveyed in an opportune manner.

In this paper, we propose a framework, specifically, Path

Planning by Caching (PPC), to answer another way

arranging question continuously by proficiently storing and

reusing chronicled questioned ways Not at all like the

traditional cache based way arranging frameworks, where a

questioned way in reserve is utilized just when it

coordinates consummately with the new inquiry, PPC use

the in part coordinated inquiries to answer part(s) of the

new inquiry. Subsequently, the server just needs to process

the unmatched way portions, in this way altogether

decreasing the general framework workload. Thorough

experimentation on a genuine street organize database

demonstrates that our framework utflanks the best in class

way arranging procedures by diminishing 32% of the

calculation dormancy overall.

Keywords: Spatial database, path planning, cache.

I. INTRODUCTION

 With the progress of the worldwide situating

framework (GPS) and the prominence of cell phones, we

have seen a movement of the regular Internet-in view of

line route administrations (e.g., MapQuest) onto versatile

stages (e.g., Google Map). In portable route

administrations, on-street way arranging is an essential

capacity that finds a course between a questioned begin

area and a goal. While on streets, a way arranging inquiry

might be issued because of dynamic considers different

situations, for example, a sudden alter in driving course,

surprising activity conditions, or loss of GPS signals. In

these situations, way arranging should be conveyed in an

opportune manner. The necessity of auspiciousness is

considerably all the more difficult when a mind-

bogglingnumber of way arranging inquiries is submitted

to the server, e.g., amid crest hours. As the reaction time

is basic to client fulfillment with individual route

administrations, it is an order for the server to proficiently

deal with the overwhelming workload of way arranging

demands.

 To address this issue, we propose a framework, to be

specific, Path Planning by Caching (PPC), that intends to

answer another way arranging inquiry productively by

storing and reusing verifiably questioned ways

(questioned ways in short). Not at all like regular store

based way arranging frameworks where a reserved

inquiry is returned just when it coordinates totally with

another question, PPC influences incompletely

coordinated questioned ways in store to answer part(s) of

the new inquiry. Accordingly, the server just needs to

process the unmatched way sections, along these lines

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 506

altogether lessening the general framework workload.

Figure 1 gives a review of the proposed PPC framework

structure, which comprises of three principle parts (in

rectangular boxes, separately):

A. PPattern Detection,

B. Shortest Path Estimation

C. Cache Management

 Given a way arranging question (see Step (1)), which

contains a source area and a goal area, PPC initially

decides and recovers various chronicledways in

store,called PPatterns, that may coordinate this new

inquiry with highlikelihood (see Steps (2)- (4)). 1 The

possibility of PPatterns depends on a perception that

comparable beginning and goal hubs of two questions

may bring about comparable most limited ways (known

as the way intelligibility property [1]). In the segment

PPattern Detection, we propose a novel probabilistic

model to appraise the probability for a reserved

questioned way to be valuable for noting the new inquiry

by investigating their geospatial qualities. To encourage

fast recognition of PPatterns, rather than comprehensively

examining all the questioned ways in reserve, we plan a

framework based record for the PPattern Detection

module. In light of these recognized PPatterns, the

Shortest Path Estimation module (see Steps (5)- (8))

builds competitor ways for the new inquiry and picks the

best (briefest) one. In this segment, if a PPattern

splendidly coordinates the inquiry, we promptly return it

to the client; generally, the server is made a request to

register the unmatched way sections between the PPattern

and the question (see Steps (6)- (7)). Since the unmatched

portions are normally just a little piece of the first inquiry,

the server just procedures a "littler sub query", with a

decreased workload. When we restore the assessed way to

the client, the Cache Management module is activated to

figure out which questioned ways in store ought to be

expelled if the reserve is full. A vital piece of this module

is another reserve substitution arrangement which

considers the extraordinary qualities of street systems.

Through an exact investigation, we locate that normal

street sections in different questioned ways more often

than not have street sorts of higher significance and limit

This moves us to characterize an ease of use an incentive

for every way by considering both of its street sort and

authentic recurrence of utilization. The primary

commitments made in this work are outlined as takes

after:

 We propose an imaginative framework,

specifically, way arranging by caching (PPC), to

proficiently answer another way arranging inquiry

by utilizing reserved ways to abstain from

experiencing a tedious most brief way calculation.

By and large, we set aside to 32% of time in

examination with a customary way arranging

framework (without utilizing reserve).

 We present the thought of PPattern, i.e., a reserved

way which imparts sections to different ways. PPC

bolsters incomplete hits amongst PPatterns and

another inquiry. Our examinations demonstrate that

halfway hits constitute up to 92.14% of all store

hits by and large.

 A novel probabilistic model is proposed to

recognize the reserved ways that are of high

likelihood to be a PPattern for the new question in

view of the coherency property of the street

systems. Our tests show that these PPatterns spare

recovery of way hubs by 31.69% overall, speaking

to a ten times change over the 3.04% sparing

accomplished by an entire hit.

 We have built up another reserve substitution

component by considering the client inclination

among streets of different sorts. An ease of

usemeasure is doled out for each question by

tending to both the street sort and inquiry

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 507

prevalence. The test comes about demonstrate that

our new store substitution approach expands the

general reserve hit proportion by 25.02% over the

cutting edge store substitution strategies.

II. RELATED WORK

 An enhanced version adds easy route curves to lessen

vertices from being gone to and utilizes halfway trees to

diminish the pre-processing time. This work additionally

joins the advantages of the achieve based and ATL ways to

deal with decrease the quantity of vertex visits and the

pursuit space. The examination demonstrates that the cross

breed approach gives a predominant outcome as far as

diminishing question preparing time. Jung and

Pramanikpropose the HiTi diagram model to structure a

huge street organize display. HiTi expects to decrease the

look space for the briefest way calculation. While HiTi

accomplishes superior on street weight overhauls and

lessens stockpiling overheads, it brings about higher

calculation costs when processing the most brief ways than

the HEPV and the Hub Indexing strategies. To process time-

subordinate quick ways, Demiryurek et al. propose the B-

TDFP calculation by utilizing in reverse inquiries to

diminish the hunt space. It receives a territory level parcel

plot which uses a street progressive system to adjust every

zone. Be that as it may, a client may incline toward a course

with better driving knowledge to the briefest way.

Consequently, Gonzalez et al. propose a versatile quick way

calculation which uses speed and driving examples to

enhance the nature of courses. The algorithm utilizes a road

hierarchical partition and pre-computation to enhance the

execution of the course calculation. The little street redesign

is a novel way to deal with enhancing the nature of the route

computation. In order to enhance the recovery efficiency of

the way arranging framework, Thomsen et al. propose

another reserve administration arrangement to store the

aftereffects of continuous questions for reuse later on. To

upgrade the hit proportion, an advantage esteem capacity is

utilized to score the ways from the question logs. Thusly,

the hit proportion is expanded, henceforth diminishingthe

execution times. Be that as it may, the cost of developing a

store is high, since the framework must compute the

advantage values for all sub-ways in a full-way of inquiry

results. For on-line, delineate applications, preparing a

substantial number of concurrent way questions is an

essential issue. In this paper, we give another system to

reusing the already reserved inquiry comes about and a

successful calculation for enhancing the question

assessment on the server.

II. PATH PLANNING ALGORITHMS AND

PARALLELIZATION’S

Dijkstra that is an optimal algorithm, is the de facto

baseline used in path planning applications. However,

several heuristic based variations exist that trade-off

parameters such as parallelism and accuracy. ∆-stepping is

one exampleVertices Allocated to Threads Shown in

different color which classifies graph vertices and processes

them in different stages of the algorithm. The A*/D*

algorithms are another example that use aggressive

heuristics to prune out computational work (graph vertices),

and only visit vertices that occur in the shortest path. In

order to maintain optimality and a suitable baseline, we

focus on Dijkstra’s algorithm in this paper. A. Dijkstra’s

Algorithm and Structure Dijkstra’s algorithm consists of

two main loops, an outer loop that traverses each graph

vertex once, and an inner loop that traverses the neighboring

vertices of the vertex selected by the outer loop. The most

efficient generic implementation of Dijkstra’s algorithm

utilizes a heap structure, and has a complexity of O(E + V

logV). However, in parallel implementations, queues are

used instead of heaps, to reduce overheads associated with

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 508

re-balancing the heap after each parallel iteration. Algorithm

1 shows the generic pseudo-code skeleton for

Dijkstra’salgorithm. For each vertex, each neighboring

vertex is visited and compared with other neighboring

vertices in the context of distance from the source vertex

(the starting vertex).The neighboring vertex with the

minimum distance cost is selected as the next best vertex for

the next outer loop iteration.The distances from the source

vertex to the neighboring vertices are then updated in the

program data structures, after which the algorithm repeats

for the next selected vertex. A larger graph size means more

outer loop iterations, while a large graph density means

more inner loop iterations. Consequently, these iterations

translate into parallelism, with the graph’s size and density

dictating how much parallelism is exploitable. We discuss

the parallelization’s in subsequent subsections and show

examples in Fig 1. Inner Loop Parallelization The inner loop

in Algorithm 1 parallelizes the neighboring vertex checking.

Fig 1.Dijkstra’s Algorithm Parallelization’s

Each thread is given a set of neighboring vertices of the

current vertex, and it computes a local minimum and

updates that neighboring vertex’s distance. A master thread

is then called to take all the local minimums, and reduce to

find a global minimum, which becomes the next best vertex

to jump to in the next outer loop iteration. Barriers are

required between local minimum and global minimum

reduction steps as the global minimums can only be

calculated when the master thread has access to all the local

minimums. Parallelism is therefore dependent on the graph

density, i.e. the number of neighboring vertices per vertex.

Sparse graphsconstitute low density, and therefore cannot

scale with this type of parallelization. Dense graphs having

high densities are expected to scale in this case. C. Outer

Loop Parallelization The outer loop parallelization strategy

partitions the graph vertices among threads, depicted in

Algorithm 1. Each thread runs inner loop iterations over its

vertices, and updates the distance arrays in the process.

However, atomic clocks over shared memory are required to

update vertex distances, as vertices may be

sharingneighbors in different threads. 1. Convergence Outer

Loop Parallelization: The convergence based outer loop

statically partitions the graph vertices to threads. Threads

work on their allocated chunks independently, update

tentative distance arrays, and update the final distance array

once each thread completes work on its allocated vertices.

The algorithm then repeats, until the final distance arrays

stabilize, where the stabilization sets the convergence

condition. Significant redundant work is involved as each

vertex is computed upon multiple times during the course of

this algorithm’s execution. 2. Ranged based Outer Loop

Parallelization: The range based outer loop parallelization

opens pare to fronts on vertices in each iteration. Vertices in

these fronts are equally divided amongst threads to compute

on, however, atomic clocks are still required due to vertex

sharing. As pare to fronts are intelligently opened using the

graph connectivity, a vertex can be safely relaxed just once

during the course of the algorithm. Redundant work is

therefore mitigated, while maintaining significant

parallelism. However, as initial and final pare to fronts

contain less vertices, limited parallelism is available during

the initial and final phases of the algorithm. Higher

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 509

parallelism is available during the middle phases of the

algorithm. This algorithm’s available parallelism hereto

follows a normal distribution, with time on the x-axis.

III. EFFICIENT GRID-BASED SOLUTION

 In order to retrieve these patterns efficiently, we propose

a grid-based solution to further improve the system

performance. The main idea is to divide the whole space

into equally sized grid cells, where the endpoints of all paths

are mapped to the grid cells. As such, the grid index

facilitates efficient cache. The distance measures can be

approximated by counting the total number of covered grids.

3.1 Algorithm 1 PPatterns Detection

Input:qs;t : a query ; Dl: distance threshold; Dg: grid cell

size, C: a cache.

Output: All candidate PPatterns P T .

1: if D(s; t) < Dl then

2: Return P T = Ǿ.

3: end if

4: Divide the target space by size Dg.

5: Determine the start grid gs and destination grid gt.

6: Qs ← Logged queries whose paths pass gs.

7: Qt ← Logged queries whose paths pass gt.

8: Q = Intersect(Qs; Qt).

9: P T ← (Sub)paths from Gs to Gt for each query in Q.

10: Return P T .

IV. CACHE-SUPPORTED SHORTEST PATH

ESTIMA-TION

 Based on the PPatterns detected above, we estimate the

shortest path for a new query using Eq. (6). Note that the

detected PPatterns contribute to at least a part of the answer

path returned to the users and actually increases the cache

utilization. To facilitate our discussion, we refine the

concept of a traditional cache hit as follows:

Definition 1.Complete hit.Given a path planning query

(asource-destination node pair), a complete hit occurs if

there exists at least one queried-path in cache with

source-destination node pair matching exactly with that

of the input query.

Definition 2.Partial hit.Given a path planning query,

apartialhit occurs if there exists at least one queried-

path in cachedetected as a PPattern of the input query

which however is not a complete hit.

To detect the estimated shortest path, we propose a

heuristic algorithm as shown in Algorithm 2. If there exists

no PPattern, the system contacts the server to compute the

shortest path and returns it immediately (Lines 1 to 3). If

there exists a complete cache hit, the corresponding path is

returned immediately (Lines 6 to 8). Otherwise, the system

calculates the estimated distance from each pattern

candidate in P T for the query and selects the one with

minimal distance. To improve the performance, we adopt an

approximation distance (Lines 9 to 19) by calculating the

Euclidean distance between the source-source (Lines 9 to

11) and destination-destination nodes (Lines 12 to 13)

4.1 Algorithm 2 Shortest Path Estimation

Input:query source node s′ and destination node t′; all

candi-date PPatterns P T ; Cache C

Output:Estimated shortest path p^*.

1: ifisEmpty(P T)) then

2:p^* ← Calculate path from server and return.

3: end if

4: Initialize Estimated Shortest Distance ESD = ∞.

5: for each path p € P T do

6: if p is a complete hit then

7: Return p^* s’; t’ = p.

8: end if

9: s* = argmin s € Vp D(s’ ; s).

10: ds = D(s’ ; s*).

11: Remove s* from path node-set Vp

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 510

12: t* = argmin t € VpD(t ; t’).

13: dt = D (t*, t’).

14: Let dr = |SDP(s’; t’)|.

15: d = ds + dr+ dt.

16: if d <ESD then

17: ESD = d.

18: Update best PPattern p* = ps* ; t*

19: end if

20: end for

21: ifs’ is not equal to vs
p* then

22: SDP(s’ ;vs
p*) ←Compute shortest path SDP(s’ ; vs

p*).

23: end if

24: ift is not equal to vt
p* then

25: SDP(vt
p* ; s′) ←Compute shortest path SDP(vt

p* ; t′).

26: end if

27: Return p^* = SDP(s’; vs
p*)⊙ p*⊙SDP(vt

p* ; t’).

V. CACHE MANAGEMENT

 In a cache-supported system, it is important to efficiently

manage the cache contents to accelerate the path planning.

Therefore, in this section, we first discuss the

implementation of a grid-based index, followed by

describing a dynamic cache update and replacement policy.

5.1 Algorithms 3 Cache Construction and Update

Input: a queryq, a cacheC.

Output: a cacheC.

1: P T ← PPatterns Detection.

2: p ← Shortest Path Estimation from P T .

3: if C is not full then

4: Insert p into C; Return C.

5: else

6: {µ} ← Calculate usability for each cached path

7: p* ← Path with the minimum usability.

8: if p*.µ < p.µ then

9: C ← Replace p* with p.

10: end if

11: end if

12: Return C.

5.2 Index Structure for Cache Lookups

 The grid index is primarily used to improve the I/O

access-ing time of the road network topology to support the

path selection operation in the path planning service. The

basic idea is to divide the spatial region uniformly into grid

cells.

 The cache retains two tables for an efficient cache

lookup. The first table records each grid-cell through which

paths have passed. This table allows quick identification of

poten-tialPPatterns for the new query. The second table

records all nodes of each path in their traveling order. This

table is ac-cessed when the final path for the new query is

determined.

5.3 Cache Construction and Update

 Due to the limited cache size, it is necessary to determine

which queried-paths should be evicted when the cache is

full. In this section, we propose a new cache replacement

policy by exploring unique characteristics of road networks.

 In road networks, notice that certain routes are usually

preferred by users [2]. Empirically, these common road

segments are usually of higher road type, because major

roads are more frequently taken than the branch roads due to

their functions and capacities [30]. For example, the

interstate highway between San Jose and San Francisco is

frequently taken when traveling between these two cities.

As a result, interstate highways are assigned higher road

type values.

V. CONCLUSION

 In this paper, we propose a framework, in particular, Path

Planning by Caching (PPC), to answer another way

arranging question with fast reaction by proficiently

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 511

reserving and reusing the historical questioned ways.

Dissimilar to the customary store based way arranging

frameworks, where a questioned way in reserve is utilized

just when it coordinates consummately with the new

inquiry, PPC influences the incompletely coordinated

reserved inquiries to answer part(s) of another question.

Accordingly, the server just needs to register the unmatched

sections, in this manner fundamentally lessening the general

framework workload. Thorough experimentation on a

genuine street arrange database demonstrates that our

framework outflanks the best in class way arranging

systems by lessening 32% of the computational inactivity all

things considered.

REFERENCES

[1] L. Zammit, M. Attard, and K. Scerri―Bayesian

Hierarchical Mod-elling of Traffic Flow - With Application to

Malta’s Road Net-work,‖ in International IEEE Conference on

Intelligent Transportation Systems, 2013, pp. 1376–1381.

[2] E. W. Dijkstra, ―A Note on Two Problems in Connexion with

Graphs,‖ NumerischeMathematik, vol. 1, no. 1, pp. 269–271, 1959.

[3] U. Zwick, ―Exact and approximate distances in graphs – a

survey,‖ in Algorithms – ESA 2001, 2001, vol. 2161, pp. 33–48.

[4] J. Li, Q. Wang, C. Wang. “Fuzzy keyword search over

encrypted data in cloud computing”, Proc. IEEE INFOCOM, pp.

1-5, 2010.

[5] A. V. Goldberg and C. Silverstein,―Implementations of

Dijkstra’s Algorithm Based on Multi-Level Buckets,‖ in

NetworkOptimization, 1997, vol. 450, pp. 292–327. 1041-4347 (c)

2015 IEEE.Personal use

 ispermitted,butrepublication/redistributionrequires

IEEE permission. See

http://www.ieee.org/publications_standards/publ

ications/rights/index.html for more information.IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

VOLUME: 28, NO: 4, APRIL 1 2016 14.

[6] P. Hart, N. Nilsson, and B. Raphael, ―A Formal Basis for the

[30] H. Kanoh, ―DynamicRoute Planning for Car Navigation

Sys-Heuristic Determination of Minimum Cost Paths,‖ IEEE

Transac- tems Using Virus Genetic Algorithms, International

Journal on Systems Science and Cybernetics, vol. 4, no. 2, pp.

100–107, Knowledge-based and Intelligent Engineering Systems,

vol. 11, no. 1, 1967.pp. 65–78, 2007.

[7] A. V. Goldberg and C. Harrelson, ―Computing the Shortest

Path: [31] M. Ali, J.Krumm, T. Rautman, and A. Teredesai,

―Acmsigspatial A Search Meets Graph Theory,‖ inACM

Symposium on Discrete Algorithms, 2005.

[8] R. Gutman, ―Reach-Based Routing: A New Approach to

Shortest Path Algorithms Optimized for Road Networks,‖ in

Workshop onAlgorithm Engineering and Experiments, 2004.A. V.

Goldberg, H. Kaplan, and R. F.Werneck, ―Reach for A*:

Efficient Point-to-Point Shortest Path Algorithms,‖ in Workshop on

Algorithm Engineering and Experiments, 2006, pp. 129–143.

[9] S. Jung and S. Pramanik, ―An Efficient Path Computation

Model for Hierarchically Structured Topographical Road

Maps,‖ IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING VOLUME: 28, NO: 4, APRIL 1 2016 , vol. 14, no.

5, pp. 1029–1046, 2002.

[10] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H.

GarciaMolina,―Proximity Search in Aatabases,‖ in Interna-tional

Conference on Very Large Data Bases, 1998, pp. 26–37.

[11] N. Jing, Y.-W. Huang, and E. A. Rundensteiner,

―Hierarchical Optimization of Optimal Path Finding for

Transportation Appli-cations,‖ in ACM Conference on

Information and Knowledge Manage-ment, 1996.

[12] N. Jing, Y. wu Huang, and E. A. Rundensteiner,

―Hierarchical En-coded Path Views for Path Query Processing:

An Optimal Model and its Performance Evaluation,‖ IEEE

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at

https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 512

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING VOLUME: 28, NO: 4, APRIL 1 2016 , vol. 10,

pp. 409–432, 1998.

[13] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and A. Ran-

ganathan, ―Online Computation of Fastest Path in Time-

Dependent Spatial Networks,‖ in International Conference on Ad-

vances in Spatial and Temporal Databases, 2011.

[14] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag,

―Adaptive Fastest Path Computation on a Road Network: a

Traffic Mining Approach,‖ in International Conference on Very

Large Data Bases, 2007.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduc-tion to Algorithms, Third Edition, 2009.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

