

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 605

A Novel Architecture For Adaptive Encryption Of Public

Clouddatabases
Devarapalli Raja Anand & M.Srinivasarao

1PG Scholar, Dept of CSE, PACE Institute of Tech and Sciences, Vallur, Ongole, AP, India.

2 Assistant Professor, Dept of CSE , PACE Institute of Tech and Sciences, Vallur, Ongole, AP,

India.

Abstract—The cloud database as a service is a novel

paradigm that can support several Internet-based

applications, but its adoption requires the solution of

information confidentiality problems. We propose a

novel architecture for adaptive encryption of public

cloud databases that offers an interesting alternative to

the tradeoff between the required data confidentiality

level and the flexibility of the cloud database structures

at design time. We demonstrate the feasibility and

performance of the proposed solution through a

software prototype. Moreover, we propose an original

cost model that is oriented to the evaluation of cloud

database services in plain and encrypted instances and

that takes into account the variability of cloud prices

and tenant workloads during a medium-term period.

Keywords—Cloud database, confidentiality, encryption,

adaptivity, cost model

1 INTRODUCTION

 The cloud computing paradigm is successfully

converg-ing as the fifth utility [1], but this positive

trend is par-tially limited by concerns about

information confidentiality [2] and unclear costs over

a medium-long term [3], [4].We are interested in the

database as a service para-digm (DBaaS) [5] that

poses several research challenges in terms of security

and cost evaluation from a tenant’s point of view.

Most results concerning encryption for cloud-based

services [6], [7] are inapplicable to the data-base

paradigm. Other encryption schemes that allow the

execution of SQL operations over encrypted data

either have performance limits [8] or require the

choice of which encryption scheme must be adopted

for each database column and SQL operation [9].

These latter proposals are fine when the set of

queries can be statically determined at design time,

while we are interested in other common scenarios

where the workload may change after the data-base

design. In this paper, we propose a novel architec-

ture for adaptive encryption of public cloud

databases that offers a proxy-free alternative to the

system described in [10]. The proposed architecture

guarantees in an adaptive way the best level of data

confidentiality for any database workload, even

when the set of SQL queries dynamically changes.

The adaptive encryption scheme, which was initially

proposed for applications not referring to the cloud,

encrypts each plain column to mul-tiple encrypted

columns, and each value is encapsulated in different

layers of encryption, so that the outer layers

guarantee higher confidentiality but support fewer

com-putation capabilities with respect to the inner

layers. The outer layers are dynamically adapted at

runtime when new SQL operations are added to the

workload.Although this adaptive encryption

architecture is attrac-tive because it does not require

to define at design time which database operations

are allowed on each column, it poses novel issues in

terms of applicability to a cloud con-text, and doubts

about storage and network costs. We inves-tigate

each of these issues and we reach three original

conclusions in terms of prototype implementation,

perfor-mance evaluation, and cost evaluation.

We initially design the first proxy-free

architecture for adaptive encryption of cloud

databases that does not limit the availability,

elasticity and scalability of a plain cloud database

because multiple clients can issue concurrent oper-

ations without passing through some centralized

compo-nent as in alternative architectures [10]. Then,

we evaluate the performance of encrypted database

services by assum-ing the standard TPC-C

benchmark as the workload and by considering

different network latencies. Thanks to this testbed,

we show that most performance overheads of

adaptively encrypted cloud databases are masked by

net-work latencies that are typical of a

geographically distrib-uted cloud scenario.Finally,

we propose the first analytical cost estimation model

for evaluating cloud database costs in plaintext and

encrypted configurations from a tenant’s point of

view over a medium-term period. This model also

considers the vari-ability of cloud prices and of the

database workload during the evaluation period, and

allows a tenant to observe how adaptive encryption

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 606

influences the costs related to storage and network

usage of a database service. By applying the model

to several cloud provider offers and related prices,

the tenant can choose the best compromise between

the data confidentiality level and consequent costs in

his period of interest.This paper is structured as

following. Section 2 exam-ines related solutions for

data confidentiality and cost estimation in cloud

database services, and compares them against our

proposal. Section 3 describes the proposed adaptive

encryption architecture for cloud database directions

for further research.

2 RELATED WORK

 Improving the confidentiality of information

stored in cloud databases represents an important

contribution to the adop-tion of the cloud as the fifth

utility because it addresses most user concerns. Our

proposal is characterized by two main contributions

to the state of the art: architecture and cost

model.Although data encryption seems the most

intuitive solu-tion for confidentiality, its application

to cloud database services is not trivial, because the

cloud database must be able to execute SQL

operations directly over encrypted data without

accessing any decryption key. Na€ıve solutions

encrypt the whole database through some standard

encryp-tion algorithms that do not allow to execute

any SQL opera-tion directly on the cloud. As a

consequence, the tenant has two alternatives:

download the entire database, decrypt it, execute the

query and, if the operation modifies the data-base,

encrypt and upload the new data; decrypt temporarily

the cloud database, execute the query, and re-encrypt

it. The former solution is affected by huge

communication and computation overheads, and

consequent costs that would make cloud database

services quite inconvenient; the latter solution does

not guarantee data confidentiality because the cloud

provider obtains decryption keys.The right

alternative is to execute SQL operations directly on

the cloud database, without giving decryption keys to

the provider. An initial solution presented in [5] is

based on data aggregation techniques [8], that

associate plaintext metadata to sets of encrypted data.

However, plaintext metadata may leak sensitive

information and data aggrega-tion introduces

unnecessary network overheads.The use of fully

homomorphic encryption [11] would guar-antee the

execution of any operation over encrypted data, but

existing implementations are affected by huge

compu- tion schemes with a proxy-free architecture

was proposed by the same authors in [15]. This paper

develops the initial design through a prototype

implementation, novel experi-mental results and an

original cost model. Indeed, besides data

confidentiality, unclear costs are a main concern for

cloud tenants. To this purpose, we propose an

analytical cost model and a usage estimation

methodol-ogy that allow a tenant to estimate the

costs deriving from cloud database services

characterized by plain, encrypted and adaptively

encrypted databases over a medium-term horizon

during which it is likely that both the database

workload and the cloud prices change. This model is

another original contribution of this paper because

previous research focuses on the costs of cloud

computing from a provider’s perspective [16], [17].

For example, the authors in outline the problems

related to the cost estimation of a cloud data center,

such as servers, power consumption, and

infrastructures, but they do not propose an analytical

cost estimation model. CloudSim [18] can help a

provider to esti-mate performance and resource

consumptions of one or multiple cloud data center

alternatives.This paper has a focus on database

services and takes an opposite direction by

evaluating the cloud service costs from a tenant’s

point of view. This approach is quite origi-nal

because related papers evaluate the pros and cons of

porting scientific applications to a cloud platform,

such as focusing on specific astronomy software and

a specific cloud provider (Amazon), and [3]

presenting a composable cost estimation model for

some classes of scientific applica-tions. Besides the

focus on a different context (scientific ver-sus

database applications), the proposed model can be

applied to any cloud database service provider, and it

takes into account that over a medium-term period

the database workload and the cloud prices may

vary.

3 ARCHITECTURE DESIGN

 The costs to the extent that the execution of

SQL opera- The proposed system supports adaptive

encryption for pub- tions over a cloud database

would become impractical.lic cloud database

services, where distributed and concur- Other

encryption algorithms characterized by acceptable

rent clients can issue direct SQL operations. By

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 607

avoiding ancomputational complexity support a

subset of SQL opera- architecture based on

intermediate servers [10] between the tors [12], [13],

[14]. For example, an encryption algorithm clients

and the cloud database, the proposed solution guar

may support the order comparison command [12],

but not antees the same level of scalability and

availability of the a search operator [14]. The

drawback related to these feasi- cloud service. Fig. 1

shows a scheme of the proposed archi- ble

encryption algorithms is that in a medium-long term

tecture where each client executes an encryption

engine that horizon, the database administrator

cannot know at design manages encryption

operations. This software module is time which

database operations will be required over each

accessed by external user applications through the

encrypteddatabase column. This issue is in part

addressed in [10] by database interface.

 plain metadata represent the additional information

that is necessary to execute SQL operations on

encrypted data; encrypted metadata are the encrypted

version of the plain metadata, and are stored in the

cloud database; master key is the encryption key of

the encrypted metadata, and is known by legitimate

clients.All data and metadata stored in the cloud

database are encrypted. Any application running on a

legitimate client can transparently issue SQL

operations (e.g., SELECT, INSERT, UPDATE and

DELETE) to the encrypted cloud database through

the encrypted database interface. Data transferred

between the user application and the encryption

engine are not encrypted, whereas information is

always encrypted before sending it to the cloud

database. When an application issues a new SQL

operation, the encrypted data-base interface contacts

the encryption engine that retrieves the encrypted

metadata and decrypts them with the master key. To

improve performance, the plain metadata are cached

locally by the client. After obtaining the metadata,

the encryption engine is able to issue encrypted SQL

state-ments to the cloud database, and then to decrypt

the results. The results are returned to the user

application through the encrypted database

interface.As in related literature, the proposed

architecture guar-antees data confidentiality in a

security model in which: the network is untrusted;

tenant users are trusted, that is, they do not reveal

information about plain data, plain metadata, and the

master key; the cloud provider administrators are

defined semi-honest or honest-but-curious [19], that

is, they do not modify tenant’s data and results of

SQL operations, but they may access tenant’s

information stored in the cloud database. The

remaining part of this section describes the adaptive

encryption schemes (Section 3.1), the encrypted

metadata stored in the cloud database (Section 3.2),

and the main operations for the management of the

encrypted cloud database (Section 3.3).

3.1 Adaptive Encryption Schemes

 We consider SQL-aware encryption

algorithms that guaran-tee data confidentiality and

allow the cloud database engine to execute SQL

operations over encrypted data. As each algorithm

supports a specific subset of SQL operators, we refer

to the following encryption schemes. Random

(Rand): it is the most secure encryption because it

does not reveal any information about the original

plain value (IND-CPA) [20], [21]. It does not support

any SQL operator, and it is used only for data

retrieval. Deterministic (Det): it deterministically

encrypts data, so that equality of plaintext data is

preserved. It sup-ports the equality operator Order

Preserving Encryption (Ope) [12]: it preserves in the

encrypted values the numerical order of the orig-inal

unencrypted data. It supports the comparison SQL

operators (i.e., ¼; < ; ; > ;). Homomorphic Sum

(Sum) [13]: it is homomorphic with respect to the

sum operation, so that the multi-plication of

encrypted integers is equal to the sum of plaintext

integers. It supports the sum operator between

integer values. Search: it supports equality check on

full strings (i.e., the LIKE operator) Plain: it does not

encrypt data, but it is useful to sup- port all SQL

operators on non confidential data.If each column of

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 608

the database was encrypted with only one algorithm,

then the database administrator would have to decide

at design time which operations must be sup-ported

on each database column. However, this solution is

impractical for scenarios in which the database

workload changes over time. As an example, if we

consider a database supporting a web application for

which features or security updates are released, data

encryption prevents the applica-tion of any update

that introduces new SQL operations that were not

considered at database design time. Similarly,

encryption prevents the execution of data analytics

on the encrypted database and of user-defined

queries that do not belong to a fixed workload (e.g.,

because the database is queried directly by tenant

employees). This issue can be addressed through

adaptive encryption schemes that sup-port at runtime

SQL operations while preserving the highest possible

data confidentiality level on the encrypted data. To

this purpose, the encryption algorithms are organized

into structures called onions, where each onion is

composed by an ordered set of encryption

algorithms, called (encryption) layers [10]. Outer

layers guarantee higher level of data confi-dentiality

and support fewer operations on encrypted data.

Hence, each onion supports a specific set of

operations. We design the following onions: its

onions. For example, the plaintext values associated

with Onion-Eq are encrypted with Det, then the Det

value is encrypted with Rand. The most external

layer of an onion is called actual layer, which

corresponds to its strongest encryption algorithm.

The cloud database can only see the actual layer of

the onions, and has no access to inner layers nor to

plaintext data. The first time that a new SQL opera-

tion is requested on a column, the outer layer of the

appro-priate onion is dynamically removed at

runtime through the adaptive layer removal

mechanism that exposes a layer supporting the

requested operations. This layer becomes the new

actual layer of the onion in the encrypted database.

The layer removal mechanism is designed to ensure

that the cloud provider can never access plaintext

data. A detailed description is in Section 3.3.Fig. 2

shows an example of the onions and layers struc-

tures by considering two plaintext columns having

data types int and varchar. The integer column is

encrypted with Onion-Eq, Onion-Ord, and Onion-

Sum, and the string col-umn is encrypted with

Onion-Eq and Onion-Search. Each onion represents

a column in the encrypted database struc-ture. The

actual layers of all the onions are set to Rand, that

guarantees the best data confidentiality level but it

does not allow computations on encrypted data.

When an equality check is requested on the integer

column the adaptive layer removal mechanism

removes the Rand layer of Onion-Eq, thus leaving

Det as its new actual layer.

3.2 Metadata Structure

Metadata include all information that allows a

legitimate cli-ent knowing the master key to execute

SQL operations over an encrypted database. They are

organized and stored at table-level granularity to

reduce communication overhead for retrieval, and to

improve management of concurrent SQL operations

[22]. We define all metadata information associated

with a table as table metadata. Let us describe the

structure of a table metadata by referring to Fig.

3.Table metadata include the correspondence

between the plain table name and the encrypted table

name because each encrypted table name is

randomly generated. Moreover, for each column of

the original plain table they also include a set of

column metadata containing the name and the data

type of the corresponding plain column (e.g., integer,

var-char, datetime). Each set of column metadata is

associated with as many sets of onion metadata as

the number of onions associated with the column.

Onion metadata describe all the encryption

information about an onion and its layers, hence

they are organized in a data structure that contains

the following attributes: the encrypted name is the

name of the encrypted col-umn (i.e., the onion) in the

encrypted cloud database; the actual encryption layer

is the name of the most external layer of the

encrypted data (e.g., Rand) stored in the column; the

field confidentiality denotes which set of keys must

be used to encrypt a column data, because only

columns that share the same encryption keys can be

joined; we identify three types of field confi-

dentiality parameters: self denotes a private set of

keys for the column, multi-column identifies the

sharing of the same set of keys among two columns,

database imposes the same set of keys on all columns

of the same data type. the onion parameter identifies

the type of onion that is used to encrypt data (e.g.,

Onion-Eq).Each set of onion metadata is associated

with as many sets of layer metadata as the number of

layers required by the onion type. Each set of layer

metadata includes an encryp-tion key and a label

identifying the corresponding encryp-tion algorithm.

The set of encryption keys for each onion is

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 609

generated according to the field confidentiality

parameter imposed on each encrypted column.

3.3 Encrypted Database Management

We now describe the three main operations involved

in the encrypted database management: database

creation, execu-tion of SQL operations, and adaptive

layer removal.

3.3.1 Database Creation

In the setup phase, the database administrator generates

a master key, and uses it to initialize the architecture metadata.

The master key is then distributed to legitimate clients. Table

creation requires the insertion of a new row in the metadata table.

For each table creation, the administrator adds a column by

specifying the column name, data type and confidentiality

parameters. These last data are the most impor-tant for

this paper because they include the set of onions asso-ciated

with the column, the starting layer denoting the actual layer

at creation time, and the field confidentiality of each onion.

If the administrator does not specify the confidential-ity

parameters of a column, they are automatically chosen

by the encryption engine with respect to some tenant’s pol-icy.

Typically, the default policy assumes that each column is

associated with all the compatible onions, and the starting .

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 610

 The starting layer of each onion is set to

the strongest encryption algo-rithm. For example,

integer columns are encrypted by default with

Onion-Eq, Onion-Ord and Onion-Sum using

Rand as the actual encryption layer (see Fig. 2).

3.3.2 Execution of SQL Operations

 When a user/application wants to

execute an operation on the cloud database, the

client encryption engine analyzes the SQL

command structure and identifies which tables,

columns and SQL operators are involved. The

client issues a request for the table metadata for

each involved table, and decrypts the metadata

with the master key. Then, the client determines

whether the SQL operators are sup-ported by the

actual layers of the onions associated with the

involved columns. If required, the client issues a

request for layer removal in order to support the

SQL operators at runtime. By using the

information stored in the table metadata, the

client is able to encrypt the parame-ters of the

SQL operations: tables and columns names, and

constant values. The client issues this new

statement called encrypted SQL operation to the

cloud database which trans-parently executes it

over encrypted data. The encrypted results are

decrypted using information contained in the

metadata.

3.3.3 Adaptive Layer Removal

The adaptive layer removal is the process that

dynamically removes the external layer of an

onion in order to adap-tively support SQL

operations issued by legitimate clients.Let us

describe the details of the adaptive layer removal

mechanism by referring to the following example.

We consider a table T with columns id of type int

and name of type string, and a tenant client

preparing to issue the following statement to the

encrypted cloud database: SELECT FROM T

WHERE id < 10. The client encryption engine

analyzes the SQL statement, and identifies that

the operation id < 10 has to be executed on the

encrypted database. Then, the client reads the

metadata and checks whether there is the Onion-

Ord attribute associated with the column id

because this is the only onion supporting the

operator < . If the actual layer of Onion-Ord

associ-ated with id is set to Rand, then the client

dynamically invokes a stored procedure on the

cloud database that removes at runtime the Rand

layer of Onion-Ord of the column id, thus leaving

the Ope layer exposed. The client can now

encrypt the SELECT query that contains the oper-

ation id < 10 and issue the encrypted query to the

encrypted database, that executes it on the Ope

layer of Onion-Ord. Any new SQL operation

involving an order comparison on the column id

does not require to invoke again the layer removal

procedure because the actual layer of Onion-Ord

is Ope.

The cloud database can execute the adaptive

layer removal if and only if a legitimate client

invokes the stored procedure and gives to it the

decryption key of the most external encryption

layer. As each layer has a different encryption

key, the data remain encrypted and the cloud

provider cannot access plaintext data. For security

reasons, we also assume that the adaptive layer

removal mechanism does never expose the Plain

layer of an onion.

Fig. 4. Example of relationship among estimation

(T), reservation (TR) and billing (TB) periods.

4. PERFORMANCE EVALUATION

 This section aims to verify whether the

overheads of adap-tive encryption represent an

acceptable compromise between performance and

data confidentiality for the ten-ants of cloud

database services. To this purpose, we design a

suite of performance tests that allow us to

evaluate the impact of encryption and adaptive

encryption on response times and throughput for

different network latencies and for increasing

numbers of concurrent clients. The TPC-C

standard benchmark is used as the workload

model for the database services. The experiments

are carried out in Emulab [34], which provides us

with a set of machines in a controlled

environment. Each client machine runs the

Python client prototype of our architecture on a

pc3000 machine having a single 3 GHz processor,

2 GB of RAM and two 10,000 RPM 146 GB

SCSI disks. The database server is PostgreSQL

9.1 running on a d710 machine hav-ing a quad-

core Xeon 2.4 GHz processor, 12 GB of RAM

and a 7,200 RPM 500 GB SATA disk.The current

version of the prototype supports the main SQL

operations (SELECT, DELETE, INSERT and

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 611

UPDATE) and the WHERE clause. We consider

three TPC-C compli-ant databases having 10

warehouses: Plaintext (PLAIN) is based on

plaintext data.Encrypted (ENC) refers to a

statically encrypted data-base where each column

is encrypted at design time with only one

encryption algorithm.Adaptively encrypted

(ADAPT) refers to an encrypted database in

which each column is encrypted with all the

onions supported by its data type (Section 3.3). In

the ENC and ADAPT configurations each column

is set to the highest encryption layer that supports

the SQL operations of the TPC-C workload.

During each TPC-C test lasting for 300 seconds,

we monitor the number of executed TPC-C

transactions, and the response times of all the

SQL operations from the standard TPC-C work-

load. We repeat the test for each database

configuration (PLAIN, ENC and ADAPT) for

increasing number of cli-ents (from 5 to 20), and

for increasing network latencies (from 0 to 120

ms). To guarantee data consistency the three

databases use repeatable read (snapshot) isolation

level [35].The experiments aim to evaluate the

overhead caused by static and adaptive encryption

in terms of system through-put and response time.

In Figs. 5 and 6, we report the num-ber of

committed TPC-C transactions per minute

executed on the three cloud database

configurations for 5 and 20 concurrent clients,

respectively. We can appreciate that in both

cases, and in all other results not reported for

space reasons, the throughput of the ENC

database is close to that of the PLAIN database.

Moreover, as the network latency increases, even

the performance of the ADAPT database tends to

that of the other two configurations, and it is quite

6 COST EVALUATION

 In this section we demonstrate the feasibility of

the pro-posed cost model by applying it to

PLAIN, ENC and ADAPT configurations (see

Section 5) in real cloud database services. We

initially validate the usage estimation method-

ology presented in Section 4.3. We then analyze

how costs vary for different cloud providers and

resource usages. We finally evaluate tenant’s

costs over a medium-term period equal to three

years by considering realistic resource usage

increments and cloud price reductions.

6.1 Validation of the Usage Estimation

To validate the usage estimation model, we

perform several experiments based on the TPC-C

benchmark.First of all, we validate the storage

usage estimation model. We deploy nine TPC-C

compliant databases of three different sizes: 1, 5

and 10 warehouses (the number of warehouses is

the TPC-C parameter that influences the initial

database size). For each size, we generate three

data-base configurations: PLAIN, ENC and

ADAPT. Results are summarized in Table 2.

Estimated storage of PLAIN, ENC and ADAPT

are calculated by using the analytical model

presented in Section 4.3. For each estimated

value, we report the estimation error with respect

to the measured database size. Errors are

expressed as a percentage. We observe that the

proposed model always overestimates the

database size. However, errors show that

estimations are close to measured sizes. For

PLAIN databases, the error is always below 2%,

while for ENC and ADAPT databases the error is

always between 5% and 6%.We then validate the

network usage estimation model. We deploy

PLAIN, ENC and ADAPT TPC-C compliant

databases, each having 10 warehouses. We

observe that network consumption is invariant

with respect to the num-ber of warehouses,

because it only depends on encryption and query

workload. We measure the network usage of the

PLAIN database, and we obtain an average of

7,162 Bytes per transaction. By using Equation

(8), we estimate np ¼ k 548. Hence, we determine

k ¼ 13:07. Then we use this value of k to

determine the estimated network usage of ENC

and ADAPT configurations. We compare these

values with the experimentally measured network

usages. Results are summarized in Table 3.

Estimations are quite accurate, since we achieve

errors of 1:2% and 1:4% for the ENC and

ADAPT configurations, respectively.The

validation demonstrates the efficacy of the

proposed analytical usage estimation

methodology in the TPC-C workload. Costs

evaluations proposed in the following sec-tions

are based on the same usage estimations.

6.2 Analysis of Cloud Database Costs

 We analyze cloud database costs with respect

to different cloud provider offers and different

storage and network usages. We consider a billing

period equal to one month, and 24/7 availability

(730 uptime hours per month).We initially

estimate the monthly costs of a cloud data-base

service in the PLAIN, ENC and ADAPT

configurations with respect to a plaintext storage

usage of 100 GB and a plaintext network usage of

100 GB. In Table 4, we report the results for the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue 13

October 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 612

following cloud instances: Small, Large, and

High Memory: Double Extra Large from Amazon

RDS [28]; Premium P1 and Premium P2 from

SQL Azure [31].

7 CONCLUSION

There are two main tenant concerns that may

prevent the adoption of the cloud as the fifth

utility: data confidentiality and costs. This paper

addresses both issues in the case of cloud

database services. These applications have not yet

received adequate attention by the academic

literature, but they are of utmost importance if we

consider that almost all important services are

based on one or multiple databases.We address

the data confidentiality concerns by propos-ing a

novel cloud database architecture that uses

adaptive encryption techniques with no

intermediate servers. This scheme provides

tenants with the best level of confidential-ity for

any database workload that is likely to change in

a medium-term period. We investigate the

feasibility and per-formance of the proposed

architecture through a large set of experiments

based on a software prototype subject to the TPC-

C standard benchmark. Our results demonstrate

that the network latencies that are typical of cloud

database environments hide most overheads

related to static and adaptive encryption.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.

Brandic, “Cloud computing and emerging it platforms:

Vision, hype, and reality for delivering computing as the 5th

utility,” Future Genera-tion Comput. Syst., vol. 25, no. 6, pp.

599–616, 2009.

[2] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security

and Pri-vacy: An Enterprise Perspective on Risks and

Compliance. Sebastopol, CA, USA: O’Reilly Media, Inc.,

2009.

[3] H.-L. Truong and S. Dustdar, “Composable cost estimation

and monitoring for computational applications in cloud

computing environments,” Procedia Comput. Sci., vol. 1, no.

1, pp. 2175–2184, 2010.

[4] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,

“The cost of doing science on the cloud: The montage

example,” in Proc. ACM/IEEE Conf. Supercomputing, 2008,

pp. 1–12.

[5] H. Hacigum€u€s, ̧ B. Iyer, and S. Mehrotra, “Providing

database as a service,” in Proc. 18th IEEE Int. Conf. Data

Eng., Feb. 2002, pp. 29–38.

[6] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based

encryp-tion for fine-grained access control in cloud storage

services,” in Proc. 17th ACM Conf. Comput. Commun.

Security, 2010, pp. 735–737.

[7] Google. (2014, Mar.). Google Cloud Platform Storage with

server-side encryption [Online]. Available:

http://googlecloudplatform. blogspot.it/2013/08/google-

cloud-storage-now-provides.html.

[8] H. Hacigum€u€s, ̧ B. Iyer, C. Li, and S. Mehrotra,

“Executing SQL over encrypted data in the database-service-

provider model,” in Proc. ACM SIGMOD Int’l Conf.

Manage. Data, Jun. 2002, pp. 216–227.

[9] L. Ferretti, M. Colajanni, and M. Marchetti, “Distributed,

concur-rent, and independent access to encrypted cloud

databases,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2,

pp. 437–446, Feb. 2014.

[10] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H.

Balakrishnan, “CryptDB: Protecting confidentiality with

encrypted query proc-essing,” in Proc. 23rd ACM Symp.

Operating Systems Principles, Oct. 2011, pp. 85–100.

[11] C. Gentry, “Fully homomorphic encryption using ideal

lattices,” in Proc. 41st ACM Symp. Theory Comput., May.

2009, pp. 169–178.

[12] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-

preserving encryption revisited: Improved security analysis

and alternative solutions,” in Proc. 31st Annu. Int. Conf.

Adv. Cryptology, Aug. 2011, pp. 578–595.

[13] P. Paillier, “Public-key cryptosystems based on composite

degree residuosity classes,” in Proc. 17th Int. Conf. Theory

Appl. Crypto-graphic Tech., May 1999, pp. 223–238.

Author Details:

Devarapalli Raja Anand,

PG Scholar, Department of Computer Science and Engineering,

PACE Institute of Tech and Sciences, Vallur, Ongole, AP, India..

M.SrinivasaRao, Department of Computer Science and

Engineering, PACE Institute of Tech and Sciences, Vallur,

Ongole, AP, India.He Completed B.Tech and M.Tech.He have 8

Years Teaching Experiance.His Interested area is Bigdata ,Data

Analytics.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

