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Abstract—The cloud database as a service is a novel 

paradigm that can support several Internet-based 

applications, but its adoption requires the solution of 

information confidentiality problems. We propose a 

novel architecture for adaptive encryption of public 

cloud databases that offers an interesting alternative to 

the tradeoff between the required data confidentiality 

level and the flexibility of the cloud database structures 

at design time. We demonstrate the feasibility and 

performance of the proposed solution through a 

software prototype. Moreover, we propose an original 

cost model that is oriented to the evaluation of cloud 

database services in plain and encrypted instances and 

that takes into account the variability of cloud prices 

and tenant workloads during a medium-term period. 
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1 INTRODUCTION 

 The cloud computing paradigm is successfully 

converg-ing as the fifth utility [1], but this positive 

trend is par-tially limited by concerns about 

information confidentiality [2] and unclear costs over 

a medium-long term [3], [4].We are interested in the 

database as a service para-digm (DBaaS) [5] that 

poses several research challenges in terms of security 

and cost evaluation from a tenant’s point of view. 

Most results concerning encryption for cloud-based 

services [6], [7] are inapplicable to the data-base 

paradigm. Other encryption schemes that allow the 

execution of SQL operations over encrypted data 

either have performance limits [8] or require the 

choice of which encryption scheme must be adopted 

for each database column and SQL operation [9]. 

These latter proposals are fine when the set of 

queries can be statically determined at design time, 

while we are interested in other common scenarios 

where the workload may change after the data-base 

design. In this paper, we propose a novel architec-

ture for adaptive encryption of public cloud 

databases that offers a proxy-free alternative to the 

system described in [10]. The proposed architecture 

guarantees in an adaptive way the best level of data 

confidentiality for any database workload, even 

when the set of SQL queries dynamically changes. 

The adaptive encryption scheme, which was initially 

proposed for applications not referring to the cloud, 

encrypts each plain column to mul-tiple encrypted 

columns, and each value is encapsulated in different 

layers of encryption, so that the outer layers 

guarantee higher confidentiality but support fewer 

com-putation capabilities with respect to the inner 

layers. The outer layers are dynamically adapted at 

runtime when new SQL operations are added to the 

workload.Although this adaptive encryption 

architecture is attrac-tive because it does not require 

to define at design time which database operations 

are allowed on each column, it poses novel issues in 

terms of applicability to a cloud con-text, and doubts 

about storage and network costs. We inves-tigate 

each of these issues and we reach three original 

conclusions in terms of prototype implementation, 

perfor-mance evaluation, and cost evaluation. 

We initially design the first proxy-free 

architecture for adaptive encryption of cloud 

databases that does not limit the availability, 

elasticity and scalability of a plain cloud database 

because multiple clients can issue concurrent oper-

ations without passing through some centralized 

compo-nent as in alternative architectures [10]. Then, 

we evaluate the performance of encrypted database 

services by assum-ing the standard TPC-C 

benchmark as the workload and by considering 

different network latencies. Thanks to this testbed, 

we show that most performance overheads of 

adaptively encrypted cloud databases are masked by 

net-work latencies that are typical of a 

geographically distrib-uted cloud scenario.Finally, 

we propose the first analytical cost estimation model 

for evaluating cloud database costs in plaintext and 

encrypted configurations from a tenant’s point of 

view over a medium-term period. This model also 

considers the vari-ability of cloud prices and of the 

database workload during the evaluation period, and 

allows a tenant to observe how adaptive encryption 
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influences the costs related to storage and network 

usage of a database service. By applying the model 

to several cloud provider offers and related prices, 

the tenant can choose the best compromise between 

the data confidentiality level and consequent costs in 

his period of interest.This paper is structured as 

following. Section 2 exam-ines related solutions for 

data confidentiality and cost estimation in cloud 

database services, and compares them against our 

proposal. Section 3 describes the proposed adaptive 

encryption architecture for cloud database directions 

for further research. 

 

2 RELATED WORK 

 

 Improving the confidentiality of information 

stored in cloud databases represents an important 

contribution to the adop-tion of the cloud as the fifth 

utility because it addresses most user concerns. Our 

proposal is characterized by two main contributions 

to the state of the art: architecture and cost 

model.Although data encryption seems the most 

intuitive solu-tion for confidentiality, its application 

to cloud database services is not trivial, because the 

cloud database must be able to execute SQL 

operations directly over encrypted data without 

accessing any decryption key. Na€ıve solutions 

encrypt the whole database through some standard 

encryp-tion algorithms that do not allow to execute 

any SQL opera-tion directly on the cloud. As a 

consequence, the tenant has two alternatives: 

download the entire database, decrypt it, execute the 

query and, if the operation modifies the data-base, 

encrypt and upload the new data; decrypt temporarily 

the cloud database, execute the query, and re-encrypt 

it. The former solution is affected by huge 

communication and computation overheads, and 

consequent costs that would make cloud database 

services quite inconvenient; the latter solution does 

not guarantee data confidentiality because the cloud 

provider obtains decryption keys.The right 

alternative is to execute SQL operations directly on 

the cloud database, without giving decryption keys to 

the provider. An initial solution presented in [5] is 

based on data aggregation techniques [8], that 

associate plaintext metadata to sets of encrypted data. 

However, plaintext metadata may leak sensitive 

information and data aggrega-tion introduces 

unnecessary network overheads.The use of fully 

homomorphic encryption [11] would guar-antee the 

execution of any operation over encrypted data, but 

existing implementations are affected by huge 

compu- tion schemes with a proxy-free architecture 

was proposed by the same authors in [15]. This paper 

develops the initial design through a prototype 

implementation, novel experi-mental results and an 

original cost model. Indeed, besides data 

confidentiality, unclear costs are a main concern for 

cloud tenants. To this purpose, we propose an 

analytical cost model and a usage estimation 

methodol-ogy that allow a tenant to estimate the 

costs deriving from cloud database services 

characterized by plain, encrypted and adaptively 

encrypted databases over a medium-term horizon 

during which it is likely that both the database 

workload and the cloud prices change. This model is 

another original contribution of this paper because 

previous research focuses on the costs of cloud 

computing from a provider’s perspective [16], [17]. 

For example, the authors in outline the problems 

related to the cost estimation of a cloud data center, 

such as servers, power consumption, and 

infrastructures, but they do not propose an analytical 

cost estimation model. CloudSim [18] can help a 

provider to esti-mate performance and resource 

consumptions of one or multiple cloud data center 

alternatives.This paper has a focus on database 

services and takes an opposite direction by 

evaluating the cloud service costs from a tenant’s 

point of view. This approach is quite origi-nal 

because related papers evaluate the pros and cons of 

porting scientific applications to a cloud platform, 

such as focusing on specific astronomy software and 

a specific cloud provider (Amazon), and [3] 

presenting a composable cost estimation model for 

some classes of scientific applica-tions. Besides the 

focus on a different context (scientific ver-sus 

database applications), the proposed model can be 

applied to any cloud database service provider, and it 

takes into account that over a medium-term period 

the database workload and the cloud prices may 

vary. 

 

3 ARCHITECTURE DESIGN 

 

   The costs to the extent that the execution of 

SQL opera- The proposed system supports adaptive 

encryption for pub- tions over a cloud database 

would become impractical.lic cloud database 

services, where distributed and concur- Other 

encryption algorithms characterized by acceptable 

rent clients can issue direct SQL operations. By 
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avoiding ancomputational complexity support a 

subset of SQL opera- architecture based on 

intermediate servers [10] between the tors [12], [13], 

[14]. For example, an encryption algorithm clients 

and the cloud database, the proposed solution guar 

may support the order comparison command [12], 

but not antees the same level of scalability and 

availability of the a search operator [14]. The 

drawback related to these feasi- cloud service. Fig. 1 

shows a scheme of the proposed archi- ble 

encryption algorithms is that in a medium-long term 

tecture where each client executes an encryption 

engine that horizon, the database administrator 

cannot know at design manages encryption 

operations. This software module is time which 

database operations will be required over each 

accessed by external user applications through the 

encrypteddatabase column. This issue is in part 

addressed in [10] by database interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 plain metadata represent the additional information 

that is necessary to execute SQL operations on 

encrypted data; encrypted metadata are the encrypted 

version of the plain metadata, and are stored in the 

cloud database; master key is the encryption key of 

the encrypted metadata, and is known by legitimate 

clients.All data and metadata stored in the cloud 

database are encrypted. Any application running on a 

legitimate client can transparently issue SQL 

operations (e.g., SELECT, INSERT, UPDATE and 

DELETE) to the encrypted cloud database through 

the encrypted database interface. Data transferred 

between the user application and the encryption 

engine are not encrypted, whereas information is 

always encrypted before sending it to the cloud 

database. When an application issues a new SQL 

operation, the encrypted data-base interface contacts 

the encryption engine that retrieves the encrypted 

metadata and decrypts them with the master key. To 

improve performance, the plain metadata are cached 

locally by the client. After obtaining the metadata, 

the encryption engine is able to issue encrypted SQL 

state-ments to the cloud database, and then to decrypt 

the results. The results are returned to the user 

application through the encrypted database 

interface.As in related literature, the proposed 

architecture guar-antees data confidentiality in a 

security model in which: the network is untrusted; 

tenant users are trusted, that is, they do not reveal 

information about plain data, plain metadata, and the 

master key; the cloud provider administrators are 

defined semi-honest or honest-but-curious [19], that 

is, they do not modify tenant’s data and results of 

SQL operations, but they may access tenant’s 

information stored in the cloud database. The 

remaining part of this section describes the adaptive 

encryption schemes (Section 3.1), the encrypted 

metadata stored in the cloud database (Section 3.2), 

and the main operations for the management of the 

encrypted cloud database (Section 3.3). 

3.1 Adaptive Encryption Schemes 

 We consider SQL-aware encryption 

algorithms that guaran-tee data confidentiality and 

allow the cloud database engine to execute SQL 

operations over encrypted data. As each algorithm 

supports a specific subset of SQL operators, we refer 

to the following encryption schemes. Random 

(Rand): it is the most secure encryption because it 

does not reveal any information about the original 

plain value (IND-CPA) [20], [21]. It does not support 

any SQL operator, and it is used only for data 

retrieval. Deterministic (Det): it deterministically 

encrypts data, so that equality of plaintext data is 

preserved. It sup-ports the equality operator Order 

Preserving Encryption (Ope) [12]: it preserves in the 

encrypted values the numerical order of the orig-inal 

unencrypted data. It supports the comparison SQL 

operators (i.e., ¼; < ;  ; > ;  ). Homomorphic Sum 

(Sum) [13]: it is homomorphic with respect to the 

sum operation, so that the multi-plication of 

encrypted integers is equal to the sum of plaintext 

integers. It supports the sum operator between 

integer values. Search: it supports equality check on 

full strings (i.e., the LIKE operator) Plain: it does not 

encrypt data, but it is useful to sup- port all SQL 

operators on non confidential data.If each column of 

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


   

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 04 Issue 13 

October 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 608    
 

the database was encrypted with only one algorithm, 

then the database administrator would have to decide 

at design time which operations must be sup-ported 

on each database column. However, this solution is 

impractical for scenarios in which the database 

workload changes over time. As an example, if we 

consider a database supporting a web application for 

which features or security updates are released, data 

encryption prevents the applica-tion of any update 

that introduces new SQL operations that were not 

considered at database design time. Similarly, 

encryption prevents the execution of data analytics 

on the encrypted database and of user-defined 

queries that do not belong to a fixed workload (e.g., 

because the database is queried directly by tenant 

employees). This issue can be addressed through 

adaptive encryption schemes that sup-port at runtime 

SQL operations while preserving the highest possible 

data confidentiality level on the encrypted data. To 

this purpose, the encryption algorithms are organized 

into structures called onions, where each onion is 

composed by an ordered set of encryption 

algorithms, called (encryption) layers [10]. Outer 

layers guarantee higher level of data confi-dentiality 

and support fewer operations on encrypted data. 

Hence, each onion supports a specific set of 

operations. We design the following onions: its 

onions. For example, the plaintext values associated 

with Onion-Eq are encrypted with Det, then the Det 

value is encrypted with Rand. The most external 

layer of an onion is called actual layer, which 

corresponds to its strongest encryption algorithm. 

The cloud database can only see the actual layer of 

the onions, and has no access to inner layers nor to 

plaintext data. The first time that a new SQL opera-

tion is requested on a column, the outer layer of the 

appro-priate onion is dynamically removed at 

runtime through the adaptive layer removal 

mechanism that exposes a layer supporting the 

requested operations. This layer becomes the new 

actual layer of the onion in the encrypted database. 

The layer removal mechanism is designed to ensure 

that the cloud provider can never access plaintext 

data. A detailed description is in Section 3.3.Fig. 2 

shows an example of the onions and layers struc-

tures by considering two plaintext columns having 

data types int and varchar. The integer column is 

encrypted with Onion-Eq, Onion-Ord, and Onion-

Sum, and the string col-umn is encrypted with 

Onion-Eq and Onion-Search. Each onion represents 

a column in the encrypted database struc-ture. The 

actual layers of all the onions are set to Rand, that 

guarantees the best data confidentiality level but it 

does not allow computations on encrypted data. 

When an equality check is requested on the integer 

column the adaptive layer removal mechanism 

removes the Rand layer of Onion-Eq, thus leaving 

Det as its new actual layer. 

3.2 Metadata Structure 

Metadata include all information that allows a 

legitimate cli-ent knowing the master key to execute 

SQL operations over an encrypted database. They are 

organized and stored at table-level granularity to 

reduce communication overhead for retrieval, and to 

improve management of concurrent SQL operations 

[22]. We define all metadata information associated 

with a table as table metadata. Let us describe the 

structure of a table metadata by referring to Fig. 

3.Table metadata include the correspondence 

between the plain table name and the encrypted table 

name because each encrypted table name is 

randomly generated. Moreover, for each column of 

the original plain table they also include a set of 

column metadata containing the name and the data 

type of the corresponding plain column (e.g., integer, 

var-char, datetime). Each set of column metadata is 

associated with as many sets of onion metadata as 

the number of onions associated with the column. 

Onion metadata describe all the encryption 

information about an onion and its layers,  hence 

they are organized in a data structure that contains 

the following attributes: the encrypted name is the 

name of the encrypted col-umn (i.e., the onion) in the 

encrypted cloud database; the actual encryption layer 

is the name of the most external layer of the 

encrypted data (e.g., Rand) stored in the column; the 

field confidentiality denotes which set of keys must 

be used to encrypt a column data, because only 

columns that share the same encryption keys can be 

joined; we identify three types of field confi-

dentiality parameters: self denotes a private set of 

keys for the column, multi-column identifies the 

sharing of the same set of keys among two columns, 

database imposes the same set of keys on all columns 

of the same data type. the onion parameter identifies 

the type of onion that is used to encrypt data (e.g., 

Onion-Eq).Each set of onion metadata is associated 

with as many sets of layer metadata as the number of 

layers required by the onion type. Each set of layer 

metadata includes an encryp-tion key and a label 

identifying the corresponding encryp-tion algorithm. 

The set of encryption keys for each onion is 
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generated according to the field confidentiality 

parameter imposed on each encrypted column. 

3.3 Encrypted Database Management 

We now describe the three main operations involved 

in the encrypted database management: database 

creation, execu-tion of SQL operations, and adaptive 

layer removal. 

 

 

3.3.1 Database Creation 

 

In the setup phase, the database administrator generates 

a master key, and uses it to initialize the architecture metadata. 

The master key is then distributed to legitimate clients. Table 

creation requires the insertion of a new row in the metadata table. 

For each table creation, the administrator adds a column by 

specifying the column name, data type and confidentiality 

parameters. These last data are the most impor-tant for 

this paper because they include the set of onions asso-ciated 

with the column, the starting layer denoting the actual layer 

at creation time, and the field confidentiality of each onion. 

If the administrator does not specify the confidential-ity 

parameters of a column, they are automatically chosen 

by the encryption engine with respect to some tenant’s pol-icy. 

Typically, the default policy assumes that each column is 

associated with all the compatible onions, and the starting . 
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 The starting layer of each onion is set to 

the strongest encryption algo-rithm. For example, 

integer columns are encrypted by default with 

Onion-Eq, Onion-Ord and Onion-Sum using 

Rand as the actual encryption layer (see Fig. 2). 

 

3.3.2 Execution of SQL Operations 

 

 When a user/application wants to 

execute an operation on the cloud database, the 

client encryption engine analyzes the SQL 

command structure and identifies which tables, 

columns and SQL operators are involved. The 

client issues a request for the table metadata for 

each involved table, and decrypts the metadata 

with the master key. Then, the client determines 

whether the SQL operators are sup-ported by the 

actual layers of the onions associated with the 

involved columns. If required, the client issues a 

request for layer removal in order to support the 

SQL operators at runtime. By using the 

information stored in the table metadata, the 

client is able to encrypt the parame-ters of the 

SQL operations: tables and columns names, and 

constant values. The client issues this new 

statement called encrypted SQL operation to the 

cloud database which trans-parently executes it 

over encrypted data. The encrypted results are 

decrypted using information contained in the 

metadata. 

 

3.3.3 Adaptive Layer Removal 

 

The adaptive layer removal is the process that 

dynamically removes the external layer of an 

onion in order to adap-tively support SQL 

operations issued by legitimate clients.Let us 

describe the details of the adaptive layer removal 

mechanism by referring to the following example. 

We consider a table T with columns id of type int 

and name of type string, and a tenant client 

preparing to issue the following statement to the 

encrypted cloud database: SELECT FROM T 

WHERE id < 10. The client encryption engine 

analyzes the SQL statement, and identifies that 

the operation id < 10 has to be executed on the 

encrypted database. Then, the client reads the 

metadata and checks whether there is the Onion-

Ord attribute associated with the column id 

because this is the only onion supporting the 

operator < . If the actual layer of Onion-Ord 

associ-ated with id is set to Rand, then the client 

dynamically invokes a stored procedure on the 

cloud database that removes at runtime the Rand 

layer of Onion-Ord of the column id, thus leaving 

the Ope layer exposed. The client can now 

encrypt the SELECT query that contains the oper-

ation id < 10 and issue the encrypted query to the 

encrypted database, that executes it on the Ope 

layer of Onion-Ord. Any new SQL operation 

involving an order comparison on the column id 

does not require to invoke again the layer removal 

procedure because the actual layer of Onion-Ord 

is Ope. 

 

The cloud database can execute the adaptive 

layer removal if and only if a legitimate client 

invokes the stored procedure and gives to it the 

decryption key of the most external encryption 

layer. As each layer has a different encryption 

key, the data remain encrypted and the cloud 

provider cannot access plaintext data. For security 

reasons, we also assume that the adaptive layer 

removal mechanism does never expose the Plain 

layer of an onion. 

 

 

 

 

 

Fig. 4. Example of relationship among estimation 

(T ), reservation (TR) and billing (TB) periods. 

 

4. PERFORMANCE EVALUATION 

 

 This section aims to verify whether the 

overheads of adap-tive encryption represent an 

acceptable compromise between performance and 

data confidentiality for the ten-ants of cloud 

database services. To this purpose, we design a 

suite of performance tests that allow us to 

evaluate the impact of encryption and adaptive 

encryption on response times and throughput for 

different network latencies and for increasing 

numbers of concurrent clients. The TPC-C 

standard benchmark is used as the workload 

model for the database services. The experiments 

are carried out in Emulab [34], which provides us 

with a set of machines in a controlled 

environment. Each client machine runs the 

Python client prototype of our architecture on a 

pc3000 machine having a single 3 GHz processor, 

2 GB of RAM and two 10,000 RPM 146 GB 

SCSI disks. The database server is PostgreSQL 

9.1 running on a d710 machine hav-ing a quad-

core Xeon 2.4 GHz processor, 12 GB of RAM 

and a 7,200 RPM 500 GB SATA disk.The current 

version of the prototype supports the main SQL 

operations (SELECT, DELETE, INSERT and 
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UPDATE) and the WHERE clause. We consider 

three TPC-C compli-ant databases having 10 

warehouses: Plaintext (PLAIN) is based on 

plaintext data.Encrypted (ENC) refers to a 

statically encrypted data-base where each column 

is encrypted at design time with only one 

encryption algorithm.Adaptively encrypted 

(ADAPT) refers to an encrypted database in 

which each column is encrypted with all the 

onions supported by its data type (Section 3.3). In 

the ENC and ADAPT configurations each column 

is set to the highest encryption layer that supports 

the SQL operations of the TPC-C workload. 

During each TPC-C test lasting for 300 seconds, 

we monitor the number of executed TPC-C 

transactions, and the response times of all the 

SQL operations from the standard TPC-C work-

load. We repeat the test for each database 

configuration (PLAIN, ENC and ADAPT) for 

increasing number of cli-ents (from 5 to 20), and 

for increasing network latencies (from 0 to 120 

ms). To guarantee data consistency the three 

databases use repeatable read (snapshot) isolation 

level [35].The experiments aim to evaluate the 

overhead caused by static and adaptive encryption 

in terms of system through-put and response time. 

In Figs. 5 and 6, we report the num-ber of 

committed TPC-C transactions per minute 

executed on the three cloud database 

configurations for 5 and 20 concurrent clients, 

respectively. We can appreciate that in both 

cases, and in all other results not reported for 

space reasons, the throughput of the ENC 

database is close to that of the PLAIN database. 

Moreover, as the network latency increases, even 

the performance of the ADAPT database tends to 

that of the other two configurations, and it is quite 

 

6 COST EVALUATION 

 In this section we demonstrate the feasibility of 

the pro-posed cost model by applying it to 

PLAIN, ENC and ADAPT configurations (see 

Section 5) in real cloud database services. We 

initially validate the usage estimation method-

ology presented in Section 4.3. We then analyze 

how costs vary for different cloud providers and 

resource usages. We finally evaluate tenant’s 

costs over a medium-term period equal to three 

years by considering realistic resource usage 

increments and cloud price reductions. 

 

6.1 Validation of the Usage Estimation 

To validate the usage estimation model, we 

perform several experiments based on the TPC-C 

benchmark.First of all, we validate the storage 

usage estimation model. We deploy nine TPC-C 

compliant databases of three different sizes: 1, 5 

and 10 warehouses (the number of warehouses is 

the TPC-C parameter that influences the initial 

database size). For each size, we generate three 

data-base configurations: PLAIN, ENC and 

ADAPT. Results are summarized in Table 2. 

Estimated storage of PLAIN, ENC and ADAPT 

are calculated by using the analytical model 

presented in Section 4.3. For each estimated 

value, we report the estimation error with respect 

to the measured database size. Errors are 

expressed as a percentage. We observe that the 

proposed model always overestimates the 

database size. However, errors show that 

estimations are close to measured sizes. For 

PLAIN databases, the error is always below 2%, 

while for ENC and ADAPT databases the error is 

always between 5% and 6%.We then validate the 

network usage estimation model. We deploy 

PLAIN, ENC and ADAPT TPC-C compliant 

databases, each having 10 warehouses. We 

observe that network consumption is invariant 

with respect to the num-ber of warehouses, 

because it only depends on encryption and query 

workload. We measure the network usage of the 

PLAIN database, and we obtain an average of 

7,162 Bytes per transaction. By using Equation 

(8), we estimate np ¼ k 548. Hence, we determine 

k ¼ 13:07. Then we use this value of k to 

determine the estimated network usage of ENC 

and ADAPT configurations. We compare these 

values with the experimentally measured network 

usages. Results are summarized in Table 3. 

Estimations are quite accurate, since we achieve 

errors of 1:2% and 1:4% for the ENC and 

ADAPT configurations, respectively.The 

validation demonstrates the efficacy of the 

proposed analytical usage estimation 

methodology in the TPC-C workload. Costs 

evaluations proposed in the following sec-tions 

are based on the same usage estimations. 

 

6.2 Analysis of Cloud Database Costs 

 

 We analyze cloud database costs with respect 

to different cloud provider offers and different 

storage and network usages. We consider a billing 

period equal to one month, and 24/7 availability 

(730 uptime hours per month).We initially 

estimate the monthly costs of a cloud data-base 

service in the PLAIN, ENC and ADAPT 

configurations with respect to a plaintext storage 

usage of 100 GB and a plaintext network usage of 

100 GB. In Table 4, we report the results for the 
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following cloud instances: Small, Large, and 

High Memory: Double Extra Large from Amazon 

RDS [28]; Premium P1 and Premium P2 from 

SQL Azure [31]. 

 

7 CONCLUSION 

 

There are two main tenant concerns that may 

prevent the adoption of the cloud as the fifth 

utility: data confidentiality and costs. This paper 

addresses both issues in the case of cloud 

database services. These applications have not yet 

received adequate attention by the academic 

literature, but they are of utmost importance if we 

consider that almost all important services are 

based on one or multiple databases.We address 

the data confidentiality concerns by propos-ing a 

novel cloud database architecture that uses 

adaptive encryption techniques with no 

intermediate servers. This scheme provides 

tenants with the best level of confidential-ity for 

any database workload that is likely to change in 

a medium-term period. We investigate the 

feasibility and per-formance of the proposed 

architecture through a large set of experiments 

based on a software prototype subject to the TPC-

C standard benchmark. Our results demonstrate 

that the network latencies that are typical of cloud 

database environments hide most overheads 

related to static and adaptive encryption. 
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