δ- Best Approximation in 2-Normed Almost Linear Space

T. Markandeya Naidu¹& Dr. D. Bharathi² ¹Lecturer in Mathematics PVKN Govt. College, Chittoor, Andhra Pradesh-517002, India Email: <u>tmnaidu.maths@yahoo.co.in</u> ²Associate Professor Department of Mathematics, SV University, Tirupati, India Email:<u>bharathikavali@yahoo.co.in</u>

Abstract:

The purpose of this paper is to introduce and discuss the concept of δ -best approximation in 2-normed almost linear space. A concept of δ -orthogonality in 2- normed almost linear space is also introduced and the relations between these two concepts are obtained in this paper.

Keywords:

2-normed almost linear space; best approximation in 2- normed almost linear space; δ - best approximation in 2-normed almost linear space ; δ - orthogonalisation in 2- normed almost linear space.

1.Introduction

Diminnie, R. Freese [1] and many others developed new concept like linear 2-normed space. The notion of an almost linear space (als) was introduced by G. Godini [2]-[6]. All spaces involved in this work are over the real field R.S. Gahler, Y.J. Cho, C. S. Elumalai, R. Vijayaragavan [12]-[13] established some characterization of best approximation in terms of 2-semi inner products and normalized duality mapping associated with a linear 2-normed space. Basing on this we introduced a new concept called2-normed almost linear spaceand established some results of best approximation in 2- normed almost linear space[17] and some results of best simultaneous approximation in 2- normed almost linear space [18]. Mehmet A cikg oz [16] introduced the concept ϵ -Approximation in generalized 2- normed linear space and established some results. Basing on this we introduced a new concept called δ - Best approximation in 2-normed almost linear space.

2.Preliminaries

Definition: 2.1. Let X be an almost linear space of dimension> 1 and $||| \cdot ||| \colon X \ge X \to \mathbb{R}$

be a real valued function. If $||| \cdot |||$ satisfy the following properties

- i) $||| \alpha, \beta |||=0$ if and only if α and β are linearly dependent,
- ii) $||| \alpha, \beta ||| = ||| \beta, \alpha |||,$
- iii) ||| $a\alpha$, β ||| = |a| ||| α , β |||,
- iv) $||| \alpha, \beta \delta ||| \le ||| \alpha, \beta \gamma ||| + ||| \alpha, \gamma \delta |||$ for every $\alpha, \beta, \gamma, \delta \in X$ and $a \in \mathbb{R}$.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848 then (X, |||.|||) is called 2-normed almost linear space.

Example: 2.2. Let $X = \mathbb{R}^n$. Let $\alpha, \beta \in X$. Then $\alpha = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \beta_3, \dots, \beta_n)$. Define $||| \alpha, \beta ||| = \sqrt{\sum_{i < j} (\alpha_i \beta_j - \beta_i \alpha_j)^2}$ then $||| \cdot |||$ satisfies all the properties of 2-normed almost linear space. Hence $(X, ||| \cdot |||)$ is 2-normed almost linear space.

Example: 2.3.Let $X = \mathbb{R}^n$. Let $\alpha, \beta \in X$. Then $\alpha = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \beta_3, \dots, \beta_n)$. Define $||| \alpha, \beta ||| = \sqrt{\sum_i (\alpha_i - \beta_i)^2}$ then also $||| \cdot |||$ satisfies all the properties of 2-normed almost linear space. Hence $(X, ||| \cdot |||)$ is 2-normed almost linear space.

Example: 2.4. Let (E, || . ||) be a normed linear space. Let $X = \{ \alpha \in E : \alpha \ge 0 \}$. Then X is an als. Define $||| \alpha, \beta ||| = || \alpha, \beta ||$ Where || . || is 2- norm on E. Then ||| . ||| satisfies all the properties of 2-normed almost linear space. Hence (X, ||| . |||) is 2-normed almost linear space.

Definition: 2.5.Let *X* be a 2-normed almost linear space over the real field \mathbb{R} and G a non empty subset of V_X . For a bounded sub set A of *X* let us define

i) $rad_G(A) = inf_{g \in G} sup_{a \in A} ||| x$, a-g ||| for every $x \in X \setminus V_X$ and 2.1

ii) $cent_G(A) = g_0 \in G: sup_{a \in A} ||| x, a-g_0 ||| = rad_G(A)$ for every $x \in X \setminus V_X.2.2$

The number $rad_G(A)$ is called the chebyshev radius of A with respect to G and an element $g_0 \epsilon cent_G(A)$ is called a best simultaneous approximation or chebyshev centre of A with respect to G.

Definition: 2.6. When A is a singleton say $A = \{a\}, a \in X \setminus \overline{G}$ then $rad_G(A)$ is the distance of a to G, denoted by dist(a,G) and defined by

dist(a,G)=
$$inf_{g\in G}$$
|||x,a-g||| for every $x \in X \setminus V_X 2.3$

and $cent_G(A)$ is the set of all best approximations of 'a' out of G denoted by $P_G(a)$ and defined by $P_G(a) = \{g_0 \in G : |||x,a-g_0||| = dist(a,G), for every <math>x \in X \setminus V_X\}$ 2.4 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Definition: 2.7.Let *X* be a 2-normed almost linear space. The set G is said to be proximinal if $P_G(a)$ is nonempty for each $a \in X \setminus V_X$.

It is well known that for any bounded subset A of *X* we have

i) $rad_G(A) = rad_G(C_0(A)) = rad_G(\bar{A})$

ii) $cent_G(A) = cent_G(C_0(A)) = cent_G(\bar{A})$

Where $C_0(A)$ stands for the convex hull of A and \overline{A} stands for the closure of A. Definition: 2.8. Let X be a 2-normed almost linear spaces and $\phi \neq G \subset V_X$. We define $R_X(G) \subset X$ in the following way $a \in R_X(G)$ if for each $g \in G$ there $existsv_g \in V_X$ such that the following conditions are hold

i)
$$||| x, a-g ||| = ||| x, v_g-g ||| \text{ for each } v_g \in V_X 2.5$$

ii)
$$||| x, a-v ||| \ge ||| x, v_g-v |||$$
 for every $x \in X \setminus V_X$. 2.6

We have $V_X \subset R_X(G)$.

If $G_1 \subset G_2$ then $R_X(G_2) \subset R_X(G_1)$.

3.Main Results

Definition: 3.1 Let X be a 2- normed almost linear spaceover the real field \mathbb{R} and G a nonempty subset of V_X and $\delta > 0$. Apoint $g_0 \in G$ is said to be δ - best approximation to a $\in A$ (a bounded subset of X) if $|||x, a - g_0||| \le |||x, a - g||| + \delta$ for all $g \in G$ and $x \in X \setminus V_X$.

Definition: 3.2 For a $\in A$, the set of all δ - best approximation to a in A denoted by $P_G(a,\delta)$ is defined as $P_G(a,\delta) = \{ g_0 \in G : |||x, a - g_0 ||| \le |||x, a - g ||| + \delta$, for all $g \in G$ and $x \in X \setminus V_X \}$.

Theorem:3.3Let G be a subspace of a 2-normed almost linear space X. Then the set $P_G(a,\delta)$ is bounded.

Proof: Let $g_1, g_2 \in P_G(a, \delta)$ and $a \in A$, then $|||x, a - g_1||| \le |||x, a - g||| + \delta$ and $|||x, a - g_2||| \le |||x, a - g||| + \delta$, for all $g \in G$ and $x \in X \setminus V_X$.

Now $|||x, g_1 - g_2||| = |||x, g_1 - a + a - g_2||| \le |||x, a - g_1||| + |||x, a - g_2|||$

 $\leq \mid\mid\mid x, a - g \mid\mid\mid + \delta + \mid\mid\mid x, a - g \mid\mid\mid + \delta$

 $\leq 2 \mid \mid \mid x, a - g \mid \mid \mid + 2\delta$

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 **ISSN 2348-6848** $\leq 2 d(x, G) + 2\delta = M.$

Therefore $|||x, g_1 - g_2 ||| \le M$.

Hence $P_G(a, \delta)$ is bounded.

Theorem: 3.4 Let G be a subspace of a 2-normed almost linear space X and a $\in A$. Then the set $P_G(a,\delta)$ is convex.

Proof: Let $g_1, g_2 \in P_G(a, \delta)$ and $0 \le \lambda \le 1$, then $|||x, a - g_1 ||| \le |||x, a - g ||| + \delta$ and $|||x, a - g_2 ||| \le |||x, a - g ||| + \delta$, for all $g \in G$ and $x \in X \setminus V_X$.

 $|||x, a - {\lambda g_1 + (1 - \lambda)g_2} ||| = |||x, a - \lambda g_1 - g_2 + \lambda g_2 |||$

= |||x, a $-\lambda g_1 - g_2 + \lambda g_2 + \lambda a - \lambda a$ |||

 $= |||x, \lambda (a - g_1) + (1 - \lambda) (a - g_2)|||$

 $\leq \lambda$ (|||*x*, a - g ||| + δ) + (1 - λ) (|||*x*, a - g ||| + δ)

 $\leq |||x, a - g||| + \delta$

This implies $\lambda g_1 + (1 - \lambda)g_2 \in P_G(a, \delta)$.

Hence $P_G(a,\delta)$ is convex.

Definition: 3.5 Let X be a 2- normed almost linear space, $\delta > 0$ and a, b \in A. We call a is δ – orthogonal to b and is denoted by a \perp_{δ} b if and only if $||x, a + \lambda b||$ + $\delta \ge ||x, a||$ for all scalars $|\lambda| \le 1$.

For any subsets G_1, G_2 of $X, G_1 \perp_{\delta} G_2$ if and only if $g_1 \perp_{\delta} g_2$ for all $g_1 \in G_1$, $g_2 \in G_2$.

Theorem: 3.6 Let X be a 2- normed almost linear space and G be a subspace of X and $\delta > 0$. Then for all $a \in A$, $g_0 \in P_G(a, \delta)$ if and only if $(a - g_0)^{\perp}_{\delta} G$.

Proof: Suppose $g_0 \in P_G(a, \delta)$.

Put $g_1 = g_0 - \lambda g$ for $g \in G$ and $|\lambda| \le 1$.

Since $g_0 \in P_G(a, \delta)$ and $g_1 \in G$ we have $|||x, a - g_0||| \le |||x, a - g_1||| + \delta$

 $\leq |||x, a - (g_0 - \lambda g)||| + \delta$

 $\leq |||x, a - g_0 + \lambda g| ||| + \delta$

This implies $(a - g_0) \perp_{\delta} G$.

Conversely let $(a - g_0) \perp_{\delta} G$, then $|||x, a - g_0 ||| \le |||x, a - g_0 + \lambda g_1 ||| + \delta$ for all $|\lambda| \le 1$ and $g_1 \in G$.

For any $g \in G$ by putting $g_1 = g_0 - g$ and $\lambda = 1$ the last inequality implies

 $|||x, a - g_0||| \le |||x, a - g||| + \delta$. This implies $g_0 \in P_G(a, \delta)$.

Definition: 3.7 Let X be a 2- normed almost linear space and G be a subspace of X and $\delta > 0$. Define $\hat{G}_{\delta} = \{ a \in A : |||x, a ||| \le |||x, a - g ||| + \delta$ for every $g \in G \} = \{ a \in A : a \perp_{\delta} G \}$.

Lemma: 3.8 Let G be a subspace of a 2-normed almost linear space X. Then for all $a \in A$ and all $\delta > 0$ we have $g_0 \in P_G(a, \delta)$ if and only if $(a - g_0) \in \hat{G}_{\delta}$.

Proof: By theorem 3.6 we have $g_0 \in P_G(a, \delta)$ if and only if $(a - g_0) \perp_{\delta} G$.

By the definition of \hat{G}_{δ} we have $(a - g_0) \perp_{\delta} G$ if and only if $(a - g_0) \in \hat{G}_{\delta}$.

Now $(a - g_0) \perp_{\delta} G$ implies $g_0 \in P_G(a, \delta)$ by theorem 3.6.

Therefore $g_0 \in P_G(a, \delta)$ if and only if $(a - g_0) \in \hat{G}_{\delta}$.

Theorem: 3.9 Let G be a subspace of a 2-normed almost linear space X, $\delta > 0$ and $\delta \ge \lambda$. Then $\hat{G} \subseteq \hat{G}_{\lambda} \subseteq \hat{G}_{\delta}$ and $\cap \hat{G}_{\delta} = \hat{G}$ for all $\delta > 0$.

Proof: Let $a \in \hat{G}$ then $|||x, a||| \le |||x, a - g|||$ for all $g \in G$ and $x \in X \setminus V_X$.

Now $|||x, a||| \le |||x, a - g||| \le |||x, a - g||| + \lambda, (\lambda > 0).$

So we have $a \in \hat{G}_{\lambda}$.

Hence $\hat{G} \subseteq \hat{G}_{\lambda}$ 3.1

Let $a \in \hat{G}_{\lambda}$ then $|||x, a||| \le |||x, a - g||| + \lambda \le |||x, a - g||| + \delta$, $(\delta > 0)$.

This implies $\in \hat{G}_{\delta}$.

Therefore
$$\hat{G}_{\lambda} \subseteq \hat{G}_{\delta}$$
 3.2

From 3.1 and 3.2 we have
$$\hat{G} \subseteq \hat{G}_{\lambda} \subseteq \hat{G}_{\delta}$$
. 3.3

Now we prove that $\bigcap \hat{G}_{\delta} = \hat{G}$ for all $\delta > 0$.

From 3.3 we have $\hat{G} \subseteq \bigcap \hat{G}_{\delta}$ for all $\delta > 0$ 3.4

Let $a \in \cap \hat{G}_{\delta}$ for all $\delta > 0$.

Then for all $\delta > 0, 0 \le ||x, a|| \le ||x, a - g|| + \delta$ for all $g \in G$ and $x \in X \setminus V_X$.

Now $0 \le |||x, a||| \le |||x, a - g||| + \frac{1}{n}$ for every $n \in N$, for all $g \in G$ and $x \in X \setminus V_X$

As $n \to \infty$, $|||x, a||| \le |||x, a - g|||$, for all $g \in G$ and $x \in X \setminus V_X$.

Therefore $a \in \hat{G}$.

Hence $\cap \hat{G}_{\delta} \subseteq \hat{G}$, for all $\delta > 0$

3.5

From 3.4 and 3.5 we have $\bigcap \hat{G}_{\delta} = \hat{G}$ for all $\delta > 0$.

Theorem: 3.10 Let G be a subspace of a 2-normed almost linear space X. Then i) If $\delta > 0$, $a \in A$ and $g \in G$ and $a \perp_{\delta} g$ then $a \perp_{\varepsilon} g$ for all $\varepsilon \ge \delta$ and ii) If $a \perp_{\delta} g$ and $|\lambda| < 1$ then $\lambda a \perp_{\delta} \lambda g$.

Proof: i) Let $\delta > 0$, $a \in A$ and $g \in G$ and $a \perp_{\delta} g$ then by definition 3.5 we have

 $|||x, a||| \le |||x, a + \lambda g||| + \delta$ when $|\lambda| \le 1$ and $\delta > 0$.

Then $|||x, a||| \le |||x, a + \lambda g||| + \delta \le |||x, a + \lambda g||| + \varepsilon$ (since $\varepsilon \ge \delta$).

Therefore a \perp_{ε} g.

ii) Let $a \perp_{\delta} g$ and $|\Upsilon| < 1$ then $||x, a|| \le ||x, a + \Upsilon g|| + \delta$ 3.6

Multiplying both sides of 3.6 by $|\lambda|$ we get

 $|\lambda| |||x, a||| \le |\lambda||||x, a + \Upsilon g ||| + |\lambda| \delta \le |||\lambda x, \lambda a + \lambda \Upsilon g ||| + |\lambda| \delta$

 $\leq |||\lambda x, \lambda a + \mu g ||| + \delta \qquad \text{and so } |||\lambda x, \lambda a ||| \leq |||\lambda x, \lambda a + \mu g ||| + \delta.$

Therefore $\lambda a \perp_{\delta} \lambda g$.

Theorem: 3.11Let G be a subspace of a 2-normed almost linear space X. If $\delta > 0$, $a \in A$ and $\varepsilon \ge \delta$ then $P_G(a, \delta) \subseteq P_G(a, \varepsilon)$.

Proof: Let $g_0 \in P_G(a, \delta)$ then by definition 3.1 we have $|||x, a - g_0||| \le |||x, a - g||| + \delta$ for all $g \in G$ and $x \in X \setminus V_X$ and $\delta > 0$.

Then $|||x, a - g_0||| \le |||x, a - g||| + \delta$

 $\leq |||x, a - g ||| + \varepsilon$ (since $\varepsilon > \delta$)

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 **ISSN 2348-6848** Therefore $g_0 \in P_G(a, \varepsilon)$.

Hence $P_G(a,\delta) \subseteq P_G(a,\varepsilon)$.

Reference

[1]	R.Freese and S.Gähler	:	Remarks on semi 2-normed space, Math. Nachr. 105(1982) 151-161.
[2]	G. Godini	:	An approach to generalizing Banach spaces. Normed almost linear spaces, Proceedings of the 12 th winter school on Abstract Analysis.5 (1984) 33-50.
[3]	G. Godini	:	Best approximation in normed almost linear spaces. In constructive theory of functions. Proceedings of the International conference on constructive theory of functions. (Varna 1984) Publ. Bulgarium Academy of sciences; Sofia (1984) 356-363.
[4]	G. Godini	:	A Frame work for best simultaneous approximation: Normed almost linear spaces. J.Approxi. Theory. 43 (1985) 338- 358.
[5]	G. Godini	:	On Normed almost linear spaces, Math.Ann.279 (1988) 449-455.
[6]	G. Godini	:	Operators in Normed almost linear spaces Proceedings of the 14 th winter school on Abstract Analysis (Srni.1986).Suppl. Rend. Circ. Mat. Palermo II. Numero. 14(1987) 309-328.
[7]	Sung Mo Im and Sang Han Lee	:	Uniqueness of basis for almost linear space, Bll. korean Math.Soc.34 (1997) 123-133.
[8]	S.Elumalai,Y.J.Cho and S.S. Kim	:	Best approximation sets in linear 2- normed space Comm.Korean Math. Soc. 12 (1997) 619-629

[9]	Geetha S.Rao and	:	Chebyshev Centers Proximinality and
	T.L.Bhaskeramurthi		Farthest points in Strong normed
			almost linear spaces, Approx. Theory
			& its Appli.13 (1997) 99-111.
[10]	S.S.Dragomir	:	Some characterization of
			bestapproximation in normed linear
			spaces. Acta Mathematical Vietnamica. 25
			(2000) 359-366.
[11]	S. Elumalai and		Best simultaneous approximation in linear 2-
[]	R. Vijavaragavan	-	normed spaces .General Mathematics.16
	J J C		(2008) 73-81.
[12]	S. Elumalai and	:	Characterization of best approximation in
	R. Vijayaragavan		linear 2-normed spaces. General
			Mathematics. 17 (2009) 141-160.
[12]	Mehmet A cika"oz		s Approximation in generalized 2 normed
[13]	Wenniet R, etkg 02		spaces MATEMATIOKI VESNIK61 (2009)
			159–163
[14]	A. Khorasani and	:	Best approximation in Probabilistic 2-
	M.A. Moghaddam		normed Spaces, Novi SadJ.Math.
			40 (2010) 103-110.
.	V.D. 1		
[15]	Y. Dominic and	:	Best approximation in uniformly convex
	M. Marudai		2- normed spaces, Int. journal of Math.
			Analysis.o (2012) 1013-1021.
[16]	T.Markandeya Naidu	:	Best approximation in 2- normed almost linear
	& Dr. D. Bharathi		space"International Journal of Engineering
			Research & Technology" 2 (2013)3569-3573
[17]	T.Markandeya Naidu	:	Best simultaneous approximation in2- normed
	& Dr. D. Bharathi		almost linearspace"International Journal of
			EngineeringResearch & Technology"
			3(2014)1920-1925