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Abstract:   

Data compression involves encoding information using 

fewer bits than the original representation. Compression 

can be either lossy or lossless. The process of reducing 

the size of a data file is popularly referred to as data 

compression, although its formal name is source coding 

because coding is done at the source of the data before it 

is stored or transmitted. Data compression is important 

application in the area of file storage and distributed 

system because in distributed system data have to send 

from and to all system. So for speed and performance 

efficiency data compression is used. There are number of 

different data compression methodologies, which are 

used to compress different data formats like text, video, 

audio, image files. The paper presents various 

methodologies of data compression for lossless data. 

Huffman and arithmetic coding are compare according 

to their performances. 
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1. INTRODUCTION 

Compression is useful because it helps reduce resource 

usage, such as data storage space or 

transmission capacity. Because compressed data must be 

decompressed to use, this extra processing imposes 

computational or other costs through decompression; this 

situation is far from being a free lunch. Data compression 

is subject to a space–time complexity trade-off. For 

instance, a compression scheme for video may require 

expensive hardware for the video to be decompressed 

fast enough to be viewed as it is being decompressed, 

and the option to decompress the video in full before 

watching it may be inconvenient or require additional 

storage. The design of data compression schemes 

involves trade-offs among various factors, including the 

degree of compression, the amount of distortion 

introduced e.g., when using lossy data compression, and 

the computational resources required to compress and 

uncompress the data. Data compression has important 

application in the area of file storage and distributed 

system. Data compression is used in multimedia field, 

text documents, and database table. Data compression 

methods can be classified in several ways. One of the  

 

 

 

most important criteria of classification is whether the 

compression algorithms remove some part of data which  

cannot be recovered during decompression. The 

algorithm which removes some part of data is called  

 

lossy data compression. And the algorithm that achieve 

the same what we compressed after decompression is 

called lossless data compression. The lossy data 

compression algorithm is usually use when a perfect 

consistency with the original data is not necessary after 

decompression. Example of lossy data compression is 

compression of video or picture data. Lossless data 

compression is used in text file, database tables and in 

medical image because law of regulations.Various 

lossless data compression algorithm have been proposed 

and used. Some of main techniquesare Huffman Coding, 

Run Length Encoding, Arithmetic Encoding and 

Dictionary Based Encoding. In this paper we examine 

Huffman Coding and Arithmetic Encoding and give 

compression between them according to their 

performances. 

 

2. DATA COMPRESSION 

The theoretical background of compression is provided 

by information theory (which is closely related 

to algorithmic information theory) for lossless 

compression and rate–distortion theory for lossy 

compression. These areas of study were essentially 

forged by Claude Shannon, who published fundamental 

papers on the topic in the late 1940s and early 

1950s. Coding theory is also related. The idea of data 

compression is deeply connected with statistical 

inference. There is a close connection between machine 

learning and compression: a system that predicts 

the posterior probabilities of a sequence given its entire 

history can be used for optimal data compression (by 

using arithmetic coding on the output distribution) while 

an optimal compressor can be used for prediction (by 

finding the symbol that compresses best, given the 

previous history). This equivalence has been used as 

justification for data compression as a benchmark for 

"general intelligence”.Data compression can be viewed 

as a special case of data differencing: Data differencing 

consists of producing a difference given a source and 

a target, with patching producing a target given 

a source and a difference, while data compression 

consists of producing a compressed file given a target, 

and decompression consists of producing a target given 

only a compressed file. Thus, one can consider data 
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compression as data differencing with empty source data, 

the compressed file corresponding to a "difference from 

nothing." This is the same as considering 

absolute entropy (corresponding to data compression) as 

a special case of relative entropy (corresponding to data 

differencing) with no initial data. 

2.1 Lossy Data compression 

Lossy data compression is the converse of lossless 

data compression. In these schemes, some loss of 

information is acceptable. Dropping nonessential 

detail from the data source can save storage space. 

Lossy data compression schemes are informed by 

research on how people perceive the data in 

question. For example, the human eye is more 

sensitive to subtle variations in luminance than it is 

to variations in color. JPEG image 

compression works in part by rounding off 

nonessential bits of information.
[9]

 There is a 

corresponding trade-off between preserving 

information and reducing size. A number of popular 

compression formats exploit these perceptual 

differences, including those used in music files, 

images, and video. Lossy image compression can be 

used in digital cameras, to increase storage 

capacities with minimal degradation of picture 

quality. Similarly, DVDs use the lossy MPEG-

2 Video codec for video compression. In lossy audio 

compression, methods of psychoacoustics are used 

to remove non-audible (or less audible) components 

of the audio signal. Compression of human speech is 

often performed with even more specialized 

techniques; speech coding, or voice coding, is 

sometimes distinguished as a separate discipline 

from audio compression. Different audio and speech 

compression standards are listed under audio 

codecs. Voice compression is used in Internet 

telephony, for example audio compression is used 

for CD ripping and is decoded by audio 

players.There are two basic lossy compression 

schemes: (1) in lossy transform codecs, samples of 

picture or sound are taken, chopped into small 

segments, transformed into a new basis space and 

quantized. The resulting quantized values are the 

entropy coded. (2) inlossy predictive codecs, 

previous and/or subsequent decoded data is used to 

predict the current sound sample or image frame. 

The error between the predicted data and real data, 

together with any extra information needed to 

reproduce the prediction is then quantized and 

coded. 

 

2.2 Lossless Data compression 

Lossless data compression algorithms usually 

exploit statistical redundancy to represent data more 

concisely without losing information, so that the 

process is reversible. Lossless compression is 

possible because most real-world data has statistical 

redundancy. For example, an image may have areas 

of colour that do not change over several pixels; 

instead of coding "red pixel, red pixel, ..." the data 

may be encoded as "279 red pixels". This is a basic 

example of run-length encoding; there are many 

schemes to reduce file size by eliminating 

redundancy.The Lempel–Ziv (LZ) compression 

methods are among the most popular algorithms for 

lossless storage.
[6]

 DEFLATE is a variation on LZ 

optimized for decompression speed and 

compression ratio, but compression can be slow. 

DEFLATE is used 

in PKZIP, Gzip and PNG. LZW (Lempel–Ziv–

Welch) is used in GIF images. Also noteworthy is 

the LZR (Lempel-Ziv–Renau) algorithm, which 

serves as the basis for the Zip method. LZ methods 

use a table-based compression model where table 

entries are substituted for repeated strings of data. 

For most LZ methods, this table is generated 

dynamically from earlier data in the input. The table 

itself is often Huffman encoded (e.g. SHRI, LZX). 

A current LZ-based coding scheme that performs 

well is LZX, used in Microsoft's CAB format.The 

best modern lossless compressors 

use probabilistic models, such as prediction by 

partial matching. The Burrows–Wheeler 

transform can also be viewed as an indirect form of 

statistical modelling. The class of grammar-based 

codes are gaining popularity because they can 

compress highly repetitive text, extremely 

effectively, for instance, biological data collection of 

same or related species, huge versioned document 

collection, internet archives, etc. The basic task of 

grammar-based codes is constructing a context-free 

grammar deriving a single string. Sequitur and Re-

Pair are practical grammar compression algorithms 

for which public codes are available.In a further 

refinement of these techniques, statistical 

predictions can be coupled to an algorithm 

called arithmetic coding. Arithmetic coding, 

invented by JormaRissanen, and turned into a 

practical method by Witten, Neal, and Cleary, 

achieves superior compression to the better-known 

Huffman algorithm and lends itself especially well 

to adaptive data compression tasks where the 

predictions are strongly context-dependent. 

Arithmetic coding is used in the bi-level image 

compression standard JBIG, and the document 

compression standard DjVu. The text entry 

system Dasher is an inverse arithmetic coder. 

 

3. Huffmann coding for data compression 

A Huffman Coding is more sophisticated and efficient 

lossless data compression technique. In Huffman Coding 

the characters in a data file are converted to binary code. 

And in this technique the most common characters in the 

file have the shortest binary codes, and the least common 
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have the longest binary code. To check Huffman 

Coding‟s work we assume that we have a text file and 

we have to compress it through Huffman Coding, the 

characters in the file have the following frequencies 

shown in figure 1: 

  
Fig1: Frequencies characters in the file 

 

We have characters from A to G and corresponding 

frequencies. 

Step 1: In first step of building a Huffman Code order the 

characters from highest to lowest frequencies of 

occurrence as follows: 

 
Step 2: In second step of building a Huffman code we 

take two least-frequent characters and logically grouped 

them together, and then their frequencies are added. In 

our example, the D and E characters have grouped 

together and we have combined frequency are 21: 

 
This begins the construction of a “binary tree” structure. 

Now we again select the two elements with the lowest 

frequencies, and the lowest frequency is D-E 

combination and G. we group them together and add 

their frequencies. This is new combination of frequency 

44: 

 
Continue in the same way to select the two elements with 

the lowest frequency, group them together, and then add 

their frequencies, until we reach to all elements and 

remains only one parent for all nodes which is known as 

root. In third iteration, the lowest frequency elements are 

C and A: 

 
Step 3: In third step we do labeling the edges from each 

parent to its left child with the digit 0 and the edge to 

right child with 1. The code word for each source letter is 

the sequence of labels along the path from root to leaf 

node representing the letter. Now final binary tree will be 

as follows: 

 

Tracing down the tree gives the “Huffman codes”, with 

the shortest codes assigned to the character with greater 

frequency shown in figure 2: 

 
Fig 2: Huffman codes with the shortest codes 

 

The Huffman codes won‟t get confused in decoding. The 

best way to see that this is so is to envision the decoder  

cycling through binary tree structure, guided by the 

encoding bits it reads, moving top to bottom and then 

back to the top. 

 

4. Arithmetic Encoding for Data Compression 

Arithmetic encoding is the most powerful compression 

techniques. This converts the entire input data into a 

single floating point number. A floating point number is 

similar to a number with a decimal point, like 4.5 instead 

of 41/2. However, in arithmetic coding we are not 

dealing with decimal number so we call it a floating point 

instead of decimal point. Let‟s take an example we have 

string: 
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Step 1: in the first step we do is look at the frequency 

count for the different letters: 

 
Step 2: In second step we encode the string by dividing 

up the interval [0, 1] and allocate each letter an interval 

whose size depends on how often it count in the string. 

Our string starts with a „B‟, so we take the „B‟ interval 

and divide it up again in the same way: 

 
The boundary between „BE‟ and „BB‟ is 3/8 of the way 

along the interval, which is itself 2/3 long and starts at 

3/8. So boundary is 3/8 + (2/8) * (3/8) = 30/64. Similarly 

the boundary between „BB‟ and „B_‟ is 3/8+ (2/8) * (5/8) 

= 34/64, and so on. 

Step 3: In third step we see next letter is now „E‟, so now 

we subdivide the „E‟ interval in the same way. We carry 

on through the message….And, continuing in this way, 

we eventually obtain: 

 
and continuing in this way, we obtain:  

 
So we represent the message as any number in the 

interval  

[7653888/16777216, 7654320/16777216] 

However, we cannot send numbers like 

7654320/16777216 easily using computer. In decimal 

notation, the rightmost digit to the left of the decimal 

point indicates the number of units; the one to its left 

gives the number of tens: the next one along gives the 

number of hundred, and so on.  

So 

7653888 = (7*106) + (6*105) + (5*104) + (3*103) + 

(8*102) + (8*10) + 8 

Binary numbers are almost exactly the same, only we 

deal with powers of 2 instead of power of 10. The 

rightmost digit of binary number is unit (as before) the 

one to its left gives the number of 2s, the next one the 

number of 4s, and soon. 

So 

110100111 = (1*28) + (1*27) + (0*26) + (1*25) + 

(0*24) + (0*23) + (1*22) + (1*21) + 1 

= 256 + 128 + 32 + 4 + 2 + 1 = 423 in denary (i.e. base 

10). 

 

5. Conclusion 

Performance measure is used to find which technique is 

good according to some criteria. Depending on the nature 

of application there are various criteria to measure the 

performance of compression algorithm. When measuring 

the performance the main thing to be considered is space 

efficiency and the time efficiency is another factor.Since 

the compression behavior depends on the redundancy of 

symbols in the source file, it is difficult to measure 

performance of compression algorithm in general. The 

performance of data compression depends on the type of 

data and structure of input source. The compression 

behavior depends on the category of the compression 

algorithm: lossy or lossless. In this paper we have find 

out that arithmetic encoding methodology is very 

powerful over Huffman encoding methodology. In 

comparison we came to know that compression ratio of 

arithmetic encoding is better. And furthermore arithmetic 

encoding reduces channel bandwidth and transmission 

time. 

6. References 
1 Introduction to Data Compression, Khalid Sayood, Ed 

Fox (Editor), March 2000. 

 

2 Burrows M., and Wheeler, D. J. 1994. A Block-Sorting 

Lossless Data Compression Algorithm. SRC Research 

Report 124, Digital Systems Research Center. 

 

3 Ken Huffman. Profile: David A. Huffman, Scientific 

American, September 1991, pp. 54–58. 

4Blelloch, E., 2002. Introduction to Data Compression, 

Computer Science Department, Carnegie Mellon 

University. 

 

5Cormak, V. and S. Horspool, 1987. Data compression 

using dynamic Markov modeling, Comput. J., 30: 541–

550. 

 

6 Cleary, J., Witten, I., "Data Compression Using 

Adaptive Coding and Partial String Matching", IEEE 

Transactions on Communications, Vol. COM-32, No. 4, 

April 1984, pp 396-402. 

 

7 Mahoney, M., "Adaptive Weighting of Context Models 

for Lossless Data Compression", Unknown, 2002. 

 


