

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Lossless Data Compression Methodologies Aayushi Agrawal ; Abhi Tanwar & Akshay Vyas
 P a g e | 1104

Lossless Data Compression Methodologies
Aayushi Agrawal ; Abhi Tanwar & Akshay Vyas

Dronacharya College of Engnn

Abstract:

Data compression involves encoding information using

fewer bits than the original representation. Compression

can be either lossy or lossless. The process of reducing

the size of a data file is popularly referred to as data

compression, although its formal name is source coding

because coding is done at the source of the data before it

is stored or transmitted. Data compression is important

application in the area of file storage and distributed

system because in distributed system data have to send

from and to all system. So for speed and performance

efficiency data compression is used. There are number of

different data compression methodologies, which are

used to compress different data formats like text, video,

audio, image files. The paper presents various

methodologies of data compression for lossless data.

Huffman and arithmetic coding are compare according

to their performances.

Keywords:
Data compression; lossy compression; lossless

compression; Huffman Coding; Run Length Encoding ;

Arithmetic Encoding

1. INTRODUCTION

Compression is useful because it helps reduce resource

usage, such as data storage space or

transmission capacity. Because compressed data must be

decompressed to use, this extra processing imposes

computational or other costs through decompression; this

situation is far from being a free lunch. Data compression

is subject to a space–time complexity trade-off. For

instance, a compression scheme for video may require

expensive hardware for the video to be decompressed

fast enough to be viewed as it is being decompressed,

and the option to decompress the video in full before

watching it may be inconvenient or require additional

storage. The design of data compression schemes

involves trade-offs among various factors, including the

degree of compression, the amount of distortion

introduced e.g., when using lossy data compression, and

the computational resources required to compress and

uncompress the data. Data compression has important

application in the area of file storage and distributed

system. Data compression is used in multimedia field,

text documents, and database table. Data compression

methods can be classified in several ways. One of the

most important criteria of classification is whether the

compression algorithms remove some part of data which

cannot be recovered during decompression. The

algorithm which removes some part of data is called

lossy data compression. And the algorithm that achieve

the same what we compressed after decompression is

called lossless data compression. The lossy data

compression algorithm is usually use when a perfect

consistency with the original data is not necessary after

decompression. Example of lossy data compression is

compression of video or picture data. Lossless data

compression is used in text file, database tables and in

medical image because law of regulations.Various

lossless data compression algorithm have been proposed

and used. Some of main techniquesare Huffman Coding,

Run Length Encoding, Arithmetic Encoding and

Dictionary Based Encoding. In this paper we examine

Huffman Coding and Arithmetic Encoding and give

compression between them according to their

performances.

2. DATA COMPRESSION

The theoretical background of compression is provided

by information theory (which is closely related

to algorithmic information theory) for lossless

compression and rate–distortion theory for lossy

compression. These areas of study were essentially

forged by Claude Shannon, who published fundamental

papers on the topic in the late 1940s and early

1950s. Coding theory is also related. The idea of data

compression is deeply connected with statistical

inference. There is a close connection between machine

learning and compression: a system that predicts

the posterior probabilities of a sequence given its entire

history can be used for optimal data compression (by

using arithmetic coding on the output distribution) while

an optimal compressor can be used for prediction (by

finding the symbol that compresses best, given the

previous history). This equivalence has been used as

justification for data compression as a benchmark for

"general intelligence”.Data compression can be viewed

as a special case of data differencing: Data differencing

consists of producing a difference given a source and

a target, with patching producing a target given

a source and a difference, while data compression

consists of producing a compressed file given a target,

and decompression consists of producing a target given

only a compressed file. Thus, one can consider data

http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/TANSTAAFL
http://en.wikipedia.org/wiki/Time/space_complexity
http://en.wikipedia.org/wiki/Electronic_hardware
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Algorithmic_information_theory
http://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Coding_theory
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Posterior_probabilities
http://en.wikipedia.org/wiki/Data_differencing

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Lossless Data Compression Methodologies Aayushi Agrawal ; Abhi Tanwar & Akshay Vyas
 P a g e | 1105

compression as data differencing with empty source data,

the compressed file corresponding to a "difference from

nothing." This is the same as considering

absolute entropy (corresponding to data compression) as

a special case of relative entropy (corresponding to data

differencing) with no initial data.

2.1 Lossy Data compression

Lossy data compression is the converse of lossless

data compression. In these schemes, some loss of

information is acceptable. Dropping nonessential

detail from the data source can save storage space.

Lossy data compression schemes are informed by

research on how people perceive the data in

question. For example, the human eye is more

sensitive to subtle variations in luminance than it is

to variations in color. JPEG image

compression works in part by rounding off

nonessential bits of information.
[9]

 There is a

corresponding trade-off between preserving

information and reducing size. A number of popular

compression formats exploit these perceptual

differences, including those used in music files,

images, and video. Lossy image compression can be

used in digital cameras, to increase storage

capacities with minimal degradation of picture

quality. Similarly, DVDs use the lossy MPEG-

2 Video codec for video compression. In lossy audio

compression, methods of psychoacoustics are used

to remove non-audible (or less audible) components

of the audio signal. Compression of human speech is

often performed with even more specialized

techniques; speech coding, or voice coding, is

sometimes distinguished as a separate discipline

from audio compression. Different audio and speech

compression standards are listed under audio

codecs. Voice compression is used in Internet

telephony, for example audio compression is used

for CD ripping and is decoded by audio

players.There are two basic lossy compression

schemes: (1) in lossy transform codecs, samples of

picture or sound are taken, chopped into small

segments, transformed into a new basis space and

quantized. The resulting quantized values are the

entropy coded. (2) inlossy predictive codecs,

previous and/or subsequent decoded data is used to

predict the current sound sample or image frame.

The error between the predicted data and real data,

together with any extra information needed to

reproduce the prediction is then quantized and

coded.

2.2 Lossless Data compression

Lossless data compression algorithms usually

exploit statistical redundancy to represent data more

concisely without losing information, so that the

process is reversible. Lossless compression is

possible because most real-world data has statistical

redundancy. For example, an image may have areas

of colour that do not change over several pixels;

instead of coding "red pixel, red pixel, ..." the data

may be encoded as "279 red pixels". This is a basic

example of run-length encoding; there are many

schemes to reduce file size by eliminating

redundancy.The Lempel–Ziv (LZ) compression

methods are among the most popular algorithms for

lossless storage.
[6]

 DEFLATE is a variation on LZ

optimized for decompression speed and

compression ratio, but compression can be slow.

DEFLATE is used

in PKZIP, Gzip and PNG. LZW (Lempel–Ziv–

Welch) is used in GIF images. Also noteworthy is

the LZR (Lempel-Ziv–Renau) algorithm, which

serves as the basis for the Zip method. LZ methods

use a table-based compression model where table

entries are substituted for repeated strings of data.

For most LZ methods, this table is generated

dynamically from earlier data in the input. The table

itself is often Huffman encoded (e.g. SHRI, LZX).

A current LZ-based coding scheme that performs

well is LZX, used in Microsoft's CAB format.The

best modern lossless compressors

use probabilistic models, such as prediction by

partial matching. The Burrows–Wheeler

transform can also be viewed as an indirect form of

statistical modelling. The class of grammar-based

codes are gaining popularity because they can

compress highly repetitive text, extremely

effectively, for instance, biological data collection of

same or related species, huge versioned document

collection, internet archives, etc. The basic task of

grammar-based codes is constructing a context-free

grammar deriving a single string. Sequitur and Re-

Pair are practical grammar compression algorithms

for which public codes are available.In a further

refinement of these techniques, statistical

predictions can be coupled to an algorithm

called arithmetic coding. Arithmetic coding,

invented by JormaRissanen, and turned into a

practical method by Witten, Neal, and Cleary,

achieves superior compression to the better-known

Huffman algorithm and lends itself especially well

to adaptive data compression tasks where the

predictions are strongly context-dependent.

Arithmetic coding is used in the bi-level image

compression standard JBIG, and the document

compression standard DjVu. The text entry

system Dasher is an inverse arithmetic coder.

3. Huffmann coding for data compression

A Huffman Coding is more sophisticated and efficient

lossless data compression technique. In Huffman Coding

the characters in a data file are converted to binary code.

And in this technique the most common characters in the

file have the shortest binary codes, and the least common

http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Relative_entropy
http://en.wikipedia.org/wiki/Lossy_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Luminance
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Data_compression#cite_note-9
http://en.wikipedia.org/wiki/Trade-off
http://en.wikipedia.org/wiki/Psychoacoustics
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/MPEG-2
http://en.wikipedia.org/wiki/MPEG-2
http://en.wikipedia.org/wiki/Video_codec
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Audio_compression_(data)
http://en.wikipedia.org/wiki/Audio_compression_(data)
http://en.wikipedia.org/wiki/Audio_compression_(data)
http://en.wikipedia.org/wiki/Psychoacoustics
http://en.wikipedia.org/wiki/Audio_signal_processing
http://en.wikipedia.org/wiki/Speech_coding
http://en.wikipedia.org/wiki/Audio_codec
http://en.wikipedia.org/wiki/Audio_codec
http://en.wikipedia.org/wiki/Audio_codec
http://en.wikipedia.org/wiki/Internet_telephony
http://en.wikipedia.org/wiki/Internet_telephony
http://en.wikipedia.org/wiki/Internet_telephony
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Redundancy_(information_theory)
http://en.wikipedia.org/wiki/Self-information
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv
http://en.wikipedia.org/wiki/Data_compression#cite_note-6
http://en.wikipedia.org/wiki/DEFLATE_(algorithm)
http://en.wikipedia.org/wiki/PKZIP
http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/LZW
http://en.wikipedia.org/wiki/Graphics_Interchange_Format
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/LZX_(algorithm)
http://en.wikipedia.org/wiki/Cabinet_(file_format)
http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Prediction_by_partial_matching
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://en.wikipedia.org/wiki/Grammar-based_codes
http://en.wikipedia.org/wiki/Grammar-based_codes
http://en.wikipedia.org/wiki/Sequitur_algorithm
http://en.wikipedia.org/wiki/Arithmetic_coding
http://en.wikipedia.org/wiki/Jorma_Rissanen
http://en.wikipedia.org/wiki/JBIG
http://en.wikipedia.org/wiki/DjVu
http://en.wikipedia.org/wiki/Dasher_(software)

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Lossless Data Compression Methodologies Aayushi Agrawal ; Abhi Tanwar & Akshay Vyas
 P a g e | 1106

have the longest binary code. To check Huffman

Coding‟s work we assume that we have a text file and

we have to compress it through Huffman Coding, the

characters in the file have the following frequencies

shown in figure 1:

Fig1: Frequencies characters in the file

We have characters from A to G and corresponding

frequencies.

Step 1: In first step of building a Huffman Code order the

characters from highest to lowest frequencies of

occurrence as follows:

Step 2: In second step of building a Huffman code we

take two least-frequent characters and logically grouped

them together, and then their frequencies are added. In

our example, the D and E characters have grouped

together and we have combined frequency are 21:

This begins the construction of a “binary tree” structure.

Now we again select the two elements with the lowest

frequencies, and the lowest frequency is D-E

combination and G. we group them together and add

their frequencies. This is new combination of frequency

44:

Continue in the same way to select the two elements with

the lowest frequency, group them together, and then add

their frequencies, until we reach to all elements and

remains only one parent for all nodes which is known as

root. In third iteration, the lowest frequency elements are

C and A:

Step 3: In third step we do labeling the edges from each

parent to its left child with the digit 0 and the edge to

right child with 1. The code word for each source letter is

the sequence of labels along the path from root to leaf

node representing the letter. Now final binary tree will be

as follows:

Tracing down the tree gives the “Huffman codes”, with

the shortest codes assigned to the character with greater

frequency shown in figure 2:

Fig 2: Huffman codes with the shortest codes

The Huffman codes won‟t get confused in decoding. The

best way to see that this is so is to envision the decoder

cycling through binary tree structure, guided by the

encoding bits it reads, moving top to bottom and then

back to the top.

4. Arithmetic Encoding for Data Compression

Arithmetic encoding is the most powerful compression

techniques. This converts the entire input data into a

single floating point number. A floating point number is

similar to a number with a decimal point, like 4.5 instead

of 41/2. However, in arithmetic coding we are not

dealing with decimal number so we call it a floating point

instead of decimal point. Let‟s take an example we have

string:

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Lossless Data Compression Methodologies Aayushi Agrawal ; Abhi Tanwar & Akshay Vyas
 P a g e | 1107

Step 1: in the first step we do is look at the frequency

count for the different letters:

Step 2: In second step we encode the string by dividing

up the interval [0, 1] and allocate each letter an interval

whose size depends on how often it count in the string.

Our string starts with a „B‟, so we take the „B‟ interval

and divide it up again in the same way:

The boundary between „BE‟ and „BB‟ is 3/8 of the way

along the interval, which is itself 2/3 long and starts at

3/8. So boundary is 3/8 + (2/8) * (3/8) = 30/64. Similarly

the boundary between „BB‟ and „B_‟ is 3/8+ (2/8) * (5/8)

= 34/64, and so on.

Step 3: In third step we see next letter is now „E‟, so now

we subdivide the „E‟ interval in the same way. We carry

on through the message….And, continuing in this way,

we eventually obtain:

and continuing in this way, we obtain:

So we represent the message as any number in the

interval

[7653888/16777216, 7654320/16777216]

However, we cannot send numbers like

7654320/16777216 easily using computer. In decimal

notation, the rightmost digit to the left of the decimal

point indicates the number of units; the one to its left

gives the number of tens: the next one along gives the

number of hundred, and so on.

So

7653888 = (7*106) + (6*105) + (5*104) + (3*103) +

(8*102) + (8*10) + 8

Binary numbers are almost exactly the same, only we

deal with powers of 2 instead of power of 10. The

rightmost digit of binary number is unit (as before) the

one to its left gives the number of 2s, the next one the

number of 4s, and soon.

So

110100111 = (1*28) + (1*27) + (0*26) + (1*25) +

(0*24) + (0*23) + (1*22) + (1*21) + 1

= 256 + 128 + 32 + 4 + 2 + 1 = 423 in denary (i.e. base

10).

5. Conclusion

Performance measure is used to find which technique is

good according to some criteria. Depending on the nature

of application there are various criteria to measure the

performance of compression algorithm. When measuring

the performance the main thing to be considered is space

efficiency and the time efficiency is another factor.Since

the compression behavior depends on the redundancy of

symbols in the source file, it is difficult to measure

performance of compression algorithm in general. The

performance of data compression depends on the type of

data and structure of input source. The compression

behavior depends on the category of the compression

algorithm: lossy or lossless. In this paper we have find

out that arithmetic encoding methodology is very

powerful over Huffman encoding methodology. In

comparison we came to know that compression ratio of

arithmetic encoding is better. And furthermore arithmetic

encoding reduces channel bandwidth and transmission

time.

6. References
1 Introduction to Data Compression, Khalid Sayood, Ed

Fox (Editor), March 2000.

2 Burrows M., and Wheeler, D. J. 1994. A Block-Sorting

Lossless Data Compression Algorithm. SRC Research

Report 124, Digital Systems Research Center.

3 Ken Huffman. Profile: David A. Huffman, Scientific

American, September 1991, pp. 54–58.

4Blelloch, E., 2002. Introduction to Data Compression,

Computer Science Department, Carnegie Mellon

University.

5Cormak, V. and S. Horspool, 1987. Data compression

using dynamic Markov modeling, Comput. J., 30: 541–

550.

6 Cleary, J., Witten, I., "Data Compression Using

Adaptive Coding and Partial String Matching", IEEE

Transactions on Communications, Vol. COM-32, No. 4,

April 1984, pp 396-402.

7 Mahoney, M., "Adaptive Weighting of Context Models

for Lossless Data Compression", Unknown, 2002.

